Skip to main content

Home/ Dr. Goodyear/ Group items tagged metabolic acid disease CRP

Rss Feed Group items tagged

Nathan Goodyear

Clinical experience with intravenous administration of ascorbic acid: achievable levels... - 0 views

  • Patients with higher tumor markers are likely to have higher tumor burden, higher oxidative stress and, therefore, are more likely to have lower post IVC plasma levels.
  • Our data also showed that cancer patients with metastasis tend to have lower post-IVC vitamin C levels than those without metastasis
  • Lower peak plasma concentrations are obtained in cancer patients than in healthy subjects. Cancer patients who are deficient in vitamin C prior to therapy tend to achieve lower plasma levels post infusion.
  • ...25 more annotations...
  • Patients with higher inflammation or tumor burdens, as measured by CRP levels or tumor antigen levels, tend to show lower peak plasma ascorbate levels after IVC.
  • Patients with metastatic tumors tend to achieve lower post infusion plasma ascorbate levels than those with localized tumors.
  • Meta-analyses of clinical studies involving cancer and vitamins also conclude that antioxidant supplementation does not interfere with the efficacy of chemotherapeutic regiments
  • Most of the prostate cancer patients studied, 75±19% (95% confidence), showed reductions in PSA levels during the course of their IVC therapy
  • Laboratory studies suggest that, at high concentrations, ascorbate does not interfere with chemotherapy or irradiation and may enhance efficacy in some situations
  • Cameron and Pauling observed fourfold survival times in terminal cancer patients treated with intravenous ascorbate infusions followed by oral supplementation
  • The inflammatory microenvironment of cancer cells leads to increasing oxidative stress, which apparently depletes vitamin C, resulting in lower plasma ascorbate concentrations in blood samples post IVC infusion. Another explanation for this finding may be that cancers are themselves more metabolically active in their uptake of vitamin C, causing subjects to absorb more of the vitamin, and as a results show lower plasma ascorbate concentrations in blood post IVC infusion.
  • patients with severely elevated CRP levels attain plasma ascorbate concentrations after IVC infusions that are only 65% of those attained for subjects with normal CRP levels
  • The finding of decreased plasma ascorbate levels in cancer patients may relate to the molecular structure of ascorbic acid; in particular, the similarity of its oxidized form, dihydroascorbic acid, to glucose
  • Since tumor have increased requirement for glucose [67], transport of dehydroascorbate into the cancer cells via glucose transport molecules and ascorbate through sodium-dependent transporter may be elevated
  • Increased accumulation of ascorbic acid in the tumor site was supported by measurements of the level of ascorbic acid in tumors in animal experiments
  • patients with advanced malignancies may have lower level of ascorbic acid in tissue, creating a higher demand for the vitamin C
  • IVC therapy appears to reduce CRP levels in cancer patients.
  • CRP concentrations directly correlate with disease activity in many cases and can contribute to disease progression through a range of pro-inflammatory properties.
  • Being an exquisitely sensitive marker of systemic inflammation and tissue damage, CRP is very useful in screening for organic disease and monitoring treatment responses
  • ncreases in CRP concentrations have been associated with poorer prognosis of survival in cancer patients, particularly with advance disease independent of tumor stage
  • Regarding inflammation, 73±13% of subjects (95% confidence) showed a reduction in CRP levels during therapy. This was an even more dramatic 86±13% (95% confidence) in subjects who started therapy with CRP levels above 10 mg/L
  • patients treated by IVC with follow-up several year showed that suppression of inflammation in cancer patients by high-dose IVC is feasible and potentially beneficial
  • Inflammation is a marker of high cancer risk, and poor treatment outcome
  • The subjects with highly elevated CRP concentrations have a three-fold elevation “all-cause” mortality risk and a twenty-eight fold increase in cancer mortality risk
  • cancer patients may need higher doses to achieve a given plasma concentration.
  • patients with lower vitamin C levels may see more distribution of intravenously administered ascorbate into tissues and thus attain less in plasma.
  • When treating patients with IVC, the first treatment likely serves to replenish depleted tissue stores, if those subjects were vitamin C deficient at the beginning of the treatment. Then, in subsequent treatments, with increasing doses, higher plasma concentrations can be attained. On-going treatments serve to progressively reduce oxidative stress in cancer patients.
  • large doses given intravenously may result in maximum plasma concentrations of roughly 30 mM, a level that has been shown to be sufficient for preferential cytotoxicity against cancer cells
  • oral intake of vitamin C exceeded 200 mg administered once daily, it was difficult to increase plasma and tissue concentrations above roughly 200 μM.
  •  
    Great review on the use of IV vitamin C in cancer and to reduce inflammation.  The article does a great job of discussing the mechanism of vitamin C therapy in cancer as well as the proposed reasons for low vitamin C in cancer patients.  The study also highlights the obstacles to rise in vitamin C levels post IV vitamin C in cancer patients.
Nathan Goodyear

Systemic inflammation, metabolic syndrome and progressive renal disease - 0 views

  •  
    metabolic syndrome = systemic inflammation
1 - 2 of 2
Showing 20 items per page