Skip to main content

Home/ sharingknowledge/ Group items tagged universe

Rss Feed Group items tagged

Innovation Blues

What Caffeine Actually Does to Your Brain - 0 views

  • affeine is one seriously misunderstood substance. It's not a simple upper, and it works differently on different people with different tolerances—even in different menstrual cycles. But you can make it work better for you.
  • Luckily, one intrepid reader and writer has actually done that reading, and weighed that evidence, and put together a highly readable treatise on the subject. Buzz: The Science and Lore of Alcohol and Caffeine, by Stephen R. Braun, is well worth the short 224-page read. It was released in 1997, but remains the most accessible treatise on what is and isn't understood about what caffeine and alcohol do to the brain.
  • caffeine actually binds to those receptors in efficient fashion, but doesn't activate them—they're plugged up by caffeine's unique shape and chemical makeup. With those receptors blocked, the brain's own stimulants, dopamine and glutamate, can do their work more freely—"Like taking the chaperones out of a high school dance,"
  • ...12 more annotations...
  • Normally, when adenosine levels reach a certain point in your brain and spinal cord, your body will start nudging you toward sleep, or at least taking it easy. There are actually a few different adenosine receptors throughout the body, but the one caffeine seems to interact with most directly is the A1 receptor.
  • it functions as a supremely talented adenosine impersonator. It heads right for the adenosine receptors in your system and, because of its similarities to adenosine, it's accepted by your body as the real thing and gets into the receptors.
  • Caffeine Doesn't Actually Get You Wired Right off the bat, it's worth stating again: the human brain, and caffeine, are nowhere near totally understood and easily explained by modern science. That said, there is a consensus on how a compound found all over nature, caffeine, affects the mind.
  • caffeine very clearly doesn't press the "gas" on your brain, and that it only blocks a "primary" brake. There are other compounds and receptors that have an effect on what your energy levels feel like—GABA, for example—but caffeine is a crude way of preventing your brain from bringing things to a halt. "You can," Braun writes, "get wired only to the extent that your natural excitatory neurotransmitters support it." In other words, you can't use caffeine to completely wipe out an entire week's worth of very late nights of studying, but you can use it to make yourself feel less bogged down by sleepy feelings in the morning.
  • The effectiveness of caffeine varies significantly from person to person, due to genetics and other factors in play. The average half-life of caffeine—that is, how long it takes for half of an ingested dose to wear off—is about five to six hours in a human body. Women taking oral birth control require about twice as long to process caffeine. Women between the ovulation and beginning of menstruation see a similar, if less severe, extended half-life. For regular smokers, caffeine takes half as long to process—which, in some ways, explains why smokers often drink more coffee and feel more agitated and anxious, because they're unaware of how their bodies work without cigarettes.
  • amines or cocaine; its effect on your alertness is far more subtle.
  • The general consensus on caffeine studies shows that it can enhance work output, but mainly in certain types of work. For tired people who are doing work that's relatively straightforward, that doesn't require lots of subtle or abstract thinking, coffee has been shown to help increase output and quality. Caffeine has also been seen to improve memory creation and retention when it comes to "declarative memory," the kind students use to remember lists or answers to exam questions.
  • What's important to take away is that caffeine is not as simple in effect as a direct stimulant, such as amphet
  • regular caffeine use has also been shown to decrease receptors for norepinephrine, a hormone akin to adrenaline, along with serotonin, a mood enhancer. At the same time, your body can see a 65 percent increase in receptors for GABA, a compound that does many things, including regulate muscle tone and neuron firing. Some studies have also seen changes in different adenosine receptors when caffeine becomes a regular thing.
  • A 1995 study suggests that humans become tolerant to their daily dose of caffeine—whether a single soda or a serious espresso habit—somewhere between a week and 12 days. And that tolerance is pretty strong.
  • You start to feel caffeine withdrawal very quickly, anywhere from 12 to 24 hours after your last use. That's a big part of why that first cup or can in the morning is so important—it's staving off the early effects of withdrawal. The reasons for the withdrawal are the same as with any substance dependency: your brain was used to operating one way with caffeine, and now it's suddenly working under completely different circumstances, but all those receptor changes are still in place. Headaches are the nearly universal effect of cutting off caffeine, but depression, fatigue, lethargy, irritability, nausea, and vomiting can be part of your cut-off, too, along with more specific issues, like eye muscle spasms. Generally, though, you'll be over it in around 10 days—again, depending on your own physiology and other factors.
  • Beyond the equivalent of four cups of coffee in your system at once, caffeine isn't giving you much more boost—in fact, at around the ten-cup level, you're probably less alert than non-drinkers.
‹ Previous 21 - 21 of 21
Showing 20 items per page