Skip to main content

Home/ Sensorica Knowledge/ Group items tagged project software tool collaboration

Rss Feed Group items tagged

Tiberius Brastaviceanu

The Baffler - 0 views

  • This tendency to view questions of freedom primarily through the lens of economic competition, to focus on the producer and the entrepreneur at the expense of everyone else, shaped O’Reilly’s thinking about technology.
  • the O’Reilly brand essence is ultimately a story about the hacker as hero, the kid who is playing with technology because he loves it, but one day falls into a situation where he or she is called on to go forth and change the world,
  • His true hero is the hacker-cum-entrepreneur, someone who overcomes the insurmountable obstacles erected by giant corporations and lazy bureaucrats in order to fulfill the American Dream 2.0: start a company, disrupt an industry, coin a buzzword.
  • ...139 more annotations...
  • gospel of individualism, small government, and market fundamentalism
  • innovation is the new selfishness
  • mastery of public relations
  • making it seem as if the language of economics was, in fact, the only reasonable way to talk about the subject
  • memes are for losers; the real money is in epistemes.
  • “Open source software” was also the first major rebranding exercise overseen by Team O’Reill
  • It’s easy to forget this today, but there was no such idea as open source software before 1998; the concept’s seeming contemporary coherence is the result of clever manipulation and marketing.
  • ideological cleavage between two groups
  • Richard Stallman
  • Free Software Foundation, preoccupied with ensuring that users had rights with respect to their computer programs. Those rights weren’t many—users should be able to run the program for any purpose, to study how it works, to redistribute copies of it, and to release their improved version (if there was one) to the public
  • “free software.”
  • association with “freedom” rather than “free beer”
  • copyleft
  • profound critique of the role that patent law had come to play in stifling innovation and creativity.
  • Plenty of developers contributed to “free software” projects for reasons that had nothing to do with politics. Some, like Linus Torvalds, the Finnish creator of the much-celebrated Linux operating system, did so for fun; some because they wanted to build more convenient software; some because they wanted to learn new and much-demanded skills.
  • Stallman’s rights-talk, however, risked alienating the corporate types
  • he was trying to launch a radical social movement, not a complacent business association
  • By early 1998 several business-minded members of the free software community were ready to split from Stallman, so they masterminded a coup, formed their own advocacy outlet—the Open Source Initiative—and brought in O’Reilly to help them rebrand.
  • “open source”
  • The label “open source” may have been new, but the ideas behind it had been in the air for some time.
  • In those early days, the messaging around open source occasionally bordered on propaganda
  • This budding movement prided itself on not wanting to talk about the ends it was pursuing; except for improving efficiency and decreasing costs, those were left very much undefined.
  • extremely decentralized manner, using Internet platforms, with little central coordination.
  • In contrast to free software, then, open source had no obvious moral component.
  • “open source is not particularly a moral or a legal issue. It’s an engineering issue. I advocate open source, because . . . it leads to better engineering results and better economic results
  • While free software was meant to force developers to lose sleep over ethical dilemmas, open source software was meant to end their insomnia.
  • Stallman the social reformer could wait for decades until his ethical argument for free software prevailed in the public debate
  • O’Reilly the savvy businessman had a much shorter timeline: a quick embrace of open source software by the business community guaranteed steady demand for O’Reilly books and events
  • The coup succeeded. Stallman’s project was marginalized. But O’Reilly and his acolytes didn’t win with better arguments; they won with better PR.
  • A decade after producing a singular vision of the Internet to justify his ideas about the supremacy of the open source paradigm, O’Reilly is close to pulling a similar trick on how we talk about government reform.
  • much of Stallman’s efforts centered on software licenses
  • O’Reilly’s bet wa
  • the “cloud”
  • licenses would cease to matter
  • Since no code changed hands
  • So what did matter about open source? Not “freedom”
  • O’Reilly cared for only one type of freedom: the freedom of developers to distribute software on whatever terms they fancied.
  • the freedom of the producer
  • who must be left to innovate, undisturbed by laws and ethics.
  • The most important freedom,
  • is that which protects “my choice as a creator to give, or not to give, the fruits of my work to you, as a ‘user’ of that work, and for you, as a user, to accept or reject the terms I place on that gift.”
  • O’Reilly opposed this agenda: “I completely support the right of Richard [Stallman] or any individual author to make his or her work available under the terms of the GPL; I balk when they say that others who do not do so are doing something wrong.”
  • The right thing to do, according to O’Reilly, was to leave developers alone.
  • According to this Randian interpretation of open source, the goal of regulation and public advocacy should be to ensure that absolutely nothing—no laws or petty moral considerations—stood in the way of the open source revolution
  • Any move to subject the fruits of developers’ labor to public regulation
  • must be opposed, since it would taint the reputation of open source as technologically and economically superior to proprietary software
  • the advent of the Internet made Stallman’s obsession with licenses obsolete
  • Many developers did stop thinking about licenses, and, having stopped thinking about licenses, they also stopped thinking about broader moral issues that would have remained central to the debates had “open source” not displaced “free software” as the paradigm du jour.
  • Profiting from the term’s ambiguity, O’Reilly and his collaborators likened the “openness” of open source software to the “openness” of the academic enterprise, markets, and free speech.
  • “open to intellectual exchange”
  • “open to competition”
  • “For me, ‘open source’ in the broader sense means any system in which open access to code lowers the barriers to entry into the market”).
  • “Open” allowed O’Reilly to build the largest possible tent for the movement.
  • The language of economics was less alienating than Stallman’s language of ethics; “openness” was the kind of multipurpose term that allowed one to look political while advancing an agenda that had very little to do with politics
  • highlight the competitive advantages of openness.
  • the availability of source code for universal examination soon became the one and only benchmark of openness
  • What the code did was of little importance—the market knows best!—as long as anyone could check it for bugs.
  • The new paradigm was presented as something that went beyond ideology and could attract corporate executives without losing its appeal to the hacker crowd.
  • What Raymond and O’Reilly failed to grasp, or decided to overlook, is that their effort to present open source as non-ideological was underpinned by a powerful ideology of its own—an ideology that worshiped innovation and efficiency at the expense of everything else.
  • What they had in common was disdain for Stallman’s moralizing—barely enough to justify their revolutionary agenda, especially among the hacker crowds who were traditionally suspicious of anyone eager to suck up to the big corporations that aspired to dominate the open source scene.
  • linking this new movement to both the history of the Internet and its future
  • As long as everyone believed that “open source” implied “the Internet” and that “the Internet” implied “open source,” it would be very hard to resist the new paradigm
  • Telling a coherent story about open source required finding some inner logic to the history of the Internet
  • “If you believe me that open source is about Internet-enabled collaboration, rather than just about a particular style of software license,”
  • everything on the Internet was connected to everything else—via open source.
  • The way O’Reilly saw it, many of the key developments of Internet culture were already driven by what he called “open source behavior,” even if such behavior was not codified in licenses.
  • No moralizing (let alone legislation) was needed; the Internet already lived and breathed open source
  • apps might be displacing the browser
  • the openness once taken for granted is no more
  • Openness as a happenstance of market conditions is a very different beast from openness as a guaranteed product of laws.
  • One of the key consequences of linking the Internet to the world of open source was to establish the primacy of the Internet as the new, reinvented desktop
  • This is where the now-forgotten language of “freedom” made a comeback, since it was important to ensure that O’Reilly’s heroic Randian hacker-entrepreneurs were allowed to roam freely.
  • Soon this “freedom to innovate” morphed into “Internet freedom,” so that what we are trying to preserve is the innovative potential of the platform, regardless of the effects on individual users.
  • Lumping everything under the label of “Internet freedom” did have some advantages for those genuinely interested in promoting rights such as freedom of expression
  • Forced to choose between preserving the freedom of the Internet or that of its users, we were supposed to choose the former—because “the Internet” stood for progress and enlightenment.
  • infoware
  • Yahoo
  • their value proposition lay in the information they delivered, not in the software function they executed.
  • The “infoware” buzzword didn’t catch on, so O’Reilly turned to the work of Douglas Engelbart
  • to argue that the Internet could help humanity augment its “collective intelligence” and that, once again, open source software was crucial to this endeavor.
  • Now it was all about Amazon learning from its customers and Google learning from the sites in its index.
  • The idea of the Internet as both a repository and incubator of “collective intelligence”
  • in 2004, O’Reilly and his business partner Dale Dougherty hit on the idea of “Web 2.0.” What did “2.0” mean, exactly?
  • he primary goal was to show that the 2001 market crash did not mean the end of the web and that it was time to put the crash behind us and start learning from those who survived.
  • Tactically, “Web 2.0” could also be much bigger than “open source”; it was the kind of sexy umbrella term that could allow O’Reilly to branch out from boring and highly technical subjects to pulse-quickening futurology
  • O’Reilly couldn’t improve on a concept as sexy as “collective intelligence,” so he kept it as the defining feature of this new phenomenon.
  • What set Web 2.0 apart from Web 1.0, O’Reilly claimed, was the simple fact that those firms that didn’t embrace it went bust
  • find a way to harness collective intelligence and make it part of their business model.
  • By 2007, O’Reilly readily admitted that “Web 2.0 was a pretty crappy name for what’s happening.”
  • O’Reilly eventually stuck a 2.0 label on anything that suited his business plan, running events with titles like “Gov 2.0” and “Where 2.0.” Today, as everyone buys into the 2.0 paradigm, O’Reilly is quietly dropping it
  • assumption that, thanks to the coming of Web 2.0, we are living through unique historical circumstances
  • Take O’Reilly’s musings on “Enterprise 2.0.” What is it, exactly? Well, it’s the same old enterprise—for all we know, it might be making widgets—but now it has learned something from Google and Amazon and found a way to harness “collective intelligence.”
  • tendency to redescribe reality in terms of Internet culture, regardless of how spurious and tenuous the connection might be, is a fine example of what I call “Internet-centrism.”
  • “Open source” gave us the “the Internet,” “the Internet” gave us “Web 2.0,” “Web 2.0” gave us “Enterprise 2.0”: in this version of history, Tim O’Reilly is more important than the European Union
  • For Postman, each human activity—religion, law, marriage, commerce—represents a distinct “semantic environment” with its own tone, purpose, and structure. Stupid talk is relatively harmless; it presents no threat to its semantic environment and doesn’t cross into other ones.
  • Since it mostly consists of falsehoods and opinions
  • it can be easily corrected with facts
  • to say that Tehran is the capital of Iraq is stupid talk
  • Crazy talk, in contrast, challenges a semantic environment, as it “establishes different purposes and assumptions from those we normally accept.” To argue, as some Nazis did, that the German soldiers ended up far more traumatized than their victims is crazy talk.
  • For Postman, one of the main tasks of language is to codify and preserve distinctions among different semantic environments.
  • As he put it, “When language becomes undifferentiated, human situations disintegrate: Science becomes indistinguishable from religion, which becomes indistinguishable from commerce, which becomes indistinguishable from law, and so on.
  • pollution
  • Some words—like “law”—are particularly susceptible to crazy talk, as they mean so many different things: from scientific “laws” to moral “laws” to “laws” of the market to administrative “laws,” the same word captures many different social relations. “Open,” “networks,” and “information” function much like “law” in our own Internet discourse today.
  • For Korzybski, the world has a relational structure that is always in flux; like Heraclitus, who argued that everything flows, Korzybski believed that an object A at time x1 is not the same object as object A at time x2
  • Our language could never properly account for the highly fluid and relational structure of our reality—or as he put it in his most famous aphorism, “the map is not the territory.”
  • Korzybski argued that we relate to our environments through the process of “abstracting,” whereby our neurological limitations always produce an incomplete and very selective summary of the world around us.
  • nothing harmful in this per se—Korzybski simply wanted to make people aware of the highly selective nature of abstracting and give us the tools to detect it in our everyday conversations.
  • Korzybski developed a number of mental tools meant to reveal all the abstracting around us
  • He also encouraged his followers to start using “etc.” at the end of their statements as a way of making them aware of their inherent inability to say everything about a given subject and to promote what he called the “consciousness of abstraction.”
  • There was way too much craziness and bad science in Korzybski’s theories
  • but his basic question
  • “What are the characteristics of language which lead people into making false evaluations of the world around them?”
  • Tim O’Reilly is, perhaps, the most high-profile follower of Korzybski’s theories today.
  • O’Reilly openly acknowledges his debt to Korzybski, listing Science and Sanity among his favorite books
  • It would be a mistake to think that O’Reilly’s linguistic interventions—from “open source” to “Web 2.0”—are random or spontaneous.
  • There is a philosophy to them: a philosophy of knowledge and language inspired by Korzybski. However, O’Reilly deploys Korzybski in much the same way that the advertising industry deploys the latest findings in neuroscience: the goal is not to increase awareness, but to manipulate.
  • O’Reilly, of course, sees his role differently, claiming that all he wants is to make us aware of what earlier commentators may have overlooked. “A metaphor is just that: a way of framing the issues such that people can see something they might otherwise miss,
  • But Korzybski’s point, if fully absorbed, is that a metaphor is primarily a way of framing issues such that we don’t see something we might otherwise see.
  • In public, O’Reilly modestly presents himself as someone who just happens to excel at detecting the “faint signals” of emerging trends. He does so by monitoring a group of überinnovators that he dubs the “alpha geeks.” “The ‘alpha geeks’ show us where technology wants to go. Smart companies follow and support their ingenuity rather than trying to suppress it,
  • His own function is that of an intermediary—someone who ensures that the alpha geeks are heard by the right executives: “The alpha geeks are often a few years ahead of their time. . . . What we do at O’Reilly is watch these folks, learn from them, and try to spread the word by writing down (
  • The name of his company’s blog—O’Reilly Radar—is meant to position him as an independent intellectual who is simply ahead of his peers in grasping the obvious.
  • “the skill of writing is to create a context in which other people can think”
  • As Web 2.0 becomes central to everything, O’Reilly—the world’s biggest exporter of crazy talk—is on a mission to provide the appropriate “context” to every field.
  • In a fascinating essay published in 2000, O’Reilly sheds some light on his modus operandi.
  • The thinker who emerges there is very much at odds with the spirit of objectivity that O’Reilly seeks to cultivate in public
  • meme-engineering lets us organize and shape ideas so that they can be transmitted more effectively, and have the desired effect once they are transmitted
  • O’Reilly meme-engineers a nice euphemism—“meme-engineering”—to describe what has previously been known as “propaganda.”
  • how one can meme-engineer a new meaning for “peer-to-peer” technologies—traditionally associated with piracy—and make them appear friendly and not at all threatening to the entertainment industry.
  • O’Reilly and his acolytes “changed the canonical list of projects that we wanted to hold up as exemplars of the movement,” while also articulating what broader goals the projects on the new list served. He then proceeds to rehash the already familiar narrative: O’Reilly put the Internet at the center of everything, linking some “free software” projects like Apache or Perl to successful Internet start-ups and services. As a result, the movement’s goal was no longer to produce a completely free, independent, and fully functional operating system but to worship at the altar of the Internet gods.
  • Could it be that O’Reilly is right in claiming that “open source” has a history that predates 1998?
  • Seen through the prism of meme-engineering, O’Reilly’s activities look far more sinister.
  • His “correspondents” at O’Reilly Radar don’t work beats; they work memes and epistemes, constantly reframing important public issues in accordance with the templates prophesied by O’Reilly.
  • Or take O’Reilly’s meme-engineering efforts around cyberwarfare.
  • Now, who stands to benefit from “cyberwarfare” being defined more broadly? Could it be those who, like O’Reilly, can’t currently grab a share of the giant pie that is cybersecurity funding?
  • Frank Luntz lists ten rules of effective communication: simplicity, brevity, credibility, consistency, novelty, sound, aspiration, visualization, questioning, and context.
  • Thus, O’Reilly’s meme-engineering efforts usually result in “meme maps,” where the meme to be defined—whether it’s “open source” or “Web 2.0”—is put at the center, while other blob-like terms are drawn as connected to it.
  • The exact nature of these connections is rarely explained in full, but this is all for the better, as the reader might eventually interpret connections with their own agendas in mind. This is why the name of the meme must be as inclusive as possible: you never know who your eventual allies might be. “A big part of meme engineering is giving a name that creates a big tent that a lot of people want to be under, a train that takes a lot of people where they want to go,”
  • News April 4 mail date March 29, 2013 Baffler party March 6, 2013 Žižek on seduction February 13, 2013 More Recent Press I’ve Seen the Worst Memes of My Generation Destroyed by Madness io9, April 02, 2013 The Baffler’s New Colors Imprint, March 21, 2013
  • There is considerable continuity across O’Reilly’s memes—over time, they tend to morph into one another.
Kurt Laitner

Digital Reality | Edge.org - 0 views

  • When you snap the bricks together, you don't need a ruler to play Lego; the geometry comes from the parts
  • first attribute is metrology that comes from the parts
  • digitizing composites into little linked loops of carbon fiber instead of making giant pieces
  • ...75 more annotations...
  • In a 3D printer today, what you can make is limited by the size of the machine. The geometry is external
  • is the Lego tower is more accurate than the child because the constraint of assembling the bricks lets you detect and correct errors
  • That's the exponential scaling for working reliably with unreliable parts
  • Because the parts have a discrete state, it means in joining them you can detect and correct errors
  • detect and correct state to correct errors to get an exponential reduction in error, which gives you an exponential increase in complexity
  • The next one is you can join Lego bricks made out of dissimilar materials.
  • The last one is when you're done with Lego you don't put it in the trash; you take it apart and reuse it because there's state in the materials. In a forest there's no trash; you die and your parts get disassembled and you're made into new stuff. When you make a 3D print or laser cut, when you're done there's recycling attempts but there's no real notion of reusing the parts
  • The metrology coming from the parts, detecting and correcting errors, joining dissimilar materials, disconnecting, reusing the components
  • On the very smallest scale, the most exciting work on digital fabrication is the creation of life from scratch. The cell does everything we're talking about. We've had a great collaboration with the Venter Institute on microfluidic machinery to load designer genomes into cells. One step up from that we're developing tabletop chip fab instead of a billion dollar fab, using discrete assembly of blocks of electronic materials to build things like integrated circuits in a tabletop process
  • a child can make a Lego structure bigger than themself
  • There's a series of books by David Gingery on how to make a machine shop starting with charcoal and iron ore.
  • There are twenty amino acids. With those twenty amino acids you make the motors in the molecular muscles in my arm, you make the light sensors in my eye, you make my neural synapses. The way that works is the twenty amino acids don't encode light sensors, or motors. They’re very basic properties like hydrophobic or hydrophilic. With those twenty properties you can make you. In the same sense, digitizing fabrication in the deep sense means that with about twenty building blocks—conducting, insulating, semiconducting, magnetic, dielectric—you can assemble them to create modern technology
  • By discretizing those three parts we can make all those 500,000 resistors, and with a few more parts everything else.
  • Now, there's a casual sense, which means a computer controls something to make something, and then there's the deep sense, which is coding the materials. Intellectually, that difference is everything but now I'm going to explain why it doesn't matter.
  • Then in turn, the next surprise was they weren't there for research, they weren't there for theses, they wanted to make stuff. I taught additive, subtractive, 2D, 3D, form, function, circuits, programming, all of these skills, not to do the research but just using the existing machines today
  • What they were answering was the killer app for digital fabrication is personal fabrication, meaning, not making what you can buy at Walmart, it’s making what you can't buy in Walmart, making things for a market of one person
  • The minicomputer industry completely misread PCs
  • the Altair was life changing for people like me. It was the first computer you could own as an individual. But it was almost useless
  • It was hard to use but it brought the cost from a million dollars to 100,000 and the size from a warehouse down to a room. What that meant is a workgroup could have one. When a workgroup can have one it meant Ken Thompson and Dennis Ritchie at Bell Labs could invent UNIX—which all modern operating systems descend from—because they didn't have to get permission from a whole corporation to do it
  • At the PC stage what happened is graphics, storage, processing, IO, all of the subsystems got put in a box
  • To line that up with fabrication, MIT's 1952 NC Mill is similar to the million-dollar machines in my lab today. These are the mainframes of fab. You need a big organization to have them. The fab labs I'll tell you about are exactly analogous to the cost and complexity of minicomputers. The machines that make machines I'll tell you about are exactly analogous to the cost and complexity of the hobbyist computers. The research we're doing, which is leading up to the Star Trek Replicator, is what leads to the personal fabricator, which is the integrated unit that makes everything
  • conducting, resistive, insulating.
  • The fab lab is 2 tons, a $100,000 investment. It fills a few thousand square feet, 3D scanning and printing, precision machining, you can make circuit boards, molding and casting tooling, computer controlled cutting with a knife, with a laser, large format machining, composite layup, surface mount rework, sensors, actuators, embedded programming— technology to make technology.
  • Ten years you can just plot this doubling. Today, you can send a design to a fab lab and you need ten different machines to turn the data into something. Twenty years from now, all of that will be in one machine that fits in your pocket.
  • We've been living with this notion that making stuff is an illiberal art for commercial gain and it's not part of the means of expression. But, in fact, today, 3D printing, micromachining, and microcontroller programming are as expressive as painting paintings or writing sonnets but they're not means of expression from the Renaissance. We can finally fix that boundary between art and artisans
  • You don't go to a fab lab to get access to the machine; you go to the fab lab to make the machine.
  • Over the next maybe five years we'll be transitioning from buying machines to using machines to make machines. Self-reproducing machines
  • But they still have consumables like the motors, and they still cut or squirt. Then the interesting transition comes when we go from cutting or printing to assembling and disassembling, to moving to discretely assembled materials
  • because if anybody can make anything anywhere, it challenges everything
    • Kurt Laitner
       
      great quote (replace challenges with changes for effect)
  • Now, the biggest surprise for me in this is I thought the research was hard. It's leading to how to make the Star Trek Replicator. The insight now is that's an exercise in embodied computation—computation in materials, programming their construction. Lots of work to come, but we know what to do
  • And that's when you do tabletop chip fab or make airplanes. That's when technical trash goes away because you can disassemble. 
  • irritated by the maker movement for the failure in mentoring
  • At something like a Maker Faire, there's hall after hall of repeated reinventions of bad 3D printers and there isn't an easy process to take people from easy to hard
  • We started a project out of desperation because we kept failing to succeed in working with existing schools, called the Fab Academy. Now, to understand how that works, MIT is based on scarcity. You assume books are scarce, so you have to go there for the library; you assume tools are scarce, so you have to go there for the machines; you assume people are scarce, so you have to go there to see them; and geography is scarce. It adds up to we can fit a few thousand people at a time. For those few thousand people it works really well. But the planet is a few billion people. We're off by six orders of magnitude. 
  • Next year we're starting a new class with George Church that we've called "How to Grow Almost Anything", which is using fab labs to make bio labs and then teach biotech in it. What we're doing is we're making a new global kind of university
  • Amusingly, I went to my friends at Educause about accrediting the Fab Academy and they said, "We love it. Where are you located?" And I said, "Yes" and they said, "No." Meaning, "We're all over the earth." And they said, "We have no mechanism. We're not allowed to do that. There's no notion of global accreditation."
  • Then they said something really helpful: "Pretend."
  • Once you have a basic set of tools, you can make all the rest of the tools
  • The way the Fab Academy works, in computing terms, it's like the Internet. Students have peers in workgroups, with mentors, surrounded by machines in labs locally. Then we connect them globally by video and content sharing and all of that. It's an educational network. There are these critical masses of groups locally and then we connect them globally
  • You still have Microsoft or IBM now but, with all respect to colleagues there, arguably that's the least interesting part of software
  • To understand the economic and social implications, look at software and look at music to understand what's happening now for fabrication
  • There's a core set of skills a place like MIT can do but it alone doesn't scale to a billion people. This is taking the social engineering—the character of MIT—but now doing it on this global scale.
  • Mainframes didn't go away but what opened up is all these tiers of software development that weren't economically viable
  • If you look at music development, the most interesting stuff in music isn't the big labels, it's all the tiers of music that weren't viable before
  • You can make music for yourself, for one, ten, 100, 1,000, a million. If you look at the tracks on your device, music is now in tiers that weren't economically viable before. In that example it's a string of data and it becomes a sound. Now in digital fab, it's a string of data and it becomes a thing.
  • What is work? For the average person—not the people who write for Edge, but just an average person working—you leave home to go to a place you'd rather not be, doing a repetitive operation you'd rather not do, making something designed by somebody you don't know for somebody you'll never see, to get money to then go home and buy something. But what if you could skip that and just make the thing?
    • Kurt Laitner
       
      !!!
  • It took about ten years for the dot com industry to realize pretty much across the board you don't directly sell the thing. You sell the benefits of the thing
  • 2016 it's in Shenzhen because they're pivoting from mass manufacturing to enabling personal fabrication. We've set Shenzhen as the goal in 2016 for Fab Lab 2.0, which is fab labs making fab labs
  • To rewind now, you can send something to Shenzhen and mass manufacture it. There's a more interesting thing you can do, which is you go to market by shipping data and you produce it on demand locally, and so you produce it all around the world.
  • But their point was a lot of printers producing beautiful pages slowly scales if all the pages are different
  • In the same sense it scales to fabricate globally by doing it locally, not by shipping the products but shipping the data.
  • It doesn't replace mass manufacturing but mass manufacturing becomes the least interesting stuff where everybody needs the same thing. Instead, what you open up is all these tiers that weren't viable before
  • There, they consider IKEA the enemy because IKEA defines your taste. Far away they make furniture and flat pack it and send it to a big box store. Great design sense in Barcelona, but 50 percent youth unemployment. A whole generation can't work. Limited jobs. But ships come in from the harbor, you buy stuff in a big box store. And then after a while, trucks go off to a trash dump. They describe it as products in, trash out. Ships come in with products, trash goes out
    • Kurt Laitner
       
      worse actually.. the trash stays
  • The bits come and go, globally connected for knowledge, but the atoms stay in the city.
  • instead of working to get money to buy products made somewhere else, you can make them locally
    • Kurt Laitner
       
      this may solve greece's problem, walk away from debt, you can't buy other people's (country's) stuff anymore, so make it all yourself
  • The biggest tool is a ShotBot 4'x8'x1' NC mill, and you can make beautiful furniture with it. That's what furniture shops use
  • Anything IKEA makes you can make in a fab lab
  • it means you can make many of the things you consume directly rather than this very odd remote economic loop
  • the most interesting part of the DIY phone projects is if you're making a do-it-yourself phone, you can also start to make the things that the phones talk to. You can start to build your own telco providers where the users provide the network rather than spending lots of money on AT&T or whoever
  • Traditional manufacturing is exactly replaying the script of the computer companies saying, "That's a toy," and it's shining a light to say this creates entirely new economic activity. The new jobs don't come back to the old factories. The ability to make stuff on demand is creating entirely new jobs
  • To keep playing that forward, when I was in Barcelona for the meeting of all these labs hosted by the city architect and the city, the mayor, Xavier Trias, pushed a button that started a forty-year countdown to self-sufficiency. Not protectionism
  • I need high-torque efficient motors with integrated lead screws at low cost, custom-produced on demand. All sorts of the building blocks that let us do what I'm doing currently rest on a global supply chain including China's manufacturing agility
  • The short-term answer is you can't get rid of them because we need them in the supply chain. But the long-term answer is Shenzhen sees the future isn't mass producing for everybody. That's a transitional stage to producing locally
  • My description of MIT's core competence is it's a safe place for strange people
  • The real thing ultimately that's driving the fab labs ... the vacuum we filled is a technical one. The means to make stuff. Nobody was providing that. But in turn, the spaces become magnets. Everybody talks about innovation or knowledge economy, but then most things that label that strangle it. The labs become vehicles for bright inventive people who don't fit locally. You can think about the culture of MIT but on this global scale
  • My allegiance isn't to any one border, it's to the brainpower of the planet and this is building the infrastructure to scale to that brainpower
  • If you zoom from transistors to microcode to object code to a program, they don't look like each other. But if we take this room and go from city, state, country, it's hierarchical but you preserve geometry
  • Computation violates geometry unlike most anything else we do
  • The reason that's so important for the digital fabrication piece is once we build molecular assemblers to build arbitrary systems, you don't want to then paste a few lines of code in it. You need to overlay computation with geometry. It's leading to this complete do-over of computer science
  • If you take digital fab, plus the real sense of Internet of Things—not the garbled sense—plus the real future of computing aligning hardware and software, it all adds up to this ability to program reality
  • I run a giant video infrastructure and I have collaborators all over the world that I see more than many of my colleagues at MIT because we're all too busy on campus. The next Silicon Valley is a network, it's not a place. Invention happens in these networks.
  • When Edwin Land was kicked out of Polaroid, he made the Rowland Institute, which was making an ideal research institute with the best facilities and the best people and they could do whatever they want. But almost nothing came from it because there was no turnover of the gene pool, there was no evolutionary pressure.  
  • the wrong way to do research, which is to believe there's a privileged set of people that know more than anybody else and to create a barrier that inhibits communication from the inside to the outside
  • you need evolutionary pressure, you need traffic, you need to be forced to deal with people you don't think you need to encounter, and you need to recognize that to be disruptive it helps to know what people know
  • For me the hardest thing isn't the research. That's humming along nicely. It's that we're finding we have to build a completely new kind of social order and that social entrepreneurship—figuring out how you live, learn, work, play—is hard and there's a very small set of people who can do that kind of organizational creation.
    • Kurt Laitner
       
      our challenge in the OVN space
  •  
    what is heavy is local, what is light is global, and increasingly manufacturing is being recreated along this principle
Kurt Laitner

Owning Together Is the New Sharing by Nathan Schneider - YES! Magazine - 0 views

  • VC-backed sharing economy companies like Airbnb and Uber have caused trouble for legacy industries, but gone is the illusion that they are doing it with actual sharing
  • Their main contribution to society has been facilitating new kinds of transactions
  • The notion that sharing would do away with the need for owning has been one of the mantras of sharing economy promoters. We could share cars, houses, and labor, trusting in the platforms to provide. But it’s becoming clear that ownership matters as much as ever.
  • ...30 more annotations...
  • Whoever owns the platforms that help us share decides who accumulates wealth from them, and how
  • Léonard and his collaborators are part of a widespread effort to make new kinds of ownership the new norm. There are cooperatives, networks of freelancers, cryptocurrencies, and countless hacks in between. Plans are being made for a driver-owned Lyft, a cooperative version of eBay, and Amazon Mechanical Turk workers are scheming to build a crowdsourcing platform they can run themselves. Each idea has its prospects and shortcomings, but together they aspire toward an economy, and an Internet, that is more fully ours.
  • Jeremy Rifkin, a futurist to CEOs and governments, contends that the Internet-of-things and 3-D printers are ushering in a “ zero marginal cost society“ in which the “collaborative commons” will be more competitive than extractive corporations
  • once the VC-backed sharing companies clear away regulatory hurdles, local co-ops will be poised to swoop in and spread the wealth
  • People are recognizing that doing business differently will require changing who gets to own what.
  • “We’re moving into a new economic age,” says Marjorie Kelly, who spent two decades at the helm of Business Ethics magazine and now advises social entrepreneurs. “It needs to be sustainable. It needs to be inclusive. And the foundation of what defines an economic age is its form of ownership.”
  • It’s a worker-owned cooperative that produces open-source software to help people practice consensus—though they prefer the term “collaboration”—about decisions that affect their lives.
  • From the start Loomio was part of Enspiral, an “open value network“ of freelancers and social enterprises devoted to mutual support and the common good.
  • a companion tool, CoBudget, to help them allocate resources together
  • The team members recently had to come to terms with the fact that, for the time being, only some of them could be paid for full-time work They called the process “participatory downsizing.”
  • And they can take many forms. Loomio and other tech companies, for instance, are aspiring toward the model of a multi-stakeholder cooperative—one in which not just workers or consumers are voting members, but several such groups at once.
  • Loconomics is a San Francisco-based startup designed, like TaskRabbit, to manage short-term freelance jobs
  • “People who have been without for a long time,” she says, “often operate with a mindset that they can’t share what they have, because they don’t know when that resource will come along again.”
  • As Loconomics prepares to begin operations this winter, it’s running out of the pocket of the founder, Josh Danielson
  • The ambition of a cooperative Facebook or Uber—competitive, widespread, and owned by its community—still seems out of reach for enterprises not willing to sell large parts of themselves to investors. Organizations like 
  • His fellow OuiShare founder Benjamin Tincq is concerned that too much fixation on a particular model will make it hard for well-meaning ventures to be successful. “I like the idea that we don’t need to have a specific legal status,” he says. “It’s more about hacking an existing legal status and making these hacks work.”
  • Fenton’s new undertaking, Sovolve, proposes to “create innovative solutions to accelerate social change,” much as CouchSurfing did, but it’s doing the innovating cautiously. All work is done by worker-owners located around the world. Sovolve uses an internal platform—soon to become a product in its own right—through which contributors decide how much they want to be paid in cash and how much in equity. They can see how much others are earning. Their virtual workplace is gamified, with everyone working to nudge their first product, WonderApp, into virality
  • Loomio’s members use a similar system, which they call Loomio Points. But Sovolve is no cooperative; contributors are not in charge.
  • Open-source software and share-alike licenses have revived the ancient idea of the commons for an Internet age. But the “ commons-based peer production“ that Sensorica seeks to practice doesn’t arise overnight. Just as today’s business culture rests on generations of accumulated law, habit, and training, learning to manage a commons successfully takes time
  • It makes possible decentralized autonomous organizations, or DAOs, which exist entirely on a shared network
  • The most ambitious successor to Bitcoin, Ethereum, has raised more than $15 million in crowdfunding on the promise of creating such a network.
  • all with technology that makes collective ownership a lot easier than a conventional legal structure
  • A project called Eris is developing a collective decision-making tool designed to govern DAOs on Ethereum, though the platform may still be months from release.
  • For now, the burden of reinventing every wheel at once makes it hard for companies like Sensorica and Loomio to compete
  • For instance, Cutting Edge Capital specializes in helping companies raise money through a long-standing mechanism called the direct public investment, or DPO, which allows for small, non-accredited investors.
  • Venture funding may be in competition with Dietz’s cryptoequity vision, but it provides a fearsome head start
  • Co-ops help ensure that the people who contribute to and depend on an enterprise keep control and keep profits, so they’re a possible remedy for worsening economic inequality
  • Sooner or later, transforming a system of gross inequality and concentrated wealth will require more than isolated experiments at the fringes—it will require capturing that wealth and redirecting its flows
  • A less consensual strategy was employed to fund the Catalan Integral Cooperative in Spain; over the course of a few years, one activist borrowed around $600,000 from Spanish banks without paying any of it back.
  • In Jackson, Mississippi, Chokwe Lumumba was elected mayor in 2013 on a platform of fostering worker-owned cooperatives, although much of the momentum was lost when Lumumba died just a few months later.
Francois Bergeron

Taskworld: Improving how the world collaborates-one task at a time™ - 2 views

  • A task management platform that measures performance and improves execution
Tiberius Brastaviceanu

Partner State - P2P Foundation - 0 views

    • Tiberius Brastaviceanu
       
      we call this a custodian
    • Tiberius Brastaviceanu
       
      we call this a custodian
  • So here we have it, the new triarchy: - The state, with its public property and representative mechanisms of governance (in the best scenario) - The private sector, with the corporation and private property - The commons, with the Trust (or the for-benefit association), and which is the ‘property’ of all its members (not the right word in the context of the commons, since it has a different philosophy of ownership)
    • Tiberius Brastaviceanu
       
      so where is direct democracy in all this?
  • ...39 more annotations...
  • In a first phase, the commons simply emerges as an added alternative.
  • becoming a subsector of society, and starts influencing the whole
  • phase transition and transformation will need to occur.
  • how a commons-dominated, i.e. after the phase transition, society would look like.
  • At its core would be a collection of commons, represented by trusts and for-benefit associations, which protect their common assets for the benefit of present and future generations
  • The commons ‘rents out’ the use of its resources to entrepreneurs. In other words, business still exists, though infinite growth-based capitalism does not.
  • More likely is that the corporate forms will be influenced by the commons and that profit will be subsumed to other goals, that are congruent with the maintenance of the commons.
  • The state will still exist, but will have a radically different nature
  • Much of its functions will have been taken over by commons institutions, but since these institutions care primarily about their commons, and not the general common good, we will still need public authorities that are the guarantor of the system as a whole, and can regulate the various commons, and protect the commoners against possible abuses. So in our scenario, the state does not disappear, but is transformed, though it may greatly diminish in scope, and with its remaining functions thoroughly democratized and based on citizen participation.
  • In our vision, it is civil-society based peer production, through the Commons, which is the guarantor of value creation by the private sector, and the role of the state, as Partner State, is to enable and empower the creation of common value. The new peer to peer state then, though some may see that as a contradictio in terminis, is a state which is subsumed under the Commons, just as it is now under the private sector. Such a peer to peer state, if we are correct, will have a much more modest role than the state under a classic state society, with many of its functions taken over by civil society associations, interlinked in processes of global governance. The above then, this triarchy, is the institutional core which replaces the dual private-public binary system that is characteristic of the capitalist system that is presently the dominant format.
  • fundamental mission is to empower direct social-value creation, and to focus on the protection of the Commons sphere as well as on the promotion of sustainable models of entrepreneurship and participatory politics
  • the state becomes a 'partner state' and enables autonomous social production.
  • the state does exist, and I believe that we can’t just imagine that we live in a future state-less society
  • retreating from the binary state/privatization dilemma to the triarchical choice of an optimal mix amongst government regulation, private-market freedom and autonomous civil-society projects
  • the role of the state
  • “the peer production of common value requires civic wealth and strong civic institutions.
  • trigger the production/construction of new commons by - (co-) management of complexe resource systems which are not limited to local boundaries or specific communities (as manager and partner) - survey of rules (chartas) to care for the commons (mediator or judge) - kicking of or providing incentives for commoners governing their commons - here the point is to design intelligent rules which automatically protect the commons, like the GPL does (facilitator)"
  • the emergence of the digital commons. It is the experience of creating knowledge, culture, software and design commons, by a combination of voluntary contributions, entrepreneurial coalitions and infrastructure-protecting for-benefit associations, that has most tangibly re-introduced the idea of commons, for all to use without discrimination, and where all can contribute. It has drastically reduced the production, distribution, transaction and coordination costs for the immaterial value that is at the core also of all what we produce physically, since that needs to be made, needs to be designed. It has re-introduced communing as a mainstream experience for at least one billion internet users, and has come with proven benefits and robustness that has outcompeted and outcooperated its private rivals. It also of course offers new ways to re-imagine, create and protect physical commons.
  • stop enclosures
  • peer to peer, i.e. the ability to freely associate with others around the creation of common value
  • communal shareholding, i.e. the non-reciprocal exchange of an individual with a totality. It is totality that we call the commons.
  • It is customary to divide society into three sectors, and what we want to show is how the new peer to peer dynamic unleashed by networked infrastructures, changes the inter-relationship between these three sectors.
  • In the current ‘cognitive capitalist’ system, it is the private sector consisting of enterprises and businesses which is the primary factor, and it is engaged in competitive capital accumulation. The state is entrusted with the protection of this process. Though civil society, through the citizen, is in theory ‘sovereign’, and chooses the state; in practice, both civil society and the state are under the domination of the private sector.
  • it fulfills three contradictory functions
  • Of course, this is not to say that the state is a mere tool of private business.
  • protect the whole system, under the domination of private business
  • protector of civil society, depending on the balance of power and achievements of social movements
  • protector of its own independent interests
  • Under fascism, the state achieves great independence from the private sector , which may become subservient to the state. Under the welfare state, the state becomes a protector of the social balance of power and manages the achievements of the social movement; and finally, under the neoliberal corporate welfare state, or ‘market state’, it serves most directly the interests of the financial sector.
  • key institutions and forms of property.
  • The state managed a public sector, under its own property.
  • The private sector , under a regime of private ownership, is geared to profit, discounts social and natural externalities, both positive and negative, and uses its dominance in society to use and dominate the state.
  • civil society has a relative power as well, through its capability of creating social movements and associations
  • Capitalism has historically been a pendulum between the private and the public sector
  • However, this configuration is changing,
  • the endangerment of the biosphere through the workings of ‘selfish’ market players; the second is the role of the new digital commons.
  • participatory politics
  • Peer production gives us an advance picture of how a commons-oriented society would look like. At its core is a commons and a community contributing to it, either voluntarily, or as paid entrepreneurial employees. It does this through collaborative platforms using open standards. Around the commons emerges enterprises that create added value to operate on the marketplace, but also help the maintenance and the expansion of the commons they rely on. A third partner are the for-benefit associations that maintain the infrastructure of cooperation. Public authorities could play a role if they wanted to support existing commons or the creation of new commons, for the value they bring to society.
  • if a commons is not created as in the case of the digital commons, it is something that is inherited from nature or former generations, given in trust and usufruct, so that it can be transmitted to our descendents. The proper institution for such commons is therefore the trust, which is a corporate form that cannot touch its principal capital, but has to maintain it.
1 - 9 of 9
Showing 20 items per page