Skip to main content

Home/ Sensorica Knowledge/ Group items tagged future of work

Rss Feed Group items tagged

Tiberius Brastaviceanu

The Baffler - 0 views

  • This tendency to view questions of freedom primarily through the lens of economic competition, to focus on the producer and the entrepreneur at the expense of everyone else, shaped O’Reilly’s thinking about technology.
  • the O’Reilly brand essence is ultimately a story about the hacker as hero, the kid who is playing with technology because he loves it, but one day falls into a situation where he or she is called on to go forth and change the world,
  • His true hero is the hacker-cum-entrepreneur, someone who overcomes the insurmountable obstacles erected by giant corporations and lazy bureaucrats in order to fulfill the American Dream 2.0: start a company, disrupt an industry, coin a buzzword.
  • ...139 more annotations...
  • gospel of individualism, small government, and market fundamentalism
  • innovation is the new selfishness
  • mastery of public relations
  • making it seem as if the language of economics was, in fact, the only reasonable way to talk about the subject
  • memes are for losers; the real money is in epistemes.
  • “Open source software” was also the first major rebranding exercise overseen by Team O’Reill
  • It’s easy to forget this today, but there was no such idea as open source software before 1998; the concept’s seeming contemporary coherence is the result of clever manipulation and marketing.
  • ideological cleavage between two groups
  • Richard Stallman
  • Free Software Foundation, preoccupied with ensuring that users had rights with respect to their computer programs. Those rights weren’t many—users should be able to run the program for any purpose, to study how it works, to redistribute copies of it, and to release their improved version (if there was one) to the public
  • “free software.”
  • association with “freedom” rather than “free beer”
  • copyleft
  • profound critique of the role that patent law had come to play in stifling innovation and creativity.
  • Plenty of developers contributed to “free software” projects for reasons that had nothing to do with politics. Some, like Linus Torvalds, the Finnish creator of the much-celebrated Linux operating system, did so for fun; some because they wanted to build more convenient software; some because they wanted to learn new and much-demanded skills.
  • Stallman’s rights-talk, however, risked alienating the corporate types
  • he was trying to launch a radical social movement, not a complacent business association
  • By early 1998 several business-minded members of the free software community were ready to split from Stallman, so they masterminded a coup, formed their own advocacy outlet—the Open Source Initiative—and brought in O’Reilly to help them rebrand.
  • “open source”
  • The label “open source” may have been new, but the ideas behind it had been in the air for some time.
  • In those early days, the messaging around open source occasionally bordered on propaganda
  • This budding movement prided itself on not wanting to talk about the ends it was pursuing; except for improving efficiency and decreasing costs, those were left very much undefined.
  • extremely decentralized manner, using Internet platforms, with little central coordination.
  • In contrast to free software, then, open source had no obvious moral component.
  • “open source is not particularly a moral or a legal issue. It’s an engineering issue. I advocate open source, because . . . it leads to better engineering results and better economic results
  • While free software was meant to force developers to lose sleep over ethical dilemmas, open source software was meant to end their insomnia.
  • Stallman the social reformer could wait for decades until his ethical argument for free software prevailed in the public debate
  • O’Reilly the savvy businessman had a much shorter timeline: a quick embrace of open source software by the business community guaranteed steady demand for O’Reilly books and events
  • The coup succeeded. Stallman’s project was marginalized. But O’Reilly and his acolytes didn’t win with better arguments; they won with better PR.
  • A decade after producing a singular vision of the Internet to justify his ideas about the supremacy of the open source paradigm, O’Reilly is close to pulling a similar trick on how we talk about government reform.
  • much of Stallman’s efforts centered on software licenses
  • O’Reilly’s bet wa
  • the “cloud”
  • licenses would cease to matter
  • Since no code changed hands
  • So what did matter about open source? Not “freedom”
  • O’Reilly cared for only one type of freedom: the freedom of developers to distribute software on whatever terms they fancied.
  • the freedom of the producer
  • who must be left to innovate, undisturbed by laws and ethics.
  • The most important freedom,
  • is that which protects “my choice as a creator to give, or not to give, the fruits of my work to you, as a ‘user’ of that work, and for you, as a user, to accept or reject the terms I place on that gift.”
  • O’Reilly opposed this agenda: “I completely support the right of Richard [Stallman] or any individual author to make his or her work available under the terms of the GPL; I balk when they say that others who do not do so are doing something wrong.”
  • The right thing to do, according to O’Reilly, was to leave developers alone.
  • According to this Randian interpretation of open source, the goal of regulation and public advocacy should be to ensure that absolutely nothing—no laws or petty moral considerations—stood in the way of the open source revolution
  • Any move to subject the fruits of developers’ labor to public regulation
  • must be opposed, since it would taint the reputation of open source as technologically and economically superior to proprietary software
  • the advent of the Internet made Stallman’s obsession with licenses obsolete
  • Many developers did stop thinking about licenses, and, having stopped thinking about licenses, they also stopped thinking about broader moral issues that would have remained central to the debates had “open source” not displaced “free software” as the paradigm du jour.
  • Profiting from the term’s ambiguity, O’Reilly and his collaborators likened the “openness” of open source software to the “openness” of the academic enterprise, markets, and free speech.
  • “open to intellectual exchange”
  • “open to competition”
  • “For me, ‘open source’ in the broader sense means any system in which open access to code lowers the barriers to entry into the market”).
  • “Open” allowed O’Reilly to build the largest possible tent for the movement.
  • The language of economics was less alienating than Stallman’s language of ethics; “openness” was the kind of multipurpose term that allowed one to look political while advancing an agenda that had very little to do with politics
  • highlight the competitive advantages of openness.
  • the availability of source code for universal examination soon became the one and only benchmark of openness
  • What the code did was of little importance—the market knows best!—as long as anyone could check it for bugs.
  • The new paradigm was presented as something that went beyond ideology and could attract corporate executives without losing its appeal to the hacker crowd.
  • What Raymond and O’Reilly failed to grasp, or decided to overlook, is that their effort to present open source as non-ideological was underpinned by a powerful ideology of its own—an ideology that worshiped innovation and efficiency at the expense of everything else.
  • What they had in common was disdain for Stallman’s moralizing—barely enough to justify their revolutionary agenda, especially among the hacker crowds who were traditionally suspicious of anyone eager to suck up to the big corporations that aspired to dominate the open source scene.
  • linking this new movement to both the history of the Internet and its future
  • As long as everyone believed that “open source” implied “the Internet” and that “the Internet” implied “open source,” it would be very hard to resist the new paradigm
  • Telling a coherent story about open source required finding some inner logic to the history of the Internet
  • “If you believe me that open source is about Internet-enabled collaboration, rather than just about a particular style of software license,”
  • everything on the Internet was connected to everything else—via open source.
  • The way O’Reilly saw it, many of the key developments of Internet culture were already driven by what he called “open source behavior,” even if such behavior was not codified in licenses.
  • No moralizing (let alone legislation) was needed; the Internet already lived and breathed open source
  • apps might be displacing the browser
  • the openness once taken for granted is no more
  • Openness as a happenstance of market conditions is a very different beast from openness as a guaranteed product of laws.
  • One of the key consequences of linking the Internet to the world of open source was to establish the primacy of the Internet as the new, reinvented desktop
  • This is where the now-forgotten language of “freedom” made a comeback, since it was important to ensure that O’Reilly’s heroic Randian hacker-entrepreneurs were allowed to roam freely.
  • Soon this “freedom to innovate” morphed into “Internet freedom,” so that what we are trying to preserve is the innovative potential of the platform, regardless of the effects on individual users.
  • Lumping everything under the label of “Internet freedom” did have some advantages for those genuinely interested in promoting rights such as freedom of expression
  • Forced to choose between preserving the freedom of the Internet or that of its users, we were supposed to choose the former—because “the Internet” stood for progress and enlightenment.
  • infoware
  • Yahoo
  • their value proposition lay in the information they delivered, not in the software function they executed.
  • The “infoware” buzzword didn’t catch on, so O’Reilly turned to the work of Douglas Engelbart
  • to argue that the Internet could help humanity augment its “collective intelligence” and that, once again, open source software was crucial to this endeavor.
  • Now it was all about Amazon learning from its customers and Google learning from the sites in its index.
  • The idea of the Internet as both a repository and incubator of “collective intelligence”
  • in 2004, O’Reilly and his business partner Dale Dougherty hit on the idea of “Web 2.0.” What did “2.0” mean, exactly?
  • he primary goal was to show that the 2001 market crash did not mean the end of the web and that it was time to put the crash behind us and start learning from those who survived.
  • Tactically, “Web 2.0” could also be much bigger than “open source”; it was the kind of sexy umbrella term that could allow O’Reilly to branch out from boring and highly technical subjects to pulse-quickening futurology
  • O’Reilly couldn’t improve on a concept as sexy as “collective intelligence,” so he kept it as the defining feature of this new phenomenon.
  • What set Web 2.0 apart from Web 1.0, O’Reilly claimed, was the simple fact that those firms that didn’t embrace it went bust
  • find a way to harness collective intelligence and make it part of their business model.
  • By 2007, O’Reilly readily admitted that “Web 2.0 was a pretty crappy name for what’s happening.”
  • O’Reilly eventually stuck a 2.0 label on anything that suited his business plan, running events with titles like “Gov 2.0” and “Where 2.0.” Today, as everyone buys into the 2.0 paradigm, O’Reilly is quietly dropping it
  • assumption that, thanks to the coming of Web 2.0, we are living through unique historical circumstances
  • Take O’Reilly’s musings on “Enterprise 2.0.” What is it, exactly? Well, it’s the same old enterprise—for all we know, it might be making widgets—but now it has learned something from Google and Amazon and found a way to harness “collective intelligence.”
  • tendency to redescribe reality in terms of Internet culture, regardless of how spurious and tenuous the connection might be, is a fine example of what I call “Internet-centrism.”
  • “Open source” gave us the “the Internet,” “the Internet” gave us “Web 2.0,” “Web 2.0” gave us “Enterprise 2.0”: in this version of history, Tim O’Reilly is more important than the European Union
  • For Postman, each human activity—religion, law, marriage, commerce—represents a distinct “semantic environment” with its own tone, purpose, and structure. Stupid talk is relatively harmless; it presents no threat to its semantic environment and doesn’t cross into other ones.
  • Since it mostly consists of falsehoods and opinions
  • it can be easily corrected with facts
  • to say that Tehran is the capital of Iraq is stupid talk
  • Crazy talk, in contrast, challenges a semantic environment, as it “establishes different purposes and assumptions from those we normally accept.” To argue, as some Nazis did, that the German soldiers ended up far more traumatized than their victims is crazy talk.
  • For Postman, one of the main tasks of language is to codify and preserve distinctions among different semantic environments.
  • As he put it, “When language becomes undifferentiated, human situations disintegrate: Science becomes indistinguishable from religion, which becomes indistinguishable from commerce, which becomes indistinguishable from law, and so on.
  • pollution
  • Some words—like “law”—are particularly susceptible to crazy talk, as they mean so many different things: from scientific “laws” to moral “laws” to “laws” of the market to administrative “laws,” the same word captures many different social relations. “Open,” “networks,” and “information” function much like “law” in our own Internet discourse today.
  • For Korzybski, the world has a relational structure that is always in flux; like Heraclitus, who argued that everything flows, Korzybski believed that an object A at time x1 is not the same object as object A at time x2
  • Our language could never properly account for the highly fluid and relational structure of our reality—or as he put it in his most famous aphorism, “the map is not the territory.”
  • Korzybski argued that we relate to our environments through the process of “abstracting,” whereby our neurological limitations always produce an incomplete and very selective summary of the world around us.
  • nothing harmful in this per se—Korzybski simply wanted to make people aware of the highly selective nature of abstracting and give us the tools to detect it in our everyday conversations.
  • Korzybski developed a number of mental tools meant to reveal all the abstracting around us
  • He also encouraged his followers to start using “etc.” at the end of their statements as a way of making them aware of their inherent inability to say everything about a given subject and to promote what he called the “consciousness of abstraction.”
  • There was way too much craziness and bad science in Korzybski’s theories
  • but his basic question
  • “What are the characteristics of language which lead people into making false evaluations of the world around them?”
  • Tim O’Reilly is, perhaps, the most high-profile follower of Korzybski’s theories today.
  • O’Reilly openly acknowledges his debt to Korzybski, listing Science and Sanity among his favorite books
  • It would be a mistake to think that O’Reilly’s linguistic interventions—from “open source” to “Web 2.0”—are random or spontaneous.
  • There is a philosophy to them: a philosophy of knowledge and language inspired by Korzybski. However, O’Reilly deploys Korzybski in much the same way that the advertising industry deploys the latest findings in neuroscience: the goal is not to increase awareness, but to manipulate.
  • O’Reilly, of course, sees his role differently, claiming that all he wants is to make us aware of what earlier commentators may have overlooked. “A metaphor is just that: a way of framing the issues such that people can see something they might otherwise miss,
  • But Korzybski’s point, if fully absorbed, is that a metaphor is primarily a way of framing issues such that we don’t see something we might otherwise see.
  • In public, O’Reilly modestly presents himself as someone who just happens to excel at detecting the “faint signals” of emerging trends. He does so by monitoring a group of überinnovators that he dubs the “alpha geeks.” “The ‘alpha geeks’ show us where technology wants to go. Smart companies follow and support their ingenuity rather than trying to suppress it,
  • His own function is that of an intermediary—someone who ensures that the alpha geeks are heard by the right executives: “The alpha geeks are often a few years ahead of their time. . . . What we do at O’Reilly is watch these folks, learn from them, and try to spread the word by writing down (
  • The name of his company’s blog—O’Reilly Radar—is meant to position him as an independent intellectual who is simply ahead of his peers in grasping the obvious.
  • “the skill of writing is to create a context in which other people can think”
  • As Web 2.0 becomes central to everything, O’Reilly—the world’s biggest exporter of crazy talk—is on a mission to provide the appropriate “context” to every field.
  • In a fascinating essay published in 2000, O’Reilly sheds some light on his modus operandi.
  • The thinker who emerges there is very much at odds with the spirit of objectivity that O’Reilly seeks to cultivate in public
  • meme-engineering lets us organize and shape ideas so that they can be transmitted more effectively, and have the desired effect once they are transmitted
  • O’Reilly meme-engineers a nice euphemism—“meme-engineering”—to describe what has previously been known as “propaganda.”
  • how one can meme-engineer a new meaning for “peer-to-peer” technologies—traditionally associated with piracy—and make them appear friendly and not at all threatening to the entertainment industry.
  • O’Reilly and his acolytes “changed the canonical list of projects that we wanted to hold up as exemplars of the movement,” while also articulating what broader goals the projects on the new list served. He then proceeds to rehash the already familiar narrative: O’Reilly put the Internet at the center of everything, linking some “free software” projects like Apache or Perl to successful Internet start-ups and services. As a result, the movement’s goal was no longer to produce a completely free, independent, and fully functional operating system but to worship at the altar of the Internet gods.
  • Could it be that O’Reilly is right in claiming that “open source” has a history that predates 1998?
  • Seen through the prism of meme-engineering, O’Reilly’s activities look far more sinister.
  • His “correspondents” at O’Reilly Radar don’t work beats; they work memes and epistemes, constantly reframing important public issues in accordance with the templates prophesied by O’Reilly.
  • Or take O’Reilly’s meme-engineering efforts around cyberwarfare.
  • Now, who stands to benefit from “cyberwarfare” being defined more broadly? Could it be those who, like O’Reilly, can’t currently grab a share of the giant pie that is cybersecurity funding?
  • Frank Luntz lists ten rules of effective communication: simplicity, brevity, credibility, consistency, novelty, sound, aspiration, visualization, questioning, and context.
  • Thus, O’Reilly’s meme-engineering efforts usually result in “meme maps,” where the meme to be defined—whether it’s “open source” or “Web 2.0”—is put at the center, while other blob-like terms are drawn as connected to it.
  • The exact nature of these connections is rarely explained in full, but this is all for the better, as the reader might eventually interpret connections with their own agendas in mind. This is why the name of the meme must be as inclusive as possible: you never know who your eventual allies might be. “A big part of meme engineering is giving a name that creates a big tent that a lot of people want to be under, a train that takes a lot of people where they want to go,”
  • News April 4 mail date March 29, 2013 Baffler party March 6, 2013 Žižek on seduction February 13, 2013 More Recent Press I’ve Seen the Worst Memes of My Generation Destroyed by Madness io9, April 02, 2013 The Baffler’s New Colors Imprint, March 21, 2013
  • There is considerable continuity across O’Reilly’s memes—over time, they tend to morph into one another.
Tiberius Brastaviceanu

If not Global Captalism - then What? - 0 views

  • I posit an optimistic view of the potential for Society from the emergence of a new and “Open” form of Capitalism.
  • Open Capital
  • the concept of “Open” Capital is “so simple…. it repels the mind".
  • ...162 more annotations...
  • Open Capital is defined as “a proportional share in an enterprise for an indeterminate time”
  • ‘Enterprise’ is defined as ‘any entity within which two or more individuals create, accumulate or exchange Value”.
  • Value is to Economics as Energy and Matter are to Physics.
  • The Metaphysics Of Value
  • division between “subject” and “object”.
  • primary reality is “Quality”
  • formless and indefinable
  • not a “thing”
  • a non-intellectual awareness or “pre-intellectual reality”
  • but an event at which the subject becomes aware of the object and before he distinguishes it
  • Quality is the basis of both subject and object
  • distinguish between “Static” and “Dynamic” Quality
  • treating Value as a form of “Quality” as envisioned by Pirsig.
  • Riegel
  • defined “Value” as “ the Relativity of Desire” again implying indeterminacy.
  • Pirsig’s approach Capital may be viewed as “Static” Value and Money as “Dynamic” Value. “Transactions” are the “events” at which individuals (Subjects) interact with each other or with Capital (both as Objects) to create forms of Value and at which “Value judgments” are made based upon a “Value Unit”.
  • The result of these Value Events /Transactions is to create subject/object pairings in the form of data ie Who “owns” or has rights of use in What,
  • at what Price
  • accounting data
  • Neo-Classical” Economics confuses indeterminate Value with a market– determined Price –
  • Data may be static
  • This Data identifies the subject with objects such as tangible ‘Material Value’
  • Data may itself constitute ‘Intellectual Value’
  • It, too, may then be defined in a subject/object pairing through the concept of “intellectual property”.
  • Other forms of Value are however not definable by data:
  • “sentimental” Value
  • Emotional Value’
  • 'Spiritual Value’
  • We may therefore look at the “transaction” or “value event” in a new light.
  • The creation and circulation of Value essentially comprises the concept we know of as “Money”.
  • Money / Dynamic Value
  • “The purpose of money is to facilitate barter by splitting the transaction into two parts, the acceptor of money reserving the power to requisition value from any trader at any time
  • money
  • value unit dissociated from any object
  • monetary unit
  • the basis relative to which other values may be expressed
  • The monetary process is a dynamic one involving the creation and recording of obligations as between individuals and the later fulfilment of these obligations
  • The monetary “Value Event”/ Transaction involves the creation of “Credit”
  • obligation to provide something of equivalent Value at a future point in time.
  • These obligations may be recorded on transferable documents
  • database of “Credit”/obligations is not Money, but temporary “Capital”
  • “Working Capital”
  • Static Value – which only becomes “Money”/ Dynamic Value when exchanged in the transitory Monetary process.
  • what we think of as Money is in fact not tangible “cash” but rather
  • the flow of data between databases of obligations maintained by Credit Institutions
  • or dynamic
  • Banks literally “loan” Money into existence
  • In exchange for an obligation by an Individual to provide to the Bank something of Value
  • Bank’s obligation is merely to provide another obligation at some future time
  • These Bank-issued obligations are therefore
  • claim upon a claim upon Value
  • The true source of Credit is the Individual, not the intermediary Bank
  • this Money they create from nothing despite the fact that it is literally Value-less
  • Thus there is no true sharing of Risk and Reward involved in Lending
  • issue in relation to Credit/Debt and this relates to the nature of Lending itself.
  • the practice of Lending involves an incomplete exchange in terms of risk and reward: a Lender, as opposed to an Investor, has no interest in the outcome of the Loan, and requires the repayment of Principal no matter the ability of the Borrower to repay.
  • Ethical problem
    • Tiberius Brastaviceanu
       
      "The Lender has no interest in the outcome of the loan", i.e doesn't care what happens in the end. The Lender ins not interested in the economical outcome of the Lender-Loner relation. So in fact there is no real risk sharing. the only risk for the Lender is when the Loner doesn't pay back, which is not really a risk... In fact it is a risk for the small bank, who has to buy money from the central bank, but not for the central bank. 
  • Money is not
  • an “Object” circulating but rather a dynamic process of Value creation and exchange by reference to a “Value Unit”.
  • Capital/ Static Value
  • Capital represents the static accumulation of Value
  • Some forms of Capital are “productive”
  • An ethical question
  • in relation to Productive Capital relates to the extent of “property rights” which may be held over it thereby allowing individuals to assert “absolute” permanent and exclusive ownership - in particular in relation to Land
  • our current financial system is based not upon Value but rather a claim upon Value
  • Financial Capital consists of two types:
  • “Debt”
  • “Equity”
  • Interest
  • obligations of finite/temporary duration but with no participation in the assets or revenues
  • absolute and permanent ownership/participation (without obligation) in assets and revenues
  • discontinuity between Debt and Equity
  • at the heart of our current problems as a Society
  • The Enterprise
  • ‘Charitable’ Enterprise
  • ‘Social’ Enterprise
  • Value
  • exchanged in agreed proportions;
  • Value is exchanged for the Spiritual and Emotional Value
  • ‘Commercial’ Enterprise
  • ‘closed’
  • Value are exchanged between a limited number of individuals
  • Early enterprises were partnerships and unincorporated associations
  • need for institutions which outlived the lives of the Members led to the development of the Corporate body with a legal existence independent of its Members
  • The key development in the history of Capitalism was the creation of the ‘Joint Stock’ Corporate with liability limited by shares of a ‘Nominal’ or ‘Par’ value
  • over the next 150 years the Limited Liability Corporate evolved into the Public Limited Liability Corporate
  • Such “Closed” Shares of “fixed” value constitute an absolute and permanent claim over the assets and revenues of the Enterprise to the exclusion of all other “stakeholders” such as Suppliers, Customers, Staff, and Debt Financiers.
  • The latter are essentially ‘costs’ external to the
  • owners of the Enterprise
  • maximise ‘Shareholder Value’
  • There is a discontinuity/ fault-line within the ‘Closed’ Corporate
  • It has the characteristics of what biologists call a ‘semi-permeable membrane’ in the way that it allows Economic Value to be extracted from other stakeholders but not to pass the other way.
    • Tiberius Brastaviceanu
       
      It is a way to extract value from productive systems. It is a system of exploitation. 
  • Capital most certainly is and always has been - through the discontinuity (see diagram) between:‘Fixed’ Capital in the form of shares ie Equity; and ‘Working’ Capital in the form of debt finance, credit from suppliers, pre-payments by customers and obligations to staff and management.
  • irreconcilable conflict between Equity and Debt
  • xchange of Economic Value in a Closed Corporate is made difficult and true sharing of Risk and Reward is simply not possible
  • No Enterprise Model has been capable of resolving this dilemma. Until now.
  • Corporate Partnerships with unlimited liability
  • mandatory for partnerships with more than 20 partners to be incorporated
  • in the USA
  • it is the normal structure for professional partnerships
  • Limited Liability Partnerships
  • In the late 1990's
  • litigation
  • The UK LLP is supremely simple and remarkably flexible.
  • All that is needed is a simple ‘Member Agreement’ – a legal protocol which sets out the Aims, Objectives. Principles of Governance, Revenue Sharing, Dispute Resolution, Transparency and any other matters that Members agree should be included. Amazingly enough, this Agreement need not even be in writing, since in the absence of a written agreement Partnership Law is applied by way of default.
  • The ease of use and total flexibility enables the UK LLP to be utilised in a way never intended – as an ‘Open’ Corporate partnership.
  • ‘Open’ Corporate Partnership
  • concepts which characterise the ‘Open’ Corporate Partnership
  • it is now possible for any stakeholder to become a Member of a UK LLP simply through signing a suitably drafted Member Agreement
  • ‘Open’
  • supplier
  • employee
  • may instead become true Partners in the Enterprise with their interests aligned with other stakeholders.
    • Tiberius Brastaviceanu
       
      Can SENSORICA be a UK LLP?
  • no profit or loss in an Open Corporate Partnership, merely Value creation and exchange between members in conformance with the Member Agreement.
  • Proportional shares
  • in an Enterprise constitute an infinitely divisible, flexible and scaleable form of Capital capable of distributing or accumulating Value organically as the Enterprise itself grows in Value or chooses to distribute it.
  • Emergence of “Open” Capital
  • example of how ‘Temporary Equity’ may operate in practice
  • The Open Capital Partnership (“OCP”)
  • Within the OCP Capital and Revenue are continuous: to the extent that an Investee pays Rental in advance of the due date he becomes an Investor.
  • Open Capital – a new Asset Class
  • create a new asset class of proportional “shares”/partnership interests
  • in Capital holding OCP’s
  • Property Investment Partnerships (“PIP’s”)
  • Open Corporate Partnerships as a Co-operative Enterprise model
  • A Co-operative is not an enterprise structure: it is a set of Principles that may be applied to different types of enterprise structure.
  • Within a Partnership there is no “Profit” and no “Loss”.
  • Partnerships
  • mutual pursuit of the creation and exchange of Value
  • Partners do not compete with each othe
  • the crippling factors in practical terms have been, inter alia: the liability to which Member partners are exposed from the actions of their co-partners on their behalf; limited ability to raise capital.
  • they favour the interests of other stakeholders, are relatively restricted in accessing investment; are arguably deficient in incentivising innovation.
  • The ‘new’ LLP was expressly created to solve the former problem by limiting the liability of Member partners to those assets which they choose to place within its protective ‘semi-permeable membrane’
  • However, the ability to configure the LLP as an “Open” Corporate permits a new and superior form of Enterprise.
  • it is possible to re-organise any existing enterprise as either a partnership or as a partnership of partnerships.
  • the revenues
  • would be divided among Members in accordance with the LLP Agreement. This means that all Members share a common interest in collaborating/co-operating to maximise the Value generated by the LLP collectively as opposed to competing with other stakeholders to maximise their individual share at the other stakeholders’ expense.
  • facilitate the creation of LLP’s as “Co-operatives of Co-operatives”.
  • he ‘Commercial’ Enterprise LLP – where the object is for a closed group of individuals to maximise the value generated in their partnership. There are already over 7,000 of these.
    • Tiberius Brastaviceanu
       
      Can SENSORICA be one of these?
  • the Profit generated in a competitive economy based upon shareholder value and unsustainable growth results from a transfer of risks outwards, and the transfer of reward inwards, leading to a one way transfer of Economic Value.
  • This,
  • will very often impoverish one or more constituency of stakeholders
  • A partnership, however, involves an exchange of value through the sharing of risk and reward.
  • Whether its assets are protected within a corporate entity with limited liability or not, it will always operate co-operatively – for mutual profit.
  • Open Capital, Economics and Politics
  • continuity between Capital as Static Value and Money as Dynamic Value which has never before been possible due to the dichotomy between the absolute/infinite and the absolute/finite durations of the competing claims over assets – “Equity” and “Debt”
  • Open Capital Partnership gives rise to a new form of Financial Capital of indeterminate duration. It enables the Capitalisation of assets and the monetisation of revenue streams in an entirely new way.
  • It is possible to envisage a Society within which individuals are members of a portfolio of Enterprises constituted as partnerships, whether limited in liability or otherwise.
  • Some will be charitable
  • Others will be ‘social’
  • ‘Commercial’ enterprises of all kinds aimed at co-operatively working together to maximise value for the Members.
  • the process has already begun
  • Capitalism
  • superior
  • to all other models, such as Socialism.
  • It can only be replaced by another ‘emergent’ phenomenon, which is adopted ‘virally’ because any Enterprise which does not utilise it will be at a disadvantage to an Enterprise which does.
  • The ‘Open’ Corporate Partnership is: capable of linking any individuals anywhere in respect of collective ownership of assets anywhere; extremely cheap and simple to operate; and because one LLP may be a Member of another it is organically flexible and ‘scaleable’. The phenomenon of “Open Capital” – which is already visible in the form of significant commercial transactions - enables an extremely simple and continuous relationship between those who wish to participate indefinitely in an Enterprise and those who wish to participate for a defined period of time.
  • Moreover, the infinitely divisible proportionate “shares” which constitute ‘Open’ Capital allow stakeholder interests to grow flexibly and organically with the growth in Value of the Enterprise. In legal terms, the LLP agreement is essentially consensual and ‘pre-distributive’: it is demonstrably superior to prescriptive complex contractual relationships negotiated adversarially and subject to subsequent re-distributive legal action. Above all, the ‘Open’ Corporate Partnership is a Co-operative phenomenon which is capable, the author believes, of unleashing the “Co-operative Advantage” based upon the absence of a requirement to pay returns to “rentier” Capitalists.
Kurt Laitner

Digital Reality | Edge.org - 0 views

  • When you snap the bricks together, you don't need a ruler to play Lego; the geometry comes from the parts
  • first attribute is metrology that comes from the parts
  • digitizing composites into little linked loops of carbon fiber instead of making giant pieces
  • ...75 more annotations...
  • In a 3D printer today, what you can make is limited by the size of the machine. The geometry is external
  • is the Lego tower is more accurate than the child because the constraint of assembling the bricks lets you detect and correct errors
  • That's the exponential scaling for working reliably with unreliable parts
  • Because the parts have a discrete state, it means in joining them you can detect and correct errors
  • detect and correct state to correct errors to get an exponential reduction in error, which gives you an exponential increase in complexity
  • The next one is you can join Lego bricks made out of dissimilar materials.
  • The last one is when you're done with Lego you don't put it in the trash; you take it apart and reuse it because there's state in the materials. In a forest there's no trash; you die and your parts get disassembled and you're made into new stuff. When you make a 3D print or laser cut, when you're done there's recycling attempts but there's no real notion of reusing the parts
  • The metrology coming from the parts, detecting and correcting errors, joining dissimilar materials, disconnecting, reusing the components
  • On the very smallest scale, the most exciting work on digital fabrication is the creation of life from scratch. The cell does everything we're talking about. We've had a great collaboration with the Venter Institute on microfluidic machinery to load designer genomes into cells. One step up from that we're developing tabletop chip fab instead of a billion dollar fab, using discrete assembly of blocks of electronic materials to build things like integrated circuits in a tabletop process
  • a child can make a Lego structure bigger than themself
  • There's a series of books by David Gingery on how to make a machine shop starting with charcoal and iron ore.
  • There are twenty amino acids. With those twenty amino acids you make the motors in the molecular muscles in my arm, you make the light sensors in my eye, you make my neural synapses. The way that works is the twenty amino acids don't encode light sensors, or motors. They’re very basic properties like hydrophobic or hydrophilic. With those twenty properties you can make you. In the same sense, digitizing fabrication in the deep sense means that with about twenty building blocks—conducting, insulating, semiconducting, magnetic, dielectric—you can assemble them to create modern technology
  • By discretizing those three parts we can make all those 500,000 resistors, and with a few more parts everything else.
  • Now, there's a casual sense, which means a computer controls something to make something, and then there's the deep sense, which is coding the materials. Intellectually, that difference is everything but now I'm going to explain why it doesn't matter.
  • Then in turn, the next surprise was they weren't there for research, they weren't there for theses, they wanted to make stuff. I taught additive, subtractive, 2D, 3D, form, function, circuits, programming, all of these skills, not to do the research but just using the existing machines today
  • What they were answering was the killer app for digital fabrication is personal fabrication, meaning, not making what you can buy at Walmart, it’s making what you can't buy in Walmart, making things for a market of one person
  • The minicomputer industry completely misread PCs
  • the Altair was life changing for people like me. It was the first computer you could own as an individual. But it was almost useless
  • It was hard to use but it brought the cost from a million dollars to 100,000 and the size from a warehouse down to a room. What that meant is a workgroup could have one. When a workgroup can have one it meant Ken Thompson and Dennis Ritchie at Bell Labs could invent UNIX—which all modern operating systems descend from—because they didn't have to get permission from a whole corporation to do it
  • At the PC stage what happened is graphics, storage, processing, IO, all of the subsystems got put in a box
  • To line that up with fabrication, MIT's 1952 NC Mill is similar to the million-dollar machines in my lab today. These are the mainframes of fab. You need a big organization to have them. The fab labs I'll tell you about are exactly analogous to the cost and complexity of minicomputers. The machines that make machines I'll tell you about are exactly analogous to the cost and complexity of the hobbyist computers. The research we're doing, which is leading up to the Star Trek Replicator, is what leads to the personal fabricator, which is the integrated unit that makes everything
  • conducting, resistive, insulating.
  • The fab lab is 2 tons, a $100,000 investment. It fills a few thousand square feet, 3D scanning and printing, precision machining, you can make circuit boards, molding and casting tooling, computer controlled cutting with a knife, with a laser, large format machining, composite layup, surface mount rework, sensors, actuators, embedded programming— technology to make technology.
  • Ten years you can just plot this doubling. Today, you can send a design to a fab lab and you need ten different machines to turn the data into something. Twenty years from now, all of that will be in one machine that fits in your pocket.
  • We've been living with this notion that making stuff is an illiberal art for commercial gain and it's not part of the means of expression. But, in fact, today, 3D printing, micromachining, and microcontroller programming are as expressive as painting paintings or writing sonnets but they're not means of expression from the Renaissance. We can finally fix that boundary between art and artisans
  • You don't go to a fab lab to get access to the machine; you go to the fab lab to make the machine.
  • Over the next maybe five years we'll be transitioning from buying machines to using machines to make machines. Self-reproducing machines
  • But they still have consumables like the motors, and they still cut or squirt. Then the interesting transition comes when we go from cutting or printing to assembling and disassembling, to moving to discretely assembled materials
  • because if anybody can make anything anywhere, it challenges everything
    • Kurt Laitner
       
      great quote (replace challenges with changes for effect)
  • Now, the biggest surprise for me in this is I thought the research was hard. It's leading to how to make the Star Trek Replicator. The insight now is that's an exercise in embodied computation—computation in materials, programming their construction. Lots of work to come, but we know what to do
  • And that's when you do tabletop chip fab or make airplanes. That's when technical trash goes away because you can disassemble. 
  • irritated by the maker movement for the failure in mentoring
  • At something like a Maker Faire, there's hall after hall of repeated reinventions of bad 3D printers and there isn't an easy process to take people from easy to hard
  • We started a project out of desperation because we kept failing to succeed in working with existing schools, called the Fab Academy. Now, to understand how that works, MIT is based on scarcity. You assume books are scarce, so you have to go there for the library; you assume tools are scarce, so you have to go there for the machines; you assume people are scarce, so you have to go there to see them; and geography is scarce. It adds up to we can fit a few thousand people at a time. For those few thousand people it works really well. But the planet is a few billion people. We're off by six orders of magnitude. 
  • Next year we're starting a new class with George Church that we've called "How to Grow Almost Anything", which is using fab labs to make bio labs and then teach biotech in it. What we're doing is we're making a new global kind of university
  • Amusingly, I went to my friends at Educause about accrediting the Fab Academy and they said, "We love it. Where are you located?" And I said, "Yes" and they said, "No." Meaning, "We're all over the earth." And they said, "We have no mechanism. We're not allowed to do that. There's no notion of global accreditation."
  • Then they said something really helpful: "Pretend."
  • Once you have a basic set of tools, you can make all the rest of the tools
  • The way the Fab Academy works, in computing terms, it's like the Internet. Students have peers in workgroups, with mentors, surrounded by machines in labs locally. Then we connect them globally by video and content sharing and all of that. It's an educational network. There are these critical masses of groups locally and then we connect them globally
  • You still have Microsoft or IBM now but, with all respect to colleagues there, arguably that's the least interesting part of software
  • To understand the economic and social implications, look at software and look at music to understand what's happening now for fabrication
  • There's a core set of skills a place like MIT can do but it alone doesn't scale to a billion people. This is taking the social engineering—the character of MIT—but now doing it on this global scale.
  • Mainframes didn't go away but what opened up is all these tiers of software development that weren't economically viable
  • If you look at music development, the most interesting stuff in music isn't the big labels, it's all the tiers of music that weren't viable before
  • You can make music for yourself, for one, ten, 100, 1,000, a million. If you look at the tracks on your device, music is now in tiers that weren't economically viable before. In that example it's a string of data and it becomes a sound. Now in digital fab, it's a string of data and it becomes a thing.
  • What is work? For the average person—not the people who write for Edge, but just an average person working—you leave home to go to a place you'd rather not be, doing a repetitive operation you'd rather not do, making something designed by somebody you don't know for somebody you'll never see, to get money to then go home and buy something. But what if you could skip that and just make the thing?
    • Kurt Laitner
       
      !!!
  • It took about ten years for the dot com industry to realize pretty much across the board you don't directly sell the thing. You sell the benefits of the thing
  • 2016 it's in Shenzhen because they're pivoting from mass manufacturing to enabling personal fabrication. We've set Shenzhen as the goal in 2016 for Fab Lab 2.0, which is fab labs making fab labs
  • To rewind now, you can send something to Shenzhen and mass manufacture it. There's a more interesting thing you can do, which is you go to market by shipping data and you produce it on demand locally, and so you produce it all around the world.
  • But their point was a lot of printers producing beautiful pages slowly scales if all the pages are different
  • In the same sense it scales to fabricate globally by doing it locally, not by shipping the products but shipping the data.
  • It doesn't replace mass manufacturing but mass manufacturing becomes the least interesting stuff where everybody needs the same thing. Instead, what you open up is all these tiers that weren't viable before
  • There, they consider IKEA the enemy because IKEA defines your taste. Far away they make furniture and flat pack it and send it to a big box store. Great design sense in Barcelona, but 50 percent youth unemployment. A whole generation can't work. Limited jobs. But ships come in from the harbor, you buy stuff in a big box store. And then after a while, trucks go off to a trash dump. They describe it as products in, trash out. Ships come in with products, trash goes out
    • Kurt Laitner
       
      worse actually.. the trash stays
  • The bits come and go, globally connected for knowledge, but the atoms stay in the city.
  • instead of working to get money to buy products made somewhere else, you can make them locally
    • Kurt Laitner
       
      this may solve greece's problem, walk away from debt, you can't buy other people's (country's) stuff anymore, so make it all yourself
  • The biggest tool is a ShotBot 4'x8'x1' NC mill, and you can make beautiful furniture with it. That's what furniture shops use
  • Anything IKEA makes you can make in a fab lab
  • it means you can make many of the things you consume directly rather than this very odd remote economic loop
  • the most interesting part of the DIY phone projects is if you're making a do-it-yourself phone, you can also start to make the things that the phones talk to. You can start to build your own telco providers where the users provide the network rather than spending lots of money on AT&T or whoever
  • Traditional manufacturing is exactly replaying the script of the computer companies saying, "That's a toy," and it's shining a light to say this creates entirely new economic activity. The new jobs don't come back to the old factories. The ability to make stuff on demand is creating entirely new jobs
  • To keep playing that forward, when I was in Barcelona for the meeting of all these labs hosted by the city architect and the city, the mayor, Xavier Trias, pushed a button that started a forty-year countdown to self-sufficiency. Not protectionism
  • I need high-torque efficient motors with integrated lead screws at low cost, custom-produced on demand. All sorts of the building blocks that let us do what I'm doing currently rest on a global supply chain including China's manufacturing agility
  • The short-term answer is you can't get rid of them because we need them in the supply chain. But the long-term answer is Shenzhen sees the future isn't mass producing for everybody. That's a transitional stage to producing locally
  • My description of MIT's core competence is it's a safe place for strange people
  • The real thing ultimately that's driving the fab labs ... the vacuum we filled is a technical one. The means to make stuff. Nobody was providing that. But in turn, the spaces become magnets. Everybody talks about innovation or knowledge economy, but then most things that label that strangle it. The labs become vehicles for bright inventive people who don't fit locally. You can think about the culture of MIT but on this global scale
  • My allegiance isn't to any one border, it's to the brainpower of the planet and this is building the infrastructure to scale to that brainpower
  • If you zoom from transistors to microcode to object code to a program, they don't look like each other. But if we take this room and go from city, state, country, it's hierarchical but you preserve geometry
  • Computation violates geometry unlike most anything else we do
  • The reason that's so important for the digital fabrication piece is once we build molecular assemblers to build arbitrary systems, you don't want to then paste a few lines of code in it. You need to overlay computation with geometry. It's leading to this complete do-over of computer science
  • If you take digital fab, plus the real sense of Internet of Things—not the garbled sense—plus the real future of computing aligning hardware and software, it all adds up to this ability to program reality
  • I run a giant video infrastructure and I have collaborators all over the world that I see more than many of my colleagues at MIT because we're all too busy on campus. The next Silicon Valley is a network, it's not a place. Invention happens in these networks.
  • When Edwin Land was kicked out of Polaroid, he made the Rowland Institute, which was making an ideal research institute with the best facilities and the best people and they could do whatever they want. But almost nothing came from it because there was no turnover of the gene pool, there was no evolutionary pressure.  
  • the wrong way to do research, which is to believe there's a privileged set of people that know more than anybody else and to create a barrier that inhibits communication from the inside to the outside
  • you need evolutionary pressure, you need traffic, you need to be forced to deal with people you don't think you need to encounter, and you need to recognize that to be disruptive it helps to know what people know
  • For me the hardest thing isn't the research. That's humming along nicely. It's that we're finding we have to build a completely new kind of social order and that social entrepreneurship—figuring out how you live, learn, work, play—is hard and there's a very small set of people who can do that kind of organizational creation.
    • Kurt Laitner
       
      our challenge in the OVN space
  •  
    what is heavy is local, what is light is global, and increasingly manufacturing is being recreated along this principle
Tiberius Brastaviceanu

POWER-CURVE SOCIETY: The Future of Innovation, Opportunity and Social Equity in the Eme... - 1 views

  • how technological innovation is restructuring productivity and the social and economic impact resulting from these changes
  • concern about the technological displacement of jobs, stagnant middle class income, and wealth disparities in an emerging "winner-take-all" economy
  • personal data ecosystems that could potentially unlock a revolutionary wave of individual economic empowerment
  • ...70 more annotations...
  • the bell curve described the wealth and income distribution of American society
  • As the technology boom of the 1990s increased productivity, many assumed that the rising water level of the economy was raising all those middle class boats. But a different phenomenon has also occurred. The wealthy have gained substantially over the past two decades while the middle class has remained stagnant in real income, and the poor are simply poorer.
  • America is turning into a power-curve society: one where there are a relative few at the top and a gradually declining curve with a long tail of relatively poorer people.
  • For the first time since the end of World War II, the middle class is apparently doing worse, not better, than previous generations.
  • an alarming trend
  • What is the role of technology in these developments?
  • a sweeping look at the relationship between innovation and productivity
  • New Economy of Personal Information
  • Power-Curve Society
  • the future of jobs
  • the report covers the social, policy and leadership implications of the “Power-Curve Society,”
  • World Wide Web
  • as businesses struggle to come to terms with this revolution, a new set of structural innovations is washing over businesses, organizations and government, forcing near-constant adaptation and change. It is no exaggeration to say that the explosion of innovative technologies and their dense interconnections is inventing a new kind of economy.
  • the new technologies are clearly driving economic growth and higher productivity, the distribution of these benefits is skewed in worrisome ways.
  • the networked economy seems to be producing a “power-curve” distribution, sometimes known as a “winner-take-all” economy
  • Economic and social insecurity is widespread.
  • major component of this new economy, Big Data, and the coming personal data revolution fomenting beneath it that seeks to put individuals, and not companies or governments, at the forefront. Companies in the power-curve economy rely heavily on big databases of personal information to improve their marketing, product design, and corporate strategies. The unanswered question is whether the multiplying reservoirs of personal data will be used to benefit individuals as consumers and citizens, or whether large Internet companies will control and monetize Big Data for their private gain.
  • Why are winner-take-all dynamics so powerful?
  • appear to be eroding the economic security of the middle class
  • A special concern is whether information and communications technologies are actually eliminating more jobs than they are creating—and in what countries and occupations.
  • How is the power-curve economy opening up opportunities or shutting them down?
  • Is it polarizing income and wealth distributions? How is it changing the nature of work and traditional organizations and altering family and personal life?
  • many observers fear a wave of social and political disruption if a society’s basic commitments to fairness, individual opportunity and democratic values cannot be honored
  • what role government should play in balancing these sometimes-conflicting priorities. How might educational policies, research and development, and immigration policies need to be altered?
  • The Innovation Economy
  • Conventional economics says that progress comes from new infusions of capital, whether financial, physical or human. But those are not necessarily the things that drive innovation
  • What drives innovation are new tools and then the use of those new tools in new ways.”
  • at least 50 percent of the acceleration of productivity over these years has been due to ICT
  • economists have developed a number of proxy metrics for innovation, such as research and development expenditures.
  • Atkinson believes that economists both underestimate and overestimate the scale and scope of innovation.
  • Calculating the magnitude of innovation is also difficult because many innovations now require less capital than they did previously.
  • Others scholars
  • see innovation as going in cycles, not steady trajectories.
  • A conventional approach is to see innovation as a linear, exponential phenomenon
  • leads to gross errors
  • Atkinson
  • believes that technological innovation follows the path of an “S-curve,” with a gradual increase accelerating to a rapid, steep increase, before it levels out at a higher level. One implication of this pattern, he said, is that “you maximize the ability to improve technology as it becomes more diffused.” This helps explain why it can take several decades to unlock the full productive potential of an innovation.
  • innovation keeps getting harder. It was pretty easy to invent stuff in your garage back in 1895. But the technical and scientific challenges today are huge.”
  • costs of innovation have plummeted, making it far easier and cheaper for more people to launch their own startup businesses and pursue their unconventional ideas
  • innovation costs are plummeting
  • Atkinson conceded such cost-efficiencies, but wonders if “the real question is that problems are getting more complicated more quickly than the solutions that might enable them.
  • we may need to parse the different stages of innovation: “The cost of innovation generally hasn’t dropped,” he argued. “What has become less expensive is the replication and diffusion of innovation.”
  • what is meant by “innovation,”
  • “invention plus implementation.”
  • A lot of barriers to innovation can be found in the lack of financing, organizational support systems, regulation and public policies.
  • 90 percent of innovation costs involve organizational capital,”
  • there is a serious mismatch between the pace of innovation unleashed by Moore’s Law and our institutional and social capacity to adapt.
  • This raises the question of whether old institutions can adapt—or whether innovation will therefore arise through other channels entirely. “Existing institutions are often run by followers of conventional wisdom,”
  • The best way to identify new sources of innovation, as Arizona State University President Michael Crow has advised, is to “go to the edge and ignore the center.”
  • Paradoxically, one of the most potent barriers to innovation is the accelerating pace of innovation itself.
  • Institutions and social practice cannot keep up with the constant waves of new technologies
  • “We are moving into an era of constant instability,”
  • “and the half-life of a skill today is about five years.”
  • Part of the problem, he continued, is that our economy is based on “push-based models” in which we try to build systems for scalable efficiencies, which in turn demands predictability.
  • The real challenge is how to achieve radical institutional innovations that prepare us to live in periods of constant two- or three-year cycles of change. We have to be able to pick up new ideas all the time.”
  • pace of innovation is a major story in our economy today.
  • The App Economy consists of a core company that creates and maintains a platform (such as Blackberry, Facebook or the iPhone), which in turn spawns an ecosystem of big and small companies that produce apps and/or mobile devices for that platform
  • tied this success back to the open, innovative infrastructure and competition in the U.S. for mobile devices
  • standard
  • The App Economy illustrates the rapid, fluid speed of innovation in a networked environment
  • crowdsourcing model
  • winning submissions are
  • globally distributed in an absolute sense
  • problem-solving is a global, Long Tail phenomenon
  • As a technical matter, then, many of the legacy barriers to innovation are falling.
  • small businesses are becoming more comfortable using such systems to improve their marketing and lower their costs; and, vast new pools of personal data are becoming extremely useful in sharpening business strategies and marketing.
  • Another great boost to innovation in some business sectors is the ability to forge ahead without advance permission or regulation,
  • “In bio-fabs, for example, it’s not the cost of innovation that is high, it’s the cost of regulation,”
  • This notion of “permissionless innovation” is crucial,
  • “In Europe and China, the law holds that unless something is explicitly permitted, it is prohibited. But in the U.S., where common law rather than Continental law prevails, it’s the opposite
Tiberius Brastaviceanu

Partner State - P2P Foundation - 0 views

    • Tiberius Brastaviceanu
       
      we call this a custodian
    • Tiberius Brastaviceanu
       
      we call this a custodian
  • So here we have it, the new triarchy: - The state, with its public property and representative mechanisms of governance (in the best scenario) - The private sector, with the corporation and private property - The commons, with the Trust (or the for-benefit association), and which is the ‘property’ of all its members (not the right word in the context of the commons, since it has a different philosophy of ownership)
    • Tiberius Brastaviceanu
       
      so where is direct democracy in all this?
  • ...39 more annotations...
  • In a first phase, the commons simply emerges as an added alternative.
  • becoming a subsector of society, and starts influencing the whole
  • phase transition and transformation will need to occur.
  • how a commons-dominated, i.e. after the phase transition, society would look like.
  • At its core would be a collection of commons, represented by trusts and for-benefit associations, which protect their common assets for the benefit of present and future generations
  • The commons ‘rents out’ the use of its resources to entrepreneurs. In other words, business still exists, though infinite growth-based capitalism does not.
  • More likely is that the corporate forms will be influenced by the commons and that profit will be subsumed to other goals, that are congruent with the maintenance of the commons.
  • The state will still exist, but will have a radically different nature
  • Much of its functions will have been taken over by commons institutions, but since these institutions care primarily about their commons, and not the general common good, we will still need public authorities that are the guarantor of the system as a whole, and can regulate the various commons, and protect the commoners against possible abuses. So in our scenario, the state does not disappear, but is transformed, though it may greatly diminish in scope, and with its remaining functions thoroughly democratized and based on citizen participation.
  • In our vision, it is civil-society based peer production, through the Commons, which is the guarantor of value creation by the private sector, and the role of the state, as Partner State, is to enable and empower the creation of common value. The new peer to peer state then, though some may see that as a contradictio in terminis, is a state which is subsumed under the Commons, just as it is now under the private sector. Such a peer to peer state, if we are correct, will have a much more modest role than the state under a classic state society, with many of its functions taken over by civil society associations, interlinked in processes of global governance. The above then, this triarchy, is the institutional core which replaces the dual private-public binary system that is characteristic of the capitalist system that is presently the dominant format.
  • fundamental mission is to empower direct social-value creation, and to focus on the protection of the Commons sphere as well as on the promotion of sustainable models of entrepreneurship and participatory politics
  • the state becomes a 'partner state' and enables autonomous social production.
  • the state does exist, and I believe that we can’t just imagine that we live in a future state-less society
  • retreating from the binary state/privatization dilemma to the triarchical choice of an optimal mix amongst government regulation, private-market freedom and autonomous civil-society projects
  • the role of the state
  • “the peer production of common value requires civic wealth and strong civic institutions.
  • trigger the production/construction of new commons by - (co-) management of complexe resource systems which are not limited to local boundaries or specific communities (as manager and partner) - survey of rules (chartas) to care for the commons (mediator or judge) - kicking of or providing incentives for commoners governing their commons - here the point is to design intelligent rules which automatically protect the commons, like the GPL does (facilitator)"
  • the emergence of the digital commons. It is the experience of creating knowledge, culture, software and design commons, by a combination of voluntary contributions, entrepreneurial coalitions and infrastructure-protecting for-benefit associations, that has most tangibly re-introduced the idea of commons, for all to use without discrimination, and where all can contribute. It has drastically reduced the production, distribution, transaction and coordination costs for the immaterial value that is at the core also of all what we produce physically, since that needs to be made, needs to be designed. It has re-introduced communing as a mainstream experience for at least one billion internet users, and has come with proven benefits and robustness that has outcompeted and outcooperated its private rivals. It also of course offers new ways to re-imagine, create and protect physical commons.
  • stop enclosures
  • peer to peer, i.e. the ability to freely associate with others around the creation of common value
  • communal shareholding, i.e. the non-reciprocal exchange of an individual with a totality. It is totality that we call the commons.
  • It is customary to divide society into three sectors, and what we want to show is how the new peer to peer dynamic unleashed by networked infrastructures, changes the inter-relationship between these three sectors.
  • In the current ‘cognitive capitalist’ system, it is the private sector consisting of enterprises and businesses which is the primary factor, and it is engaged in competitive capital accumulation. The state is entrusted with the protection of this process. Though civil society, through the citizen, is in theory ‘sovereign’, and chooses the state; in practice, both civil society and the state are under the domination of the private sector.
  • it fulfills three contradictory functions
  • Of course, this is not to say that the state is a mere tool of private business.
  • protect the whole system, under the domination of private business
  • protector of civil society, depending on the balance of power and achievements of social movements
  • protector of its own independent interests
  • Under fascism, the state achieves great independence from the private sector , which may become subservient to the state. Under the welfare state, the state becomes a protector of the social balance of power and manages the achievements of the social movement; and finally, under the neoliberal corporate welfare state, or ‘market state’, it serves most directly the interests of the financial sector.
  • key institutions and forms of property.
  • The state managed a public sector, under its own property.
  • The private sector , under a regime of private ownership, is geared to profit, discounts social and natural externalities, both positive and negative, and uses its dominance in society to use and dominate the state.
  • civil society has a relative power as well, through its capability of creating social movements and associations
  • Capitalism has historically been a pendulum between the private and the public sector
  • However, this configuration is changing,
  • the endangerment of the biosphere through the workings of ‘selfish’ market players; the second is the role of the new digital commons.
  • participatory politics
  • Peer production gives us an advance picture of how a commons-oriented society would look like. At its core is a commons and a community contributing to it, either voluntarily, or as paid entrepreneurial employees. It does this through collaborative platforms using open standards. Around the commons emerges enterprises that create added value to operate on the marketplace, but also help the maintenance and the expansion of the commons they rely on. A third partner are the for-benefit associations that maintain the infrastructure of cooperation. Public authorities could play a role if they wanted to support existing commons or the creation of new commons, for the value they bring to society.
  • if a commons is not created as in the case of the digital commons, it is something that is inherited from nature or former generations, given in trust and usufruct, so that it can be transmitted to our descendents. The proper institution for such commons is therefore the trust, which is a corporate form that cannot touch its principal capital, but has to maintain it.
Tiberius Brastaviceanu

Is Shame Necessary? | Conversation | Edge - 0 views

  • What is shame's purpose? Is shame still necessary?
  • Shame is what is supposed to occur after an individual fails to cooperate with the group.
  • Whereas guilt is evoked by an individual's standards, shame is the result of group standards. Therefore, shame, unlike guilt, is felt only in the context of other people.
  • ...53 more annotations...
  • Many animals use visual observations to decide whether to work with others.
  • humans are more cooperative when they sense they're being watched.
  • The feeling of being watched enhances cooperation, and so does the ability to watch others. To try to know what others are doing is a fundamental part of being human
  • Shame serves as a warning to adhere to group standards or be prepared for peer punishment. Many individualistic societies, however, have migrated away from peer punishment toward a third-party penal system
  • Shame has become less relevant in societies where taking the law into one's own hands is viewed as a breach of civility.
  • Many problems, like most concerning the environment, are group problems. Perhaps to solve these problems we need a group emotion. Maybe we need shame.
  • Guilt prevails in many social dilemmas
  • It is perhaps unsurprising that a set of tools has emerged to assuage this guilt
  • Guilt abounds in many situations where conservation is an issue.
  • The problem is that environmental guilt, though it may well lead to conspicuous ecoproducts, does not seem to elicit conspicuous results.
  • The positive effect of idealistic consumers does exist, but it is masked by the rising demand and numbers of other consumers.
  • Guilt is a valuable emotion, but it is felt by individuals and therefore motivates only individuals. Another drawback is that guilt is triggered by an existing value within an individual. If the value does not exist, there is no guilt and hence no action
  • Getting rid of shaming seems like a pretty good thing, especially in regulating individual behavior that does no harm to others. In eschewing public shaming, society has begun to rely more heavily on individual feelings of guilt to enhance cooperation.
  • five thousand years ago, there arose another tool: writing
  • Judges in various states issue shaming punishments,
  • shaming by the state conflicts with the law's obligation to protect citizens from insults to their dignity.
  • What if government is not involved in the shaming?
  • Is this a fair use of shaming? Is it effective?
  • Shaming might work to change behavior in these cases, but in a world of urgent, large-scale problems, changing individual behavior is insignificant
  • vertical agitation
  • Guilt cannot work at the institutional level, since it is evoked by individual scruples, which vary widely
  • But shame is not evoked by scruples alone; since it's a public sentiment, it also affects reputation, which is important to an institution.
  • corporate brand reputation outranked financial performance as the most important measure of success
  • shame and reputation interact
  • in our early evolution we could gauge cooperation only firsthand
  • Shaming, as noted, is unwelcome in regulating personal conduct that doesn't harm others. But what about shaming conduct that does harm others?
  • why we learned to speak.1
  • Language
  • The need to accommodate the increasing number of social connections and monitor one another could be
  • allowed for gossip, a vector of social information.
  • in cooperation games that allowed players to gossip about one another's performance, positive gossip resulted in higher cooperation.
  • Of even greater interest, gossip affected the players' perceptions of others even when they had access to firsthand information.
  • Human society today is so big that its dimensions have outgrown our brains.
  • What tool could help us gossip in a group this size?
  • We can use computers to simulate some of the intimacy of tribal life, but we need humans to evoke the shame that leads to cooperation. The emergence of new tools— language, writing, the Internet—cannot completely replace the eyes. Face-to-face interactions, such as those outside Trader Joe's stores, are still the most impressive form of dissent.
  • what is stopping shame from catalyzing social change? I see three main drawbacks:
  • Today's world is rife with ephemeral, or "one-off," interactions.
  • Research shows, however, that if people know they will interact again, cooperation improves
  • Shame works better if the potential for future interaction is high
  • In a world of one-off interactions, we can try to compensate for anonymity with an image score,
  • which sends a signal to the group about an individual's or institution's degree of cooperation.
  • Today's world allows for amorphous identities
  • It's hard to keep track of who cooperates and who doesn't, especially if it's institutions you're monitoring
  • Shaming's biggest drawback is its insufficiency.
  • Some people have no shame
  • shame does not always encourage cooperation from players who are least cooperative
  • a certain fraction of a given population will always behave shamelessly
  • if the payoff is high enough
  • There was even speculation that publishing individual bankers' bonuses would lead to banker jealousy, not shame
  • shame is not enough to catalyze major social change
  • This is why punishment remains imperative.
  • Even if shaming were enough to bring the behavior of most people into line, governments need a system of punishment to protect the group from the least cooperative players.
  • Today we are faced with the additional challenge of balancing human interests and the interests of nonhuman life.
  •  
    The role of non-rational mechanisms in convergence - social emotions like shame and guilt 
Kurt Laitner

Owning Together Is the New Sharing by Nathan Schneider - YES! Magazine - 0 views

  • VC-backed sharing economy companies like Airbnb and Uber have caused trouble for legacy industries, but gone is the illusion that they are doing it with actual sharing
  • Their main contribution to society has been facilitating new kinds of transactions
  • The notion that sharing would do away with the need for owning has been one of the mantras of sharing economy promoters. We could share cars, houses, and labor, trusting in the platforms to provide. But it’s becoming clear that ownership matters as much as ever.
  • ...30 more annotations...
  • Whoever owns the platforms that help us share decides who accumulates wealth from them, and how
  • Léonard and his collaborators are part of a widespread effort to make new kinds of ownership the new norm. There are cooperatives, networks of freelancers, cryptocurrencies, and countless hacks in between. Plans are being made for a driver-owned Lyft, a cooperative version of eBay, and Amazon Mechanical Turk workers are scheming to build a crowdsourcing platform they can run themselves. Each idea has its prospects and shortcomings, but together they aspire toward an economy, and an Internet, that is more fully ours.
  • Jeremy Rifkin, a futurist to CEOs and governments, contends that the Internet-of-things and 3-D printers are ushering in a “ zero marginal cost society“ in which the “collaborative commons” will be more competitive than extractive corporations
  • once the VC-backed sharing companies clear away regulatory hurdles, local co-ops will be poised to swoop in and spread the wealth
  • People are recognizing that doing business differently will require changing who gets to own what.
  • “We’re moving into a new economic age,” says Marjorie Kelly, who spent two decades at the helm of Business Ethics magazine and now advises social entrepreneurs. “It needs to be sustainable. It needs to be inclusive. And the foundation of what defines an economic age is its form of ownership.”
  • It’s a worker-owned cooperative that produces open-source software to help people practice consensus—though they prefer the term “collaboration”—about decisions that affect their lives.
  • From the start Loomio was part of Enspiral, an “open value network“ of freelancers and social enterprises devoted to mutual support and the common good.
  • a companion tool, CoBudget, to help them allocate resources together
  • The team members recently had to come to terms with the fact that, for the time being, only some of them could be paid for full-time work They called the process “participatory downsizing.”
  • And they can take many forms. Loomio and other tech companies, for instance, are aspiring toward the model of a multi-stakeholder cooperative—one in which not just workers or consumers are voting members, but several such groups at once.
  • Loconomics is a San Francisco-based startup designed, like TaskRabbit, to manage short-term freelance jobs
  • “People who have been without for a long time,” she says, “often operate with a mindset that they can’t share what they have, because they don’t know when that resource will come along again.”
  • As Loconomics prepares to begin operations this winter, it’s running out of the pocket of the founder, Josh Danielson
  • The ambition of a cooperative Facebook or Uber—competitive, widespread, and owned by its community—still seems out of reach for enterprises not willing to sell large parts of themselves to investors. Organizations like 
  • His fellow OuiShare founder Benjamin Tincq is concerned that too much fixation on a particular model will make it hard for well-meaning ventures to be successful. “I like the idea that we don’t need to have a specific legal status,” he says. “It’s more about hacking an existing legal status and making these hacks work.”
  • Fenton’s new undertaking, Sovolve, proposes to “create innovative solutions to accelerate social change,” much as CouchSurfing did, but it’s doing the innovating cautiously. All work is done by worker-owners located around the world. Sovolve uses an internal platform—soon to become a product in its own right—through which contributors decide how much they want to be paid in cash and how much in equity. They can see how much others are earning. Their virtual workplace is gamified, with everyone working to nudge their first product, WonderApp, into virality
  • Loomio’s members use a similar system, which they call Loomio Points. But Sovolve is no cooperative; contributors are not in charge.
  • Open-source software and share-alike licenses have revived the ancient idea of the commons for an Internet age. But the “ commons-based peer production“ that Sensorica seeks to practice doesn’t arise overnight. Just as today’s business culture rests on generations of accumulated law, habit, and training, learning to manage a commons successfully takes time
  • It makes possible decentralized autonomous organizations, or DAOs, which exist entirely on a shared network
  • The most ambitious successor to Bitcoin, Ethereum, has raised more than $15 million in crowdfunding on the promise of creating such a network.
  • all with technology that makes collective ownership a lot easier than a conventional legal structure
  • A project called Eris is developing a collective decision-making tool designed to govern DAOs on Ethereum, though the platform may still be months from release.
  • For now, the burden of reinventing every wheel at once makes it hard for companies like Sensorica and Loomio to compete
  • For instance, Cutting Edge Capital specializes in helping companies raise money through a long-standing mechanism called the direct public investment, or DPO, which allows for small, non-accredited investors.
  • Venture funding may be in competition with Dietz’s cryptoequity vision, but it provides a fearsome head start
  • Co-ops help ensure that the people who contribute to and depend on an enterprise keep control and keep profits, so they’re a possible remedy for worsening economic inequality
  • Sooner or later, transforming a system of gross inequality and concentrated wealth will require more than isolated experiments at the fringes—it will require capturing that wealth and redirecting its flows
  • A less consensual strategy was employed to fund the Catalan Integral Cooperative in Spain; over the course of a few years, one activist borrowed around $600,000 from Spanish banks without paying any of it back.
  • In Jackson, Mississippi, Chokwe Lumumba was elected mayor in 2013 on a platform of fostering worker-owned cooperatives, although much of the momentum was lost when Lumumba died just a few months later.
Tiberius Brastaviceanu

Co-Creating as Disruption to the Dominant Cultural Framework » Wirearchy - 0 views

  • more open people processes
  • Participative processes like Open Space, World Cafes, Unconferences, Peer Circles
  • Barcamps, Wordcamps, Govcamps, Foo Camps, Unconferences, high-end celebrity-and-marketing-and venture-capital ‘experience’ markets, new cultural and artistic festivals with technology-and-culture-making themes
  • ...45 more annotations...
  • maker faires
  • community-and-consensus building, organizing for activism and fundraising
  • The impetus behind this explosion is both technological and sociological
  • Technological
  • information technology and the creation and evolution of the Internet and the Web
  • appearance, development and evolution of social tools, web services, massive storage, and the ongoing development of computer-and-smart-devices development
  • Sociological
  • People are searching for ways to find others with similar interests and motivations so that they can engage in activities that help them learn, find work, grow capabilities and skills, and tackle vexing social and economic problems
  • get informed and take action
  • Developing familiarity and practice with open and collaborative processes
  • play and work together
  • rules about self-management, operate democratically, and produce results grounded in ownership and the responsibilities that have been agreed upon by the ‘community’
  • The relationships and flows of information can be transferred to online spaces and often benefit from wider connectivity.
  • Today, our culture-making activities are well engaged in the early stages of cultural mutation
  • What’s coming along next ?  “Smart” devices and Internet everywhere in our lives ?  Deep(er) changes to the way things are conceived, carried out, managed and used ?  New mental models ?  Or, will we discover real societal limits to what can be done given the current framework of laws, institutions and established practices with which people are familiar and comfortable ?
  • Shorter cycle-based development and release
  • Agile development
  • It is clear evidence that the developmental and learning dynamics generated by continuous or regular feedback loops are becoming the norm in areas of activity in which change and short cycles of product development are constants.
  • The Internet of Things (IoT)
  • clothes, homes, cars, buildings, roads, and a wide range of other objects that have a place in peoples’ daily life activities
  • experiencing major growth, equally in terms of hardware, software and with respect to the way the capabilities are configured and used
  • The IoT concept is being combined with the new-ish concepts of Open Data and Big Data
  • ethical, political and social impact policy decisions
  • that key opportunities associated with widespread uptake of the IoT are derived from the impact upon peoples’ activities and lives
  • ‘we’ are on our way towards more integrated eco-systems of issues, people and technologies
  • participation and inclusion enabled by interconnectedness are quickly becoming the ‘new rules’
  • What the Future May Hold
  • the ‘scenario planning’ approach
  • world’s politics, economics, anthropology, technology, psychology, sociology and philosophy
  • A scenario planning exercise carried out by the Rockefeller Foundation
  • Clearly these early (and now not-so-weak) signals and patterns tell us that the core assumptions and principles that have underpinned organized human activities for most of the past century
  • are being changed by the combinations and permutations of new, powerful, inexpensive and widely accessible information-processing technologies
  • The short description of each scenario reinforces the perception that we are both individually and collectively in transition from a linear, specialized, efficiency-driven paradigm towards a paradigm based on continuous feedback loops and principles of participation, both large and small in scope.
  • cultural ‘mutation’
  • Wirearchy
  • a dynamic two-way flow of power and authority based on knowledge, trust, credibility and a focus on results, enabled by interconnected people and technology.
  • the role of social media and smart mobile devices in the uprisings in Egypt, Libya and elsewhere in the Middle East
  • The roots of organizational development (OD) are in humanistic psychology and sociology action and ethnographic and cybernetic/ socio-technical systems theory.  It’s a domain that emerged essentially as a counter-balance to the mechanistic and machine-metaphor-based core assumptions about the organized activities in our society.
  • Organizational development principles are built upon some basic assumptions about human motivations, engagement and activities.
  • Participative Work Design – The Six Criteria
  • in recent years created models that help clarify how to evaluate and respond to the continuous turbulence and ambiguity generated by participating in interconnected flows of information.
  • contexts characterized by either Simple, Complicated or Chaotic dynamics (from complexity theory fundamentals). Increasingly, Complexity is emerging as a key definer of the issues, problems and opportunities faced by our societies.
  • peer-to-peer movement(s) unfolding around the world
  • Co-creating in a wide range of forms, processes and purpose may become an effective and important antidote to the spreading enclosure of human creative activity.
  • But .. the dominant models of governance, commercial ownership and the use and re-use of that which is co-created by people are going to have to undergo much more deep change in order to disrupt the existing paradigm of proprietary commercial creation and the model of socio-economic power that this paradigm enables and carries today.
Kurt Laitner

RSA Animate - Re-Imagining Work - YouTube - 0 views

  •  
    Very nice overview of some future of work issues - interestingly brings up the idea of being paid to create value, makes fun of the bum-in-seat model of productivity, but then drops it until the final graphic, where it still isn't in the voice over... hmm
Tiberius Brastaviceanu

Action (Stanford Encyclopedia of Philosophy) - 0 views

  • intentionally
  • questions about the nature, variety, and identity of action
  • Should we think of the consequences, conventional or causal, of physical behavior as constituents of an action distinct from but ‘generated by’ the movement? Or should we think that there is a single action describable in a host of ways?
  • ...22 more annotations...
  • Donald Davidson
  • an action
  • is something an agent does that was ‘intentional under some description,’
  • there have been many attempts to map the relations between intentions for the future, acting intentionally, and acting with a certain intention.
  • There has been a notable or notorious debate about whether the agent's reasons in acting are causes of the action
  • rendered the action intelligible in his eyes
  • things that merely happen
  • things they genuinely do
  • distinction between
  • the doings, are the acts or actions of the agent
  • what distinguishes an action from a mere happening or occurrence?
  • An agent performs activity that is directed at a goal
  • adopted on the basis of an overall practical assessment of his options and opportunities
  • awareness
  • that he is performing the activity
  • and that the activity is aimed by him at such-and-such a chosen end
  • It is frequently noted that the agent has some sort of immediate awareness of his physical activity and of the goals that the activity is aimed at realizing.
  • ‘knowledge without observation.’
  • It is also important to the concept of ‘goal directed action’ that agents normally implement a kind of direct control or guidance over their own behavior.
  • For many years, the most intensely debated topic in the philosophy of action concerned the explanation of intentional actions in terms of the agent's reasons for acting
  • Davidson and other action theorists defended the position that reason explanations are causal explanations
  • In the foregoing, reference has been made to explanations of actions in terms of reasons, but recent work on agency has questioned whether contemporary frameworks for the philosophy of action have really articulated the way in which an agent's desires and other pro-attitudes have the distinctive force of reasons in the setting of these ordinary explanations
Tiberius Brastaviceanu

Is it time to change the way we work? | What Would The Internet Do? - 2 views

  • company culture
  • how important some values are for them to prosper and generate value
  • We are seeing some organization being more successful in creating a culture than others
  • ...24 more annotations...
  • some of the principles of the Internet culture are actually becoming critical in creating successful organizations
  • the Internet culture is setting the foundation for a different way of generating economic and social value.
  • set of values that I believe are relevant for all organization wishing to reinvent their model to be more successful, attract talent and be more sustainable.
  • Resilience
  • more chances to successfully face complexity, speed and unpredictability
  • Bouncing back is more valuable than being tough.
  • establish a circle of trust
  • resources from your network, from outside, rather than stocking them.
  • Compasses (instead of maps)
  • through clear principles and transparency.
  • Pull (instead of push)/ Smart crowd (instead of experts)
  • post-sale structure
  • Portfolios (instead of planning)/ Practice (instead of theory)
  • Prototype, and leverage the ecosystem to fail fast (or scale rapidly).
  • testing less than perfect products into a receptive and responsive ecosystem
  • Systems (instead of objects)
  • the social components, and the interdependence of people, groups and objects.
  • a new set of currency that will merge the intrinsic value with the extrinsic social components associated with it.
  • groups of people can produce a better outcome than single individuals.
  • planning everything excludes the unexpected
  • keeping the eyes open
  • Encourage rebellion (instead of compliance)/Constant learning (instead of education)
  • asking questions and not accepting the traditional answers as given
  • structurally encouraged to question in order to guarantee future development and innovation
Kurt Laitner

Ethereum whitepaper - 0 views

  • The general concept of a "decentralized autonomous organization" is that of a virtual entity that has a certain set of members or shareholders which, perhaps with a 67% majority, have the right to spend the entity's funds and modify its code. The members would collectively decide on how the organization should allocate its funds. Methods for allocating a DAO's funds could range from bounties, salaries to even more exotic mechanisms such as an internal currency to reward work. This essentially replicates the legal trappings of a traditional company or nonprofit but using only cryptographic blockchain technology for enforcement. So far much of the talk around DAOs has been around the "capitalist" model of a "decentralized autonomous corporation" (DAC) with dividend-receiving shareholders and tradable shared; an alternative, perhaps described as a "decentralized autonomous community", would have all members have an equal share in the decision making and require 67% of existing members to agree to add or remove a member. The requirement that one person can only have one membership would then need to be enforced collectively by the group.
    • Kurt Laitner
       
      key application for OVNs
  • Note that the design relies on the randomness of addresses and hashes for data integrity; the contract will likely get corrupted in some fashion after about 2^128 uses
  • This implements the "egalitarian" DAO model where members have equal shares. One can easily extend it to a shareholder model by also storing how many shares each owner holds and providing a simple way to transfer shares.
    • Kurt Laitner
       
      interesting...
  • ...5 more annotations...
  • DAOs and DACs have already been the topic of a large amount of interest among cryptocurrency users as a future form of economic organization, and we are very excited about the potential that DAOs can offer. In the long term, the Ethereum fund itself intends to transition into being a fully self-sustaining DAO.
  • In Bitcoin, there are no mandatory transaction fees.
  • In Ethereum, because of its Turing-completeness, a purely voluntary fee system would be catastrophic. Instead, Ethereum will have a system of mandatory fees, including a transaction fee and six fees for contract computations.
  • The coefficients will be revised as more hard data on the relative computational cost of each operation becomes available. The hardest part will be setting the value of
  • There are currently two main solutions that we are considering: Make x inversely proportional to the square root of the difficulty, so x = floor(10^21 / floor(difficulty ^ 0.5)). This automatically adjusts fees down as the value of ether goes up, and adjusts fees down as computers get more powerful due to Moore's Law. Use proof of stake voting to determine the fees. In theory, stakeholders do not benefit directly from fees going up or down, so their incentives would be to make the decision that would maximize the value of the network.
Steve Bosserman

Instead of Student Loans, Investing in Futures - NYTimes.com - 0 views

  •  
    So how do we finance something that is extremely valuable both for individuals and for society - something that, in most cases, should happen, but often won't happen because the risks are too high? The best way is to spread the risk. That's how insurance works. In Lumni's case, students share the risk with investors, who make more or less based on how well the students do. But they also share it with one another. Lumni pools its investments into funds to balance out the risks. They know that some students will run into difficulties, some will achieve average success, and some will do very well - but they don't know in advance how any individual student will fare. And students don't know this themselves. Through diversification, however, their funds can achieve stable returns. What this means is that the students who have the biggest problems benefit the most. And, in effect, those who decide to become investment bankers end up subsidizing the ones who decide to become social workers. Since a good society needs many different roles fulfilled, everyone benefits. That, at least, is the theory. Economists are skeptical about human capital contracts - which were first proposed by Milton Friedman in the 1950s - because they have many potential problems and little track record. But Lumni seems to be making them work - at least on a small scale. Whether it can succeed at a larger level remains to be seen.
Kurt Laitner

Uber, Data Darwinism and the future of work - Tech News and Analysis - 0 views

  •  
    also see http://www.baen.com/chapters/W200011/0671319744___1.htm on this theme of absolute accountability
  •  
    something to keep in mind while designing value equations, understanding the impact of absolute accountability, and the need to ensure we are measuring wht matters as important decisions will be made based on the metric, whether or not the metric is being used properly in context (for example using klout scores to choose among candidates for an engineering job)
Kurt Laitner

Will Work For Free | OFFICIAL RELEASE | 2013 - YouTube - 0 views

  •  
    worth the two hours, excellent compendium of trends and tech
  •  
    may be a way to work with high schools - put on the film, talk about it, recruit for sensorica
sebastianklemm

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH - 2 views

  •  
    GIZ working to achieve sustainable development every day: As a service provider in the field of international cooperation for sustainable development and international education work, we are dedicated to shaping a future worth living around the world. Together with our commissioning parties and partners, we generate and implement ideas for political, social and economic change. GIZ works flexibly to deliver effective and efficient solutions that offer people better prospects and sustainably improve their living conditions. For GIZ, the 2030 Agenda is the overarching framework that guides its work, which it implements in close cooperation with its partners and commissioning parties.
Kurt Laitner

Value Accounting System - P2P Foundation - 0 views

  • are not exchanging anything among themselves
    • Kurt Laitner
       
      Not sure this is true in all cases or even in this one
  • A value creation process that requires more than one individual can be based on following 3 arrangements
  • stigmergic coordination
  • ...16 more annotations...
  • collaboration
  • cooperation,
  • The problem is that this economic dependency is not symmetrical
  • All labor is transferred into fluid equity through a value accounting system, which grants ownership to the participant member to a percentage of the future revenue generated for the lifetime of the product created
  • risk is shared among all contributors
  • based on contributions
    • Kurt Laitner
       
      and RISK, and...
  • anyone can add value
  • decentralized in terms of allocation of resources
  • horizontal governance system
    • Kurt Laitner
       
      not necessarily
  • A prearrangement on revenue is impossible in this context
  • impossible to do time management
  • no one can force anyone else to work more
  • the value equation embodies positive and negative (intrinsic) incentives
  • contains parameters to incentivise periodic and frequent contributions
  • quality of execution
  • priority level of tasks.
1 - 18 of 18
Showing 20 items per page