Skip to main content

Home/ Sensorica Knowledge/ Group items tagged Systems

Rss Feed Group items tagged

Francois Bergeron

CMC Microsystems - 0 views

  •  
    For the past 25 years, CMC Microsystems has been proudly supporting research excellence at Canadian universities. CMC Microsystems enables and supports the creation and application of micro- and nano-system knowledge by providing a national infrastructure for excellence in research and a path to commercialization of related devices, components and systems. CMC delivers innovative and cost-effective services to a growing community of microsystems researchers that connect 45 universities across Canada, and presently involves 760 faculty members and over 2,000 graduate students and other researchers.
sebastianklemm

EAT - The science-based global platform for food system transformation - 1 views

  •  
    Our vision is a fair and sustainable global food system for healthy people and planet - leaving no one behind. Our mission is to transform our global food system through sound science, impatient disruption and novel partnerships. Everything we do is guided by a set of principles that define our character and working culture. These values are the shared convictions that we bring to our professional and personal conduct. We: > Scale bold systems change based on solid science > Accelerate impact through collaboration > Deliver disruptive solutions, where others can't > Embody diversity, honesty and integrity > Champion fairness and equity, leaving no one behind
Tiberius Brastaviceanu

The New Normal in Funding University Science | Issues in Science and Technology - 1 views

  • Government funding for academic research will remain limited, and competition for grants will remain high. Broad adjustments will be needed
  • he sequester simply makes acute a chronic condition that has been getting worse for years.
  • the federal budget sequester
  • ...72 more annotations...
  • systemic problems that arise from the R&D funding system and incentive structure that the federal government put in place after World War II
  • Researchers across the country encounter increasingly fierce competition for money.
  • unding rates in many National Institutes of Health (NIH) and National Science Foundation (NSF) programs are now at historical lows, declining from more than 30% before 2001 to 20% or even less in 2011
  • even the most prominent scientists will find it difficult to maintain funding for their laboratories, and young scientists seeking their first grant may become so overwhelmed that individuals of great promise will be driven from the field
  • anxiety and frustration
  • The growth of the scientific enterprise on university campuses during the past 60 years is not sustainable and has now reached a tipping point at which old models no longer work
  • Origins of the crisis
  • ederal funding agencies must work with universities to ensure that new models of funding do not stymie the progress of science in the United States
  • The demand for research money greatly exceeds the supply
  • the demand for research funding has gone up
  • The deeper sources of the problem lie in the incentive structure of the modern research university, the aspirations of scientists trained by those universities, and the aspirations of less research-intensive universities and colleges across the nation
  • competitive grants system
  • if a university wants to attract a significant amount of sponsored research money, it needs doctoral programs in the relevant fields and faculty members who are dedicated to both winning grants and training students
  • The production of science and engineering doctorates has grown apace
  • Even though not all doctorate recipients become university faculty, the size of the science and engineering faculty at U.S. universities has grown substantially
  • proposal pressure goes up
  • These strategies make sense for any individual university, but will fail collectively unless federal funding for R&D grows robustly enough to keep up with demand.
  • At the very time that universities were enjoying rapidly growing budgets, and creating modes of operation that assumed such largess was the new normal, Price warned that it would all soon come to a halt
  • the human and financial resources invested in science had been increasing much faster than the populations and economies of those regions
  • growth in the scientific enterprise would have to slow down at some point, growing no more than the population or the economy.
  • Dead-end solutions
  • studies sounded an alarm about the potential decline in U.S. global leadership in science and technology and the grave implications of that decline for economic growth and national security
  • Although we are not opposed to increasing federal funding for research, we are not optimistic that it will happen at anywhere near the rate the Academies seek, nor do we think it will have a large impact on funding rates
  • universities should not expect any radical increases in domestic R&D budgets, and most likely not in defense R&D budgets either, unless the discretionary budgets themselves grow rapidly. Those budgets are under pressure from political groups that want to shrink government spending and from the growth of spending in mandatory programs
  • The basic point is that the growth of the economy will drive increases in federal R&D spending, and any attempt to provide rapid or sustained increases beyond that growth will require taking money from other programs.
  • The demand for research money cannot grow faster than the economy forever and the growth curve for research money flattened out long ago.
  • Path out of crisis
  • The goal cannot be to convince the government to invest a higher proportion of its discretionary spending in research
  • Getting more is not in the cards, and some observers think the scientific community will be lucky to keep what it has
  • The potential to take advantage of the infrastructure and talent on university campuses may be a win-win situation for businesses and institutions of higher education.
  • Why should universities and colleges continue to support scientific research, knowing that the financial benefits are diminishing?
  • esearch culture
  • attract good students and faculty as well as raise their prestige
  • mission to expand the boundaries of human knowledge
  • faculty members are committed to their scholarship and will press on with their research programs even when external dollars are scarce
  • training
  • take place in
  • research laboratories
  • it is critical to have active research laboratories, not only in elite public and private research institutions, but in non-flagship public universities, a diverse set of private universities, and four-year colleges
  • How then do increasingly beleaguered institutions of higher education support the research efforts of the faculty, given the reality that federal grants are going to be few and far between for the majority of faculty members? What are the practical steps institutions can take?
  • change the current model of providing large startup packages when a faculty member is hired and then leaving it up to the faculty member to obtain funding for the remainder of his or her career
  • universities invest less in new faculty members and spread their internal research dollars across faculty members at all stages of their careers, from early to late.
    • Tiberius Brastaviceanu
       
      Sharing of resources, see SENSORICA's NRP
  • national conversation about changes in startup packages and by careful consultations with prospective faculty hires about long-term support of their research efforts
  • Many prospective hires may find smaller startup packages palatable, if they can be convinced that the smaller packages are coupled with an institutional commitment to ongoing research support and more reasonable expectations about winning grants.
  • Smaller startup packages mean that in many situations, new faculty members will not be able to establish a functioning stand-alone laboratory. Thus, space and equipment will need to be shared to a greater extent than has been true in the past.
  • construction of open laboratory spaces and the strategic development of well-equipped research centers capable of efficiently servicing the needs of an array of researchers
  • phaseout of the individual laboratory
  • enhanced opportunities for communication and networking among faculty members and their students
  • Collaborative proposals and the assembly of research teams that focus on more complex problems can arise relatively naturally as interactions among researchers are facilitated by proximity and the absence of walls between laboratories.
  • An increased emphasis on team research
  • investments in the research enterprise
  • can be directed at projects that have good buy-in from the faculty
  • learn how to work both as part of a team and independently
  • Involvement in multiple projects should be encouraged
  • The more likely trajectory of a junior faculty member will evolve from contributing team member to increasing leadership responsibilities to team leader
  • nternal evaluations of contributions and potential will become more important in tenure and promotion decisions.
    • Tiberius Brastaviceanu
       
      Need value accounting system
  • relationships with foundations, donors, state agencies, and private business will become increasingly important in the funding game
  • The opportunities to form partnerships with business are especially intriguing
    • Tiberius Brastaviceanu
       
      The problem is to change the model and go open source, because IP stifles other processes that might benefit Universities!!!
  • Further complicating university collaborations with business is that past examples of such partnerships have not always been easy or free of controversy.
  • some faculty members worried about firms dictating the research priorities of the university, pulling graduate students into proprietary research (which could limit what they could publish), and generally tugging the relevant faculty in multiple directions.
  • developed rules and guidelines to control them
  • University faculty and businesspeople often do not understand each other’s cultures, needs, and constraints, and such gaps can lead to more mundane problems in university/industry relations, not least of which are organizational demands and institutional cultures
    • Tiberius Brastaviceanu
       
      Needs for mechanisms to govern, coordinate, structure an ecosystem -See SENSORICA's Open Alliance model
  • n addition to funding for research, universities can receive indirect benefits from such relationships. High-profile partnerships with businesses will underline the important role that universities can play in the economic development of a region.
  • Universities have to see firms as more than just deep pockets, and firms need to see universities as more than sources of cheap skilled labor.
  • foundations or other philanthropy
  • We do not believe that research proposed and supervised by individual principal investigators will disappear anytime soon. It is a research model that has proven to be remarkably successful and enduring
  • However, we believe that the most vibrant scientific communities on university and college campuses, and the ones most likely to thrive in the new reality of funding for the sciences, will be those that encourage the formation of research teams and are nimble with regard to funding sources, even as they leave room for traditional avenues of funding and research.
Francois Bergeron

iWorx :: Organ/Tissue Bath Systems - 0 views

  • iWorx offers 4-channel (M4) or single-channel (M1) Myograph systems from Radnoti Glass Technology. These systems are designed for researchers performing contractile force studies on small ring samples with sizes ranging from 60 mm to over 1 mm in diameter. Examples include mouse aortic rings and small intestinal ring samples as well as micro-vessel preparations like mesenteric arteries.The Myograph systems include myograph chambers with transducers and amplifiers, a base with sliding wrist rest, temperature controllers, stands, tubing kits and all other essential items to conduct an experiment.iWorx offers a myograph normalization module (LS-20NM) which calculates the optimal pretension settings for each sample prior to conducting an experiment.
Tiberius Brastaviceanu

Open Source Completely 3-D Printable Centrifuge - Appropedia, the sustainability wiki - 0 views

  •  
    "Centrifuges are commonly required devices in medical diagnostics facilities as well as scientific laboratories. Although there are commercial and open source centrifuges, the costs of the former and the required electricity to operate the latter limit accessibility in resource-constrained settings. There is a need for low-cost, human-powered, verified, and reliable lab-scale centrifuges. This study provides the designs for a low-cost 100% 3-D printed centrifuge, which can be fabricated on any low-cost RepRap-class (self-replicating rapid prototyper) fused filament fabrication (FFF)- or fused particle fabrication (FPF)-based 3-D printer. In addition, validation procedures are provided using a web camera and free and open source software. This paper provides the complete open source plans, including instructions for the fabrication and operation of a hand-powered centrifuge. This study successfully tested and validated the instrument, which can be operated anywhere in the world with no electricity inputs, obtaining a radial velocity of over 1750 rpm and over 50 N of relative centrifugal force. Using commercial filament, the instrument costs about U.S. $25, which is less than half of all commercially available systems. However, the costs can be dropped further using recycled plastics on open source systems for over 99% savings. The results are discussed in the context of resource-constrained medical and scientific facilities."
Francois Bergeron

Conference on smart sensors - nondestructive evaluation |SPIE Smart Structures/NDE - 0 views

  • Active and Passive Smart Structures and Integrated Systems
  • Industrial and Commercial Applications of Smart Structures Technologies
  • Smart Sensor Phenomena, Technology, Networks, and Systems Integration
  • ...2 more annotations...
  • Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security
  • Health Monitoring of Structural and Biological Systems
kozak30k

MUSTREAD AND LEARNBurleigh® PCS-6000 Motorized Micropositioning System - 2 views

  •  
    "Piezoelectric micromanipulator system combines ease of use with ultra-precise positioning to achieve the best possible results with the highest productivity."
Francois Bergeron

Plasmionique - 0 views

  • Vacuum Polymer Deposition system
  •  
    Vacuum Polymer Deposition system
Tiberius Brastaviceanu

Key management - Wikipedia, the free encyclopedia - 1 views

  • Key management
  • his includes dealing with the generation, exchange, storage, use, and replacement of keys.
  • Key management concerns keys at the user level, either between users or systems.
  • ...4 more annotations...
  • This is in contrast to key scheduling; key scheduling typically refers to the internal handling of key material within the operation of a cipher.
  • it involves system policy, user training, organizational and departmental interactions, and coordination between all of these elements.
  • Public Key Infrastructure (PKI)
  • A public key infrastructure is a type of key management system that uses hierarchical digital certificates to provide authentication, and public keys to provide encryption. PKIs are used in World Wide Web traffic, commonly in the form of SSL and TLS.
Tiberius Brastaviceanu

The commons law project: A vision of green governance - 0 views

  • “commons law” (not to be confused with common law)
  • Commons law consists of those social practices, cultural traditions and specific bodies of formal law that recognize the rights of commoners to manage their own resources
  • Ever since the rise of the nation-state and especially industrialized markets, however, commons law has been marginalized if not eclipsed by contemporary forms of market-based law
  • ...19 more annotations...
  • individual property rights and market exchange have been elevated over most everything else, and this has only eroded the rights of commoners,
  • reframe the very notion of “the economy” to incorporate non-market sharing and collaboration.
  • we had concluded that incremental efforts to expand human rights and environmental protection within the framework of the State/Market duopoly were simply not going to achieve much
  • the existing system of regulation and international treaties has been a horrendous failure over the past forty years. Neoliberal economics has corrupted and compromised law and regulation, slashing away at responsible stewardship of our shared inheritance while hastening a steady decline of the world’s ecosystems
  • We concluded that new forms of ecological governance that respect human rights, draw upon commons models and reframe our understanding of economic value, hold great promise
  • An economics and supporting civic polity that valorizes growth and material development as the precondition for virtually everything else is ultimately a dead end—literally.
  • Achieving a clean, healthy and ecologically balanced environment requires that we cultivate a practical governance paradigm based on, first, a logic of respect for nature, sufficiency, interdependence, shared responsibility and fairness among all human beings; and, second, an ethic of integrated global and local citizenship that insists upon transparency and accountability in all activities affecting the integrity of the environment.
  • We believe that commons- and rights-based ecological governance—green governance—can fulfill this logic and ethic. Properly done, it can move us beyond the neoliberal State and Market alliance—what we call the ‘State/Market’—which is chiefly responsible for the current, failed paradigm of ecological governance.
  • The basic problem is that the price system, seen as the ultimate governance mechanism of our polity, falls short in its ability to represent notions of value that are subtle, qualitative, long-term and complicated.
  • These are, however, precisely the attributes of natural systems.
  • Exchange value is the primary if not the exclusive concern.
  • anything that does not have a price and exists ‘outside’ the market is regarded (for the purposes of policy-making) as having subordinate or no value.
  • industry lobbies have captured if not corrupted the legislative process
  • regulation has become ever more insulated from citizen influence and accountability as scientific expertise and technical proceduralism have come to be more and more the exclusive determinants of who may credibly participate in the process
  • we have reached the limits of leadership and innovation within existing institutions and policy structures
  • it will not be an easy task to make the transition from State/Market ecological governance to commons- and rights-based ecological governance
  • It requires that we enlarge our understanding of ‘value’ in economic thought to account for nature and social well-being; that we expand our sense of human rights and how they can serve strategic as well as moral purposes; that we liberate ourselves from the limitations of State-centric models of legal process; and that we honor the power of non-market participation, local context and social diversity in structuring economic activity and addressing environmental problems.
  • articulate and foster a coherent new paradigm
  • deficiencies of centralized governments (corruption, lack of transparency, rigidity, a marginalized citizenry)
Francois Bergeron

Pressure Profile Systems, Inc. | Pressure Profile Systems | Pressure Profiles | PPS | P... - 0 views

  •  
    haptic touch sensor
Francois Bergeron

Displacement | Microstrain - 0 views

  • MicroStrain offers a range of miniature displacement sensors.  These include contact sensors, non-contact sensors, and signal conditioners. Within our contact sensors, we offer gauging, non-gauging, sub-miniature (very small) and micro-miniature (smallest available on the market) displacement sensor designs.  MicroStrain displacement/position sensors are known as DVRTs (Differential Variable Reluctance Transducers) which are half-bridge LVDTs (Linear Variable Differential Transformers).  Our DVRTs deliver a very high linear stroke range to body length ratio, and can be used in environments where traditional LVDTs are too large.  MicroStrain’s miniature displacement transducers are extremely robust, capable of operating at temperatures up to 175°C in corrosive media such as saline, oil, and brake fluid.  The near frictionless design enables sensors to operate over millions of cycles without wear or degradation in signal quality.
  • croStrain offers a range of miniature displacement sensors.  These include contact sensors, non-contact sensors, and signal conditioners. Within our contact sensors, we offer gauging, non-gauging, sub-miniature (very small) and micro-miniature (smallest available on the market) displacement sensor designs.  MicroStrain displacement/position sensors are known as DVRTs (Differential Variable Reluctance Transducers) which are half-bridge LVDTs (Linear Variable Differential Transformers).  Our DVRTs deliver a very high linear stroke range to body length ratio, and can be used in environments where traditional LVDTs are too large.  MicroStrain’s miniature displacement transducers are extremely robust, capable of operating at temperatures up to 175°C in corrosive media such as saline, oil, and brake fluid.  The near frictionless design enables sensors to operate over millions of cycles without wear or degradation in signal quality. MicroStrain’s displacement sensing products including transducers, signal conditioners, and motherboards. These systems provide highly precise measurement solutions. MicroStrain’s contact displacement transducers deliver highly precise linear measurements with an extremely small, miniature design.  Both gauging and non-gauging displacement transducers are available. Our non-contact displacement transducers are designed to measure the displacement and proximity of a metal target without physical contact. MicroStrain offers wireless, analog, and digital output DVRT signal conditioners. Signal conditioners are required for use with MicroStrain DVRT displacement sensors.   .familyNav1, .familyNav2, .familyNav3, .familyNav4 { background: none repeat scroll 0 0 #CCCCCC; color: #FFFFFF; display: block; font-size: 14px; margin: 1px 0; padding: 6px 0 3px 6px; text-decoration: none; } .familyNav1:hover, .familyNav2:hover, .familyNav3:hover, .familyNav4:hover { opacity:1.0; filter:alpha(opacity=100); } .familyNav1:hover, .familyNav1.live { background:#0468AD; } .familyNav2:hover, .familyNav2.live{ background:#32641E; } .familyNav3:hover, .familyNav3.live{ background:#B55A11; } .familyNav4:hover, .familyNav4.live{ background:#76285D; } .familySub { margin: -1px 0 0; opacity:0.7; filter:alpha(opacity=80); font-size:12px; } .familySub img { width: 22px; } WIRELESS SENSOR NETWORKS
Tiberius Brastaviceanu

Laser and detector optical fiber - 1 views

  •  
    Found by Jonathan, we'll order two versions to try, this replaces the PDLD system, a better system uses a circulator, which is much more expensive.
Kurt Laitner

Value Accounting System - P2P Foundation - 0 views

  • are not exchanging anything among themselves
    • Kurt Laitner
       
      Not sure this is true in all cases or even in this one
  • A value creation process that requires more than one individual can be based on following 3 arrangements
  • stigmergic coordination
  • ...16 more annotations...
  • collaboration
  • cooperation,
  • The problem is that this economic dependency is not symmetrical
  • All labor is transferred into fluid equity through a value accounting system, which grants ownership to the participant member to a percentage of the future revenue generated for the lifetime of the product created
  • risk is shared among all contributors
  • based on contributions
    • Kurt Laitner
       
      and RISK, and...
  • anyone can add value
  • decentralized in terms of allocation of resources
  • horizontal governance system
    • Kurt Laitner
       
      not necessarily
  • A prearrangement on revenue is impossible in this context
  • impossible to do time management
  • no one can force anyone else to work more
  • the value equation embodies positive and negative (intrinsic) incentives
  • contains parameters to incentivise periodic and frequent contributions
  • quality of execution
  • priority level of tasks.
Kurt Laitner

The Energy Efficiency of Trust & Vulnerability: A Conversation | Switch and Shift - 0 views

  • trusting people because of who they are personally vs. who they are professionally
  • also need to trust systems
  • our own resources
  • ...34 more annotations...
  • How much we need to trust others depends on the context,
  • how much we trust ourselves,
  • our ability to understand the context we are in
  • When we trust, we re-allocate that energy and time to getting things done and making an impact
  • the more information and/or experience we have, the better we can decide whether or not to trust
  • Trust is a tool to assess and manage (reduce and/or increase) risk, depending on the situation.
  • Trusting someone implies making oneself more vulnerable
  • When we don’t trust, we exert a lot of energy to keep up our guard, to continually assess and verify.  This uses a lot of energy and time.
  • If the alternative is worse, we might opt for no trust
  • As we let ourselves be vulnerable, we also leave ourselves more open to new ideas, new ways of thinking which leads to empathy and innovation.
  • the more we can focus on the scope and achievement of our goals
  • trusting is efficient….and effective
  • Being vulnerable is a way to preserve energy
  • It lets us reallocate our resources to what matters and utilize our skills and those around us to increase effectiveness…impact.
  • If we are working together, we need to agree on the meaning of ‘done’.  When are we done, what does that look like?
  • “Control is for Beginners”
  • Strategic sloppiness is a way to preserve energy
  • Build on the same shared mental models
  • use the same language
  • As the ability to replicate something has become more of a commodity, we are increasingly seeing that complex interactions are the way to create ‘value from difference’ (as opposed to ‘value from sameness’).
  • allow for larger margins of error in our response and our acceptance of others
  • higher perfection slows down the tempo
  • We can’t minimize the need to be effective.
  • Efficient systems are great at dealing with complicated things – things that have many parts and sequences, but they fall flat dealing with complex systems, which is most of world today.
  • make sure we hear and see the same thing (reduce buffers around our response)
  • timing
  • intuition
  • judgment
  • experience
  • ability to look at things from many different perspective
  • to discover, uncover, understand and empathize is critical
  • focus on meaning and purpose for work (outcomes) instead of just money and profit (outputs)
  • When we have a common goal of WHY we want to do something, we are better able to trust
  • When we never do the same thing or have the same conversation twice, it becomes much more important to figure out why and what we do than how we do it (process, which is a given)
  •  
    spot on conversation on *trust, I see creating a trustful environment quickly among strangers as a key capability of an OVN, we need to quickly get past the need to protect and verify and move on to making purpose and goals happen
Tiberius Brastaviceanu

POWER-CURVE SOCIETY: The Future of Innovation, Opportunity and Social Equity in the Eme... - 1 views

  • how technological innovation is restructuring productivity and the social and economic impact resulting from these changes
  • concern about the technological displacement of jobs, stagnant middle class income, and wealth disparities in an emerging "winner-take-all" economy
  • personal data ecosystems that could potentially unlock a revolutionary wave of individual economic empowerment
  • ...70 more annotations...
  • the bell curve described the wealth and income distribution of American society
  • As the technology boom of the 1990s increased productivity, many assumed that the rising water level of the economy was raising all those middle class boats. But a different phenomenon has also occurred. The wealthy have gained substantially over the past two decades while the middle class has remained stagnant in real income, and the poor are simply poorer.
  • America is turning into a power-curve society: one where there are a relative few at the top and a gradually declining curve with a long tail of relatively poorer people.
  • For the first time since the end of World War II, the middle class is apparently doing worse, not better, than previous generations.
  • an alarming trend
  • What is the role of technology in these developments?
  • a sweeping look at the relationship between innovation and productivity
  • New Economy of Personal Information
  • Power-Curve Society
  • the future of jobs
  • the report covers the social, policy and leadership implications of the “Power-Curve Society,”
  • World Wide Web
  • as businesses struggle to come to terms with this revolution, a new set of structural innovations is washing over businesses, organizations and government, forcing near-constant adaptation and change. It is no exaggeration to say that the explosion of innovative technologies and their dense interconnections is inventing a new kind of economy.
  • the new technologies are clearly driving economic growth and higher productivity, the distribution of these benefits is skewed in worrisome ways.
  • the networked economy seems to be producing a “power-curve” distribution, sometimes known as a “winner-take-all” economy
  • Economic and social insecurity is widespread.
  • major component of this new economy, Big Data, and the coming personal data revolution fomenting beneath it that seeks to put individuals, and not companies or governments, at the forefront. Companies in the power-curve economy rely heavily on big databases of personal information to improve their marketing, product design, and corporate strategies. The unanswered question is whether the multiplying reservoirs of personal data will be used to benefit individuals as consumers and citizens, or whether large Internet companies will control and monetize Big Data for their private gain.
  • Why are winner-take-all dynamics so powerful?
  • appear to be eroding the economic security of the middle class
  • A special concern is whether information and communications technologies are actually eliminating more jobs than they are creating—and in what countries and occupations.
  • How is the power-curve economy opening up opportunities or shutting them down?
  • Is it polarizing income and wealth distributions? How is it changing the nature of work and traditional organizations and altering family and personal life?
  • many observers fear a wave of social and political disruption if a society’s basic commitments to fairness, individual opportunity and democratic values cannot be honored
  • what role government should play in balancing these sometimes-conflicting priorities. How might educational policies, research and development, and immigration policies need to be altered?
  • The Innovation Economy
  • Conventional economics says that progress comes from new infusions of capital, whether financial, physical or human. But those are not necessarily the things that drive innovation
  • What drives innovation are new tools and then the use of those new tools in new ways.”
  • at least 50 percent of the acceleration of productivity over these years has been due to ICT
  • economists have developed a number of proxy metrics for innovation, such as research and development expenditures.
  • Atkinson believes that economists both underestimate and overestimate the scale and scope of innovation.
  • Calculating the magnitude of innovation is also difficult because many innovations now require less capital than they did previously.
  • Others scholars
  • see innovation as going in cycles, not steady trajectories.
  • A conventional approach is to see innovation as a linear, exponential phenomenon
  • leads to gross errors
  • Atkinson
  • believes that technological innovation follows the path of an “S-curve,” with a gradual increase accelerating to a rapid, steep increase, before it levels out at a higher level. One implication of this pattern, he said, is that “you maximize the ability to improve technology as it becomes more diffused.” This helps explain why it can take several decades to unlock the full productive potential of an innovation.
  • innovation keeps getting harder. It was pretty easy to invent stuff in your garage back in 1895. But the technical and scientific challenges today are huge.”
  • costs of innovation have plummeted, making it far easier and cheaper for more people to launch their own startup businesses and pursue their unconventional ideas
  • innovation costs are plummeting
  • Atkinson conceded such cost-efficiencies, but wonders if “the real question is that problems are getting more complicated more quickly than the solutions that might enable them.
  • we may need to parse the different stages of innovation: “The cost of innovation generally hasn’t dropped,” he argued. “What has become less expensive is the replication and diffusion of innovation.”
  • what is meant by “innovation,”
  • “invention plus implementation.”
  • A lot of barriers to innovation can be found in the lack of financing, organizational support systems, regulation and public policies.
  • 90 percent of innovation costs involve organizational capital,”
  • there is a serious mismatch between the pace of innovation unleashed by Moore’s Law and our institutional and social capacity to adapt.
  • This raises the question of whether old institutions can adapt—or whether innovation will therefore arise through other channels entirely. “Existing institutions are often run by followers of conventional wisdom,”
  • The best way to identify new sources of innovation, as Arizona State University President Michael Crow has advised, is to “go to the edge and ignore the center.”
  • Paradoxically, one of the most potent barriers to innovation is the accelerating pace of innovation itself.
  • Institutions and social practice cannot keep up with the constant waves of new technologies
  • “We are moving into an era of constant instability,”
  • “and the half-life of a skill today is about five years.”
  • Part of the problem, he continued, is that our economy is based on “push-based models” in which we try to build systems for scalable efficiencies, which in turn demands predictability.
  • The real challenge is how to achieve radical institutional innovations that prepare us to live in periods of constant two- or three-year cycles of change. We have to be able to pick up new ideas all the time.”
  • pace of innovation is a major story in our economy today.
  • The App Economy consists of a core company that creates and maintains a platform (such as Blackberry, Facebook or the iPhone), which in turn spawns an ecosystem of big and small companies that produce apps and/or mobile devices for that platform
  • tied this success back to the open, innovative infrastructure and competition in the U.S. for mobile devices
  • standard
  • The App Economy illustrates the rapid, fluid speed of innovation in a networked environment
  • crowdsourcing model
  • winning submissions are
  • globally distributed in an absolute sense
  • problem-solving is a global, Long Tail phenomenon
  • As a technical matter, then, many of the legacy barriers to innovation are falling.
  • small businesses are becoming more comfortable using such systems to improve their marketing and lower their costs; and, vast new pools of personal data are becoming extremely useful in sharpening business strategies and marketing.
  • Another great boost to innovation in some business sectors is the ability to forge ahead without advance permission or regulation,
  • “In bio-fabs, for example, it’s not the cost of innovation that is high, it’s the cost of regulation,”
  • This notion of “permissionless innovation” is crucial,
  • “In Europe and China, the law holds that unless something is explicitly permitted, it is prohibited. But in the U.S., where common law rather than Continental law prevails, it’s the opposite
Francois Bergeron

Refined Myograph Systems for Mice and Rats, Lab Refined Myograph Systems - 0 views

  • The  pre-calibrated amplifier eliminates the need to calibrate with weights.
  • The system includes base, vertical support, bath support, micromanipulator block, micro- manipulator handle, muscle  supports rods, 1 pr/feet for rings, 25 μm and 100 μm Stainless Steel (3 m), 1 pr/hooks, 20 clips for strips, single myograph  bath and the TRN001 transducer.
  • Applications:• Pharmacological Effects• Receptors• Vaso-Mechanics• Pathology• Tissue Biopsies• GI Motility• Respiratory Airway Mechanics• Reproductive Physiology• Intracellular Ions with Fluorescence• Electrophysiological Measurements
  • ...1 more annotation...
  • Basic Myograph for rings and strips 1 $7,385
‹ Previous 21 - 40 of 207 Next › Last »
Showing 20 items per page