Skip to main content

Home/ Seasons Wellness/ Group items tagged metabolic Obesity

Rss Feed Group items tagged

Nathan Goodyear

Metabolic syndrome, circulating RBP4, testosterone, and SHBG predict weight regain at 6... - 0 views

  •  
    Interesting study finds that men with low serum Total Testosterone, elevated RBP4 and low SHBG at baseline predict weight regain.  Thus Testosterone should be used as a biomarker of failure in weight loss and if low, Testosterone therapy should be employed to improved metabolic function.  Other parameters, such as leptin, adiponectin, prolactin, progesterone...were not predictive.
Nathan Goodyear

[Plasma testosterone, obesity, metabolic syndrome and diabetes]. - Abstract - Europe Pu... - 0 views

  •  
    Androgen deprivation therapy leads to insulin resistance, metabolic syndrome, and type II diabetes in men. Testosterone therapy in men with IR, obesity, metabolic syndrome, and type II Diabetes will result in improved cardiovascular risk.  
Nathan Goodyear

Metabolic syndrome in men with low testosterone le... [J Sex Med. 2013] - PubMed - NCBI - 0 views

  •  
    Metabolic syndrome and Low T definitely run together.  Whether one causes the other or merely associations, they reflect the risk of the other.  It is known that increasing MetS parameters drives the Testosterone lower.  In this study, they found ED, obesity, PVD, and Etoh intake associated with increased incidence of MetS.  ED and obesity are both associated with low T.
Nathan Goodyear

Diagnosis and treatment of late-onset hypogonadism: Systematic review and meta-analysis... - 0 views

  •  
    Testosterone therapy is complex in hypogonadism.  Much of the marketing-based medicine of Low T today is in fact doping.  Increasing weight is clearly associated with a declining T level in men.  Testosterone therapy should be approach individually and therapies that use the one size fits all approach never work.  This is the case whether the use of synthetics or natural hormones are employed.  Testosterone has been shown to improve dysglycemia, MetS, reduce fat and increase muscle mass.  
Nathan Goodyear

The Dark Side of Testosterone Deficiency: I. Metabolic Syndrome and Erectile Dysfunctio... - 0 views

  •  
    Article reviews the link between obesity, low T, metabolic syndrome and ED.  ED has been shown to be predictive of CVD by 3-5 years.  
Nathan Goodyear

Toll-like Receptor Status in Obesity and Metabolic Syndrome: A Translational Perspectiv... - 0 views

  •  
    Only the abstract is available publicly.   Toll-like receptors, particularly TLR-4 has been shown to be associated with insulin resistance.  These TLRs have specific pathogen recognition sites.  TLRs are stimulated by fatty acids (FA) and endotoxemia from bacteria.  Thus, dietary intake of high trans fats, inflammation originating from the gut can be the source of insulin receptor dysfunction through TLRs.
Nathan Goodyear

PLOS ONE: Prediabetes Is Associated with an Increased Risk of Testosterone Deficiency, ... - 0 views

  •  
    This study found that low T was clearly associated with "pre diabetes" independent of weight and MetS.  All men that are overweight, obese, with metabolic syndrome, "pre diabetic" need evaluation of hormones, not just Testosterone.
Nathan Goodyear

Increased oxidative stress in obesity: Implications for metabolic syndrome, diabetes, h... - 0 views

  •  
    increased oxidative stress, from obesity, linked to most diseases of aging.
Nathan Goodyear

Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the met... - 0 views

  •  
    Fructose implicated in just about every chronic disease of aging through obesity.
Nathan Goodyear

Fructose: A Key Factor in the Development of Metabolic Syndrome and Hypertension - 0 views

  •  
    nice article how fructose contributes to fat accumulation.
Nathan Goodyear

Nutrition & Metabolism | Full text | Fructose, insulin resistance, and metabolic dyslip... - 0 views

  • For thousands of years humans consumed fructose amounting to 16–20 grams per day
  • daily consumptions amounting to 85–100 grams of fructose per day
  • Of key importance is the ability of fructose to by-pass the main regulatory step of glycolysis, the conversion of glucose-6-phosphate to fructose 1,6-bisphosphate, controlled by phosphofructokinase
  • ...29 more annotations...
  • Thus, while glucose metabolism is negatively regulated by phosphofructokinase, fructose can continuously enter the glycolytic pathway. Therefore, fructose can uncontrollably produce glucose, glycogen, lactate, and pyruvate, providing both the glycerol and acyl portions of acyl-glycerol molecules. These particular substrates, and the resultant excess energy flux due to unregulated fructose metabolism, will promote the over-production of TG (reviewed in [53]).
  • Glycemic excursions and insulin responses were reduced by 66% and 65%, respectively, in the fructose-consuming subjects
  • reduction in circulating leptin both in the short and long-term as well as a 30% reduction in ghrelin (an orexigenic gastroenteric hormone) in the fructose group compared to the glucose group.
  • A prolonged elevation of TG was also seen in the high fructose subjects
  • Both fat and fructose consumption usually results in low leptin concentrations which, in turn, leads to overeating in populations consuming energy from these particular macronutrients
  • Chronic fructose consumption reduces adiponectin responses, contributing to insulin resistance
  • A definite relationship has also been found between metabolic syndrome and hyperhomocysteinemia
  • the liver takes up dietary fructose rapidly where it can be converted to glycerol-3-phosphate. This substrate favours esterification of unbound FFA to form the TG
  • Fructose stimulates TG production, but impairs removal, creating the known dyslipidemic profile
  • the effects of fructose in promoting TG synthesis are independent of insulinemia
  • Although fructose does not appear to acutely increase insulin levels, chronic exposure seems to indirectly cause hyperinsulinemia and obesity through other mechanisms. One proposed mechanism involves GLUT5
  • If FFA are not removed from tissues, as occurs in fructose fed insulin resistant models, there is an increased energy and FFA flux that leads to the increased secretion of TG
  • In these scenarios, where there is excess hepatic fatty acid uptake, synthesis and secretion, 'input' of fats in the liver exceed 'outputs', and hepatic steatosis occurs
  • Carbohydrate induced hypertriglycerolemia results from a combination of both TG overproduction, and inadequate TG clearance
  • fructose-induced metabolic dyslipidemia is usually accompanied by whole body insulin resistance [100] and reduced hepatic insulin sensitivity
  • Excess VLDL secretion has been shown to deliver increased fatty acids and TG to muscle and other tissues, further inducing insulin resistance
  • the metabolic effects of fructose occur through rapid utilization in the liver due to the bypassing of the regulatory phosphofructokinase step in glycolysis. This in turn causes activation of pyruvate dehydrogenase, and subsequent modifications favoring esterification of fatty acids, again leading to increased VLDL secretion
  • High fructose diets can have a hypertriglyceridemic and pro-oxidant effect
  • Oxidative stress has often been implicated in the pathology of insulin resistance induced by fructose feeding
  • Administration of alpha-lipoic acid (LA) has been shown to prevent these changes, and improve insulin sensitivity
  • LA treatment also prevents several deleterious effects of fructose feeding: the increases in cholesterol, TG, activity of lipogenic enzymes, and VLDL secretion
  • Fructose has also been implicated in reducing PPARα levels
  • PPARα is a ligand activated nuclear hormone receptor that is responsible for inducing mitochondrial and peroxisomal β-oxidation
  • decreased PPARα expression can result in reduced oxidation, leading to cellular lipid accumulation
  • fructose diets altered the structure and function of VLDL particles causing and increase in the TG: protein ratio
  • LDL particle size has been found to be inversely related to TG concentration
  • therefore the higher TG results in a smaller, denser, more atherogenic LDL particle, which contributes to the morbidity of the metabolic disorders associated with insulin resistance
  • High fructose, which stimulates VLDL secretion, may initiate the cycle that results in metabolic syndrome long before type 2 diabetes and obesity develop
  • A high flux of fructose to the liver, the main organ capable of metabolizing this simple carbohydrate, disturbs normal hepatic carbohydrate metabolism leading to two major consequences (Figure 2): perturbations in glucose metabolism and glucose uptake pathways, and a significantly enhanced rate of de novo lipogenesis and TG synthesis, driven by the high flux of glycerol and acyl portions of TG molecules coming from fructose catabolism
  •  
    Fructose and metabolic syndrome.  Good discussion of the impact of high fructose intake and metabolic dysfunction.  This study also does a great job of highlighting the historical change of fructose intake.
Nathan Goodyear

International Journal of Obesity - Abstract of article: Pubertal timing and adult obesi... - 0 views

  •  
    Earlier puberty associated with increased risk of MetS and obesity.
Nathan Goodyear

Low Testosterone Associated With Obesity and the Metabolic Syndrome Contributes to Sexu... - 0 views

  •  
    Low T associated with metabolic syndrome, CVD, type 2 Diabetes in men.
Nathan Goodyear

Inflammatory cause of metabolic syndrome via brain stress and NF-κB - 0 views

  • Mechanistic studies further showed that such metabolic inflammation is related to the induction of various intracellular stresses such as mitochondrial oxidative stress, endoplasmic reticulum (ER) stress, and autophagy defect under prolonged nutritional excess
  • intracellular stress-inflammation process for metabolic syndrome has been established in the central nervous system (CNS) and particularly in the hypothalamus
  • the CNS and the comprised hypothalamus are known to govern various metabolic activities of the body including appetite control, energy expenditure, carbohydrate and lipid metabolism, and blood pressure homeostasis
  • ...56 more annotations...
  • Reactive oxygen species (ROS) refer to a class of radical or non-radical oxygen-containing molecules that have high oxidative reactivity with lipids, proteins, and nucleic acids
  • a large measure of intracellular ROS comes from the leakage of mitochondrial electron transport chain (ETC)
  • Another major source of intracellular ROS is the intentional generation of superoxides by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
  • there are other ROS-producing enzymes such as cyclooxygenases, lipoxygenases, xanthine oxidase, and cytochrome p450 enzymes, which are involved with specific metabolic processes
  • To counteract the toxic effects of molecular oxidation by ROS, cells are equipped with a battery of antioxidant enzymes such as superoxide dismutases, catalase, peroxiredoxins, sulfiredoxin, and aldehyde dehydrogenases
  • intracellular oxidative stress has been indicated to contribute to metabolic syndrome and related diseases, including T2D [72; 73], CVDs [74-76], neurodegenerative diseases [69; 77-80], and cancers
  • intracellular oxidative stress is highly associated with the development of neurodegenerative diseases [69] and brain aging
  • dietary obesity was found to induce NADPH oxidase-associated oxidative stress in rat brain
  • mitochondrial dysfunction in hypothalamic proopiomelanocortin (POMC) neurons causes central glucose sensing impairment
  • Endoplasmic reticulum (ER) is the cellular organelle responsible for protein synthesis, maturation, and trafficking to secretory pathways
  • unfolded protein response (UPR) machinery
  • ER stress has been associated to obesity, insulin resistance, T2D, CVDs, cancers, and neurodegenerative diseases
  • brain ER stress underlies neurodegenerative diseases
  • under environmental stress such as nutrient deprivation or hypoxia, autophagy is strongly induced to breakdown macromolecules into reusable amino acids and fatty acids for survival
  • intact autophagy function is required for the hypothalamus to properly control metabolic and energy homeostasis, while hypothalamic autophagy defect leads to the development of metabolic syndrome such as obesity and insulin resistance
  • prolonged oxidative stress or ER stress has been shown to impair autophagy function in disease milieu of cancer or aging
  • TLRs are an important class of membrane-bound pattern recognition receptors in classical innate immune defense
  • Most hypothalamic cell types including neurons and glia cells express TLRs
  • overnutrition constitutes an environmental stimulus that can activate TLR pathways to mediate the development of metabolic syndrome related disorders such as obesity, insulin resistance, T2D, and atherosclerotic CVDs
  • Isoforms TLR1, 2, 4, and 6 may be particularly pertinent to pathogenic signaling induced by lipid overnutrition
  • hypothalamic TLR4 and downstream inflammatory signaling are activated in response to central lipid excess via direct intra-brain lipid administration or HFD-feeding
  • overnutrition-induced metabolic derangements such as central leptin resistance, systemic insulin resistance, and weight gain
  • these evidences based on brain TLR signaling further support the notion that CNS is the primary site for overnutrition to cause the development of metabolic syndrome.
  • circulating cytokines can limitedly travel to the hypothalamus through the leaky blood-brain barrier around the mediobasal hypothalamus to activate hypothalamic cytokine receptors
  • significant evidences have been recently documented demonstrating the role of cytokine receptor pathways in the development of metabolic syndrome components
  • entral administration of TNF-α at low doses faithfully replicated the effects of central metabolic inflammation in enhancing eating, decreasing energy expenditure [158;159], and causing obesity-related hypertension
  • Resistin, an adipocyte-derived proinflammatory cytokine, has been found to promote hepatic insulin resistance through its central actions
  • both TLR pathways and cytokine receptor pathways are involved in central inflammatory mechanism of metabolic syndrome and related diseases.
  • In quiescent state, NF-κB resides in the cytoplasm in an inactive form due to inhibitory binding by IκBα protein
  • IKKβ activation via receptor-mediated pathway, leading to IκBα phosphorylation and degradation and subsequent release of NF-κB activity
  • Research in the past decade has found that activation of IKKβ/NF-κB proinflammatory pathway in metabolic tissues is a prominent feature of various metabolic disorders related to overnutrition
  • it happens in metabolic tissues, it is mainly associated with overnutrition-induced metabolic derangements, and most importantly, it is relatively low-grade and chronic
  • this paradigm of IKKβ/NF-κB-mediated metabolic inflammation has been identified in the CNS – particularly the comprised hypothalamus, which primarily accounts for to the development of overnutrition-induced metabolic syndrome and related disorders such as obesity, insulin resistance, T2D, and obesity-related hypertension
  • evidences have pointed to intracellular oxidative stress and mitochondrial dysfunction as upstream events that mediate hypothalamic NF-κB activation in a receptor-independent manner under overnutrition
  • In the context of metabolic syndrome, oxidative stress-related NF-κB activation in metabolic tissues or vascular systems has been implicated in a broad range of metabolic syndrome-related diseases, such as diabetes, atherosclerosis, cardiac infarct, stroke, cancer, and aging
  • intracellular oxidative stress seems to be a likely pathogenic link that bridges overnutrition with NF-κB activation leading to central metabolic dysregulation
  • overnutrition is an environmental inducer for intracellular oxidative stress regardless of tissues involved
  • excessive nutrients, when transported into cells, directly increase mitochondrial oxidative workload, which causes increased production of ROS by mitochondrial ETC
  • oxidative stress has been shown to activate NF-κB pathway in neurons or glial cells in several types of metabolic syndrome-related neural diseases, such as stroke [185], neurodegenerative diseases [186-188], and brain aging
  • central nutrient excess (e.g., glucose or lipids) has been shown to activate NF-κB in the hypothalamus [34-37] to account for overnutrition-induced central metabolic dysregulations
  • overnutrition can present the cell with a metabolic overload that exceeds the physiological adaptive range of UPR, resulting in the development of ER stress and systemic metabolic disorders
  • chronic ER stress in peripheral metabolic tissues such as adipocytes, liver, muscle, and pancreatic cells is a salient feature of overnutrition-related diseases
  • recent literature supports a model that brain ER stress and NF-κB activation reciprocally promote each other in the development of central metabolic dysregulations
  • when intracellular stresses remain unresolved, prolonged autophagy upregulation progresses into autophagy defect
  • autophagy defect can induce NF-κB-mediated inflammation in association with the development of cancer or inflammatory diseases (e.g., Crohn's disease)
  • The connection between autophagy defect and proinflammatory activation of NF-κB pathway can also be inferred in metabolic syndrome, since both autophagy defect [126-133;200] and NF-κB activation [20-33] are implicated in the development of overnutrition-related metabolic diseases
  • Both TLR pathway and cytokine receptor pathways are closely related to IKKβ/NF-κB signaling in the central pathogenesis of metabolic syndrome
  • Overnutrition, especially in the form of HFD feeding, was shown to activate TLR4 signaling and downstream IKKβ/NF-κB pathway
  • TLR4 activation leads to MyD88-dependent NF-κB activation in early phase and MyD88-indepdnent MAPK/JNK pathway in late phase
  • these studies point to NF-κB as an immediate signaling effector for TLR4 activation in central inflammatory response
  • TLR4 activation has been shown to induce intracellular ER stress to indirectly cause metabolic inflammation in the hypothalamus
  • central TLR4-NF-κB pathway may represent one of the early receptor-mediated events in overnutrition-induced central inflammation.
  • cytokines and their receptors are both upstream activating components and downstream transcriptional targets of NF-κB activation
  • central administration of TNF-α at low dose can mimic the effect of obesity-related inflammatory milieu to activate IKKβ/NF-κB proinflammatory pathways, furthering the development of overeating, energy expenditure decrease, and weight gain
  • the physiological effects of IKKβ/NF-κB activation seem to be cell type-dependent, i.e., IKKβ/NF-κB activation in hypothalamic agouti-related protein (AGRP) neurons primarily leads to the development of energy imbalance and obesity [34]; while in hypothalamic POMC neurons, it primarily results in the development of hypertension and glucose intolerance
  • the hypothalamus, is the central regulator of energy and body weight balance [
  •  
    Great article chronicles the biochemistry of "over nutrition" and inflammation through NF-kappaB activation and its impact on the brain.
Nathan Goodyear

Metabolic Syndrome ePoster - 0 views

  •  
    Great pictorials of the biochemistry of metabolic syndrome.
Nathan Goodyear

Diabetology & Metabolic Syndrome | Full text | Visceral adiposity, insulin resistance a... - 0 views

  •  
    adipose tissue and it's biological activity contribution to cancer risk.  Good review of our current understanding on how adipose tissue increases the favorably of cancer.
Nathan Goodyear

Toll-like receptor signaling links dietary fatty acids to the metabolic syndrome - 0 views

  • Activation of the innate immune system controls macronutrient metabolism
  • the innate immune response is the first line of defense against invading pathogens, wherein highly conserved pathogen-associated molecular patterns (PAMPs) are recognized by cognate pattern recognition receptors (PRRs
  • many studies have supported the idea that cytokine signaling directly promotes insulin resistance
  • ...10 more annotations...
  • innate immune system may be causally linked to obesity
  • adipose tissue contains a substantial population of macrophages, and macrophage-driven adipose inflammation contributes significantly to the pathogenesis of obesity
  • Collectively, activation of the innate immune system is strongly associated with ASCVD, insulin resistance, and obesity, and recent evidence suggests that much of this association can be traced to a unique family of PRRs known as TLRs
  • TLRs are a family of type I transmembrane receptors, currently thought to comprise at least 13 members in mammals, that specifically recognize a variety of microbial PAMPs and trigger host cellular responses
  • Free SFAs have indeed been demonstrated to elicit TLR4-dependent and TLR2-dependent responses in several cell types.
  • Endogenous SFAs released from adipocytes activate cocultured macrophages via TLR4 [], indicating the potential for cellular crosstalk in adipose tissue. Collectively, there is a growing body of evidence that SFAs promote, whereas long chain PUFA antagonize, TLR4-dependent and TLR2-dependent signaling in multiple cell models
  • In an elegant study, Shi et al. [] demonstrated that SFAs activate TLR4-dependent signaling in both macrophages and adipocytes, and mice lacking TLR4 are protected against insulin resistance driven by intravenous lipid infusion
  • In addition to effects in macrophages and adipocytes, SFAs can activate TLR4 in the hypothalamus, which triggers a central inflammatory response that results in resistance to anorexigenic signals
  • endogenous SFAs can indeed promote innate immunity and inflammatory disease
  • This finding strongly supports the work of Hwang and coworkers [] demonstrating that ω-3 PUFAs can effectively counteract SFA-induced TLR4 activation in cultured macrophages and dendritic cells.
  •  
    high dietary fatty acids linked to metabolic syndrome through TLR.
Nathan Goodyear

Biochemical and metabolic mechanisms by which... [J Nutr Biochem. 2012] - PubMed - NCBI - 0 views

  •  
    Whey protein should be a tool in every medical provider to combat obesity and type II Diabetes.  The role? through improved insulin function: by interactions with cholecystokinin, peptide YY, incretins...
Nathan Goodyear

Metabolic Endotoxemia Initiates Obesity and Insulin Resistance - 0 views

  •  
    metabolic endotoxemia and obesity and insulin resistance.  This article suggests that metabolic endotoxemia initiates the development.
Nathan Goodyear

Clinical Importance of Obesity Versus the Metabolic Syndrome in Cardiovascular Risk in ... - 0 views

  •  
    weight loss improves metabolic syndrome, which results in reduced cardiovascular disease
1 - 20 of 45 Next › Last »
Showing 20 items per page