Skip to main content

Home/ ShareIt/element5 | The SMB Solution For Software/ Group items tagged torque

Rss Feed Group items tagged

tech writer

MITCalc Bolted connection design | Miroslav Petele Software - 0 views

  •  
    The calculation is designed for a geometrical design and strength check of a prestressed bolt connection, loaded by static or cyclic loading resp., acting both in the axis of the bolt and in the plane of the connected parts. Application is developed in MS Excel, is multi-language, supports Imperial and Metric units, and solves the following main tasks: - Automatic design of a connection bolt of standard design. - Calculation and check of connections fitted with special shanks. - Design and calculation of necessary mounting prestressing of the connection and fastening torque. - Calculation of force conditions of a loaded connection. - Static and dynamic strength check. - The application includes a table of commonly used materials of bolts according to ISO, SAE, and ASTM, and a selection of materials of the connected parts according to AISI/SAE, DIN, BS, AF, and others. - Support of 2D CAD systems (AutoCAD, AutoCAD LT, IntelliCAD, TurboCAD) The calculations use data, procedures, algorithms, and data from specialized literature and standards ANSI, ISO, DIN. Used standards: ANSI B1.1, ANSI 273, ANSI B18.2.1, ANSI B18.2.2, ANSI B18.3, ANSI B18.6.2, ANSI B18.6.3, ANSI B18.22.1, ISO 273, ISO 1207, ISO 4016, ISO 4032, ISO 4035, ISO 4762, ISO 8738, VDI 2230
tech writer

AutoFEM Static Analysis | AutoFEM Software - 0 views

  •  
    AutoFEM Static Analysis provides the calculation of the stress state of the structures under the forces which are constant in time . To date probably this is the most requested task in the design . By using the module "Static analysis" an engineer can evaluate the allowable stresses in design which is developed, determine the most weaknesses in the design and make the necessary changes (optimize) the product. Static analysis also allows: take into account the geometric nonlinearity; determine the stress-strain state of the effects of temperature; perform calculations of contact problems; As the external loads on the structure can be applied force, pressure, rotation, acceleration, bearing load, hydrostatic pressure, torque, temperature. As the fixing can be used complete restriction of movement, as well as the partial restriction of the axes (in Cartesian, cylindrical and spherical coordinate systems). If it is assumed that under the applied loads in the details will be significant displacement, it should be a static analysis taking into account large displacements. To solve these problems non-linear solver organizes the process of incremental step loading and provides the solution of the linearized system of equations at each loading step. In addition there is the possibility of calculating the stress state structures induced by thermal stress (problem of thermoelasticity). The temperature can be attached directly to the design or can be used the results of thermal calculation. The main results of static analysis are: field of displacements of the structure in nodes of finite-element mesh; field relative deformation; field components of the stress; energy of deformation; nodal forces; field distribution of safety factor; This information is usually sufficient to predict the behaviour of structures and making the decision to optimize the geometric shape of the product.
tech writer

AutoFEM Static Analysis (1 year subscription) - 0 views

  •  
    AutoFEM Static Analysis provides the calculation of the stress state of the structures under the forces which are constant in time . To date probably this is the most requested task in the design . By using the module "Static analysis" an engineer can evaluate the allowable stresses in design which is developed, determine the most weaknesses in the design and make the necessary changes (optimize) the product. Static analysis also allows: take into account the geometric nonlinearity; determine the stress-strain state of the effects of temperature; perform calculations of contact problems; As the external loads on the structure can be applied force, pressure, rotation, acceleration, bearing load, hydrostatic pressure, torque, temperature. As the fixing can be used complete restriction of movement, as well as the partial restriction of the axes (in Cartesian, cylindrical and spherical coordinate systems). If it is assumed that under the applied loads in the details will be significant displacement, it should be a static analysis taking into account large displacements. To solve these problems non-linear solver organizes the process of incremental step loading and provides the solution of the linearized system of equations at each loading step. In addition there is the possibility of calculating the stress state structures induced by thermal stress (problem of thermoelasticity). The temperature can be attached directly to the design or can be used the results of thermal calculation. The main results of static analysis are: field of displacements of the structure in nodes of finite-element mesh; field relative deformation; field components of the stress; energy of deformation; nodal forces; field distribution of safety factor; This information is usually sufficient to predict the behaviour of structures and making the decision to optimize the geometric shape of the product.
tech writer

AutoFEM Static Analysis (1 year subscription) | AutoFEM Software - 0 views

  •  
    AutoFEM Static Analysis provides the calculation of the stress state of the structures under the forces which are constant in time . To date probably this is the most requested task in the design . By using the module "Static analysis" an engineer can evaluate the allowable stresses in design which is developed, determine the most weaknesses in the design and make the necessary changes (optimize) the product. Static analysis also allows: take into account the geometric nonlinearity; determine the stress-strain state of the effects of temperature; perform calculations of contact problems; As the external loads on the structure can be applied force, pressure, rotation, acceleration, bearing load, hydrostatic pressure, torque, temperature. As the fixing can be used complete restriction of movement, as well as the partial restriction of the axes (in Cartesian, cylindrical and spherical coordinate systems). If it is assumed that under the applied loads in the details will be significant displacement, it should be a static analysis taking into account large displacements. To solve these problems non-linear solver organizes the process of incremental step loading and provides the solution of the linearized system of equations at each loading step. In addition there is the possibility of calculating the stress state structures induced by thermal stress (problem of thermoelasticity). The temperature can be attached directly to the design or can be used the results of thermal calculation. The main results of static analysis are: field of displacements of the structure in nodes of finite-element mesh; field relative deformation; field components of the stress; energy of deformation; nodal forces; field distribution of safety factor; This information is usually sufficient to predict the behaviour of structures and making the decision to optimize the geometric shape of the product.
tech writer

MITCalc Bolted connection design - Geometrical design and strength check of a prestress... - 0 views

  •  
    The calculation is designed for a geometrical design and strength check of a prestressed bolt connection, loaded by static or cyclic loading resp., acting both in the axis of the bolt and in the plane of the connected parts. Application is developed in MS Excel, is multi-language, supports Imperial and Metric units, and solves the following main tasks: - Automatic design of a connection bolt of standard design. - Calculation and check of connections fitted with special shanks. - Design and calculation of necessary mounting prestressing of the connection and fastening torque. - Calculation of force conditions of a loaded connection. - Static and dynamic strength check. - The application includes a table of commonly used materials of bolts according to ISO, SAE, and ASTM, and a selection of materials of the connected parts according to AISI/SAE, DIN, BS, AF, and others. - Support of 2D CAD systems (AutoCAD, AutoCAD LT, IntelliCAD, TurboCAD) The calculations use data, procedures, algorithms, and data from specialized literature and standards ANSI, ISO, DIN. Used standards: ANSI B1.1, ANSI 273, ANSI B18.2.1, ANSI B18.2.2, ANSI B18.3, ANSI B18.6.2, ANSI B18.6.3, ANSI B18.22.1, ISO 273, ISO 1207, ISO 4016, ISO 4032, ISO 4035, ISO 4762, ISO 8738, VDI 2230
tech writer

AutoFEM Static Analysis - 0 views

  •  
    AutoFEM Static Analysis - Structural analysis capabilities enable engineers to perform static stress analyses of parts and assemblies under various loading conditions. Static studies calculate displacements, reaction forces, strains, stresses, and factor of safety distribution. Static analysis can help you avoid failure due to high stresses. Various structural loads and restraints can be specified including force, pressure, gravity, rotational load, bearing force, torque, prescribed displacement, temperature, etc.
tech writer

AutoFEM Thermal Analysis (1 year subscription) - 0 views

  •  
    AutoFEM Thermal Analysis - module provides a calculation of the temperature behaviour of products under the action of sources of heat and radiation. Thermal analysis can be used independently to calculate the temperature and thermal field of the design, as well as in conjunction with static analysis to assess the resulting of thermal deformation. In AutoFEM Thermal Analysis the heat conduction problem has two statement: steady-state thermal conductivity - the calculation of the steady (stationary) temperature fields of structures under the applied thermal boundary conditions; time-dependent thermal conductivity - the calculation of temperature fields of construction is dependent on the time, that is, temperature loads have been made relatively recently, and there is a process of active redistribution of temperature fields; As the boundary conditions are used: temperature, heat flux, convective heat transfer, thermal power, radiation.
tech writer

AutoFEM Thermal Analysis (1 year subscription) | AutoFEM Software - 0 views

  •  
    AutoFEM Thermal Analysis - module provides a calculation of the temperature behaviour of products under the action of sources of heat and radiation. Thermal analysis can be used independently to calculate the temperature and thermal field of the design, as well as in conjunction with static analysis to assess the resulting of thermal deformation. In AutoFEM Thermal Analysis the heat conduction problem has two statement: steady-state thermal conductivity - the calculation of the steady (stationary) temperature fields of structures under the applied thermal boundary conditions; time-dependent thermal conductivity - the calculation of temperature fields of construction is dependent on the time, that is, temperature loads have been made relatively recently, and there is a process of active redistribution of temperature fields; As the boundary conditions are used: temperature, heat flux, convective heat transfer, thermal power, radiation.
« First ‹ Previous 61 - 74 of 74
Showing 20 items per page