Skip to main content

Home/ Dr. Goodyear/ Group items tagged glucose type lifestyle

Rss Feed Group items tagged

Nathan Goodyear

JAMA Network | JAMA Surgery | Three-Year Outcomes of Bariatric Surgery vs Lif... - 0 views

  •  
    new study finds that bariatric surgery outperforms lifestyle interventions in improving glucose control in obese individuals.  On the surface this seems interesting, but the lifestyle interventions were based on the Diabetes Prevention program.  The diabetes prevention program doesn't do well in glucose control in any clients (see increasing diabetes rates), so it should be no surprise that bariatric surgery outperforms a program that doesn't work
Nathan Goodyear

Intensive Lifestyle Intervention or Metformin on Inflammation and Coagulation in Partic... - 0 views

  •  
    Large study of over 3,000 adults shows lifestyle changes are more effective, than metformin, in reducing development of type II diabetes.  CRP, inflammatory marker, reduced at 1 year more in lifestyle (29%) versus metformin (14%).     And don't forget all the nutritional deficiencies that metformin creates.
Nathan Goodyear

Normal Fasting Plasma Glucose Levels and Type 2 Diabetes in Young Men - NEJM - 0 views

  •  
    Fasting glucose levels >90 require treatment.  Don't wait until they increase above 100, damage is actively occurring in the kidneys at levels above 90.  institute dietary/lifestyle changes at any point above 84.
Nathan Goodyear

Testosterone and metabolic syndrome Cunningham GR - Asian J Androl - 0 views

  • The relationship of low testosterone to MetS often is considered to be bidirectional; however, the relationships probably are not direct
  • Many of the components of the MetS are recognized risk factors for the development of cardiovascular disease (CVD)
  • Multiple cross-sectional studies have found low TT and low sex hormone binding globulin (SHBG) levels in Caucasian and African-American men with the MetS, irrespective of age
  • ...20 more annotations...
  • Low TT and SHBG levels also are prevalent in Chinese [7],[8] and Korean [9] men with the MetS
  • Normally 40%-50% of TT is bound to SHBG, so reducing SHBG levels will decrease TT.
  • Hyperinsulinism suppresses SHBG synthesis and secretion by the liver
  • significant increase in SHBG levels occurred after acutely lowering insulin levels in obese men
  • Estradiol levels are increased in men with the MetS, and they are positively correlated with the number of abnormal components of the MetS.
  • Although it is known that estrogen will increase SHBG levels, apparently the hyperinsulinism associated with obesity has a greater effect on SHBG levels
  • Estradiol also can inhibit luteinizing hormone (LH) secretion
  • Inflammatory cytokines are thought to have a direct effect on the pituitary to reduce LH secretion [15] and also a direct effect on Leydig cell secretion of testosterone
  • Low TT Levels have been shown to predict development of the MetS in men with normal BMI
  • Men in the lowest quartiles of serum TT, calculated free testosterone (cFT) and SHBG at baseline had the highest odds ratios for developing the MetS or DM during the 11 years follow-up
  • More recently, investigators conducting population-based studies have reported that only SHBG is associated with future development of the MetS
  • Additional evidence that low TT increases the risk of MetS comes from androgen deprivation treatment of prostate cancer
  • Low TT and low bioavailable testosterone (bT) were each significantly associated with elevated 20 years risk of CVD mortality in an older population in which cause-specific mortality was age, adiposity, and lifestyle-adjusted.
  • combination of low bT and ATP III-defined MetS is associated with increased cardiovascular mortality in men aged 40 years and above
  • in elderly men, testosterone may weakly protect against CVD. Alternatively, low TT may indicate poor general health
  • Muraleedharan and Jones [27] concluded that there is convincing evidence that low T is a biomarker for disease severity and mortality.
  • The evidence that TRT improves insulin sensitivity and glucose control is conflicted
  • It is widely recognized that testosterone treatment can reduce fat mass and increase lean body mass; however, until recently most reports have not been associated with much weight loss
  • Changes in body composition and weight loss are considered potential mechanisms by which testosterone treatment improves insulin sensitivity and glucose control in patients with diabetes. Effects on inflammatory cytokines [38] and changes in oxidative metabolism [39] also have been reported to improve glucose metabolism.
  • Testosterone replacement therapy has been reported to improve some or all of the components of the MetS.
  •  
    To be read article on Testosterone and Metabolic Syndrome.
Nathan Goodyear

International Journal of Impotence Research - Obesity, low testosterone levels and erec... - 0 views

  • Studies have shown that ED may be an early biomarker of general endothelial dysfunction, atherosclerosis and CVD
  • testosterone treatment of hypogonadal young and older men improves sexual function, increases lean mass and decreases fat mass
  • In men with low serum testosterone (for example, <8 or 230 nmol l−1) with obesity, metabolic syndrome and diabetes mellitus, treatment with testosterone is warranted
  • ...12 more annotations...
  • In obese middle-aged men, testosterone treatment reduced visceral adipocity, insulin resistance, serum cholesterol and glucose levels
  • testosterone replacement has a favorable impact on body mass, insulin secretion and sensitivity, lipid profile and blood pressure in hypogonadal men with the metabolic syndrome as well as type 2 diabetes mellitus
  • Testosterone significantly inhibits lipoprotein lipase activity, which reduces triglycerides uptake into adipocytes in the abdominal adipose tissue
  • testosterone treatment decreased endogenous inflammatory cytokines (tumor necrosis factor-α and IL-1β) and lipids (total cholesterol) and increased IL-10 in hypogonadal men
  • Testosterone treatment reduced leptin and adiponectin levels in hypogonadal type 2 diabetic men after 3 months of testosterone replacement
  • available data clearly show a relationship between obesity, low testosterone levels and ED
  • Obesity adversely affects endothelial function and lowers serum testosterone levels through the development of insulin resistance and metabolic syndrome
  • Metabolic disturbances as well as production of cytokines and adipokines by inflamed fat cells may be causal factors in the development of ED
  • The onset of ED and the associated risk of CVD may be delayed through lifestyle modifications that affect obesity, such as diet and exercise
  • Very low testosterone levels contribute to the development of ED in obesity, metabolic syndrome and type 2 diabetes mellitus
  • Obesity is associated with low total testosterone levels that can be explained at least partially by lower sex hormone-binding globulin (SHBG) in obese men
  • epidemiological studies have shown a negative correlation between BMI and total testosterone and to a lesser extent with free and bioavailable (biologically active) testosterone levels
  •  
    Obesity is associated with low Testosterone and ED in men.
Nathan Goodyear

An integrative analysis reveals coordinated reprogramming of the epigenome and the tran... - 0 views

  • contribution to the training response of the epigenome as a mediator between genes and environment
  • Differential DNA methylation was predominantly observed in enhancers, gene bodies and intergenic regions and less in CpG islands or promoters
  • highly consistent and associated modifications in methylation and expression, concordant with observed health-enhancing phenotypic adaptations, are induced by a physiological stimulus
  • ...34 more annotations...
  • The health benefits following exercise training are elicited by gene expression changes in skeletal muscle, which are fundamental to the remodeling process
  • there is increasing evidence that more short-term environmental factors can influence DNA methylation
  • dietary factors have the potency to alter the degree of DNA methylation in different tissues, 9,10 including skeletal muscle
  • In one study, a single bout of endurance-type exercise was shown to affect methylation at a few promoter CpG sites
  • In the context of diabetes, exercise training has been shown to affect genome-wide methylation pattern in skeletal muscle,13 as well as in adipose tissue.
  • physiological stressors can indeed affect DNA methylation
  • training intervention reshapes the epigenome and induces significant changes in DNA methylation
  • the findings from this tightly controlled human study strongly suggest that the regulation and maintenance of exercise training adaptation is to a large degree associated to epigenetic changes, especially in regulatory enhancer regions
  • Endurance training [after training (T2) vs. before training (T1)] induced significant (false discovery rate, FDR< 0.05) methylation changes at 4919 sites across the genome in the trained leg
  • identified 4076 differentially expressed genes
  • a complementary approach revealed that over 600 CpG sites correlated to the increase in citrate synthase activity, an objective measure of training response (Figure S4 and Dataset S14). This might imply that some of these sites could influence the degree of training response.
  • As expected by a physiological environmental trigger on adult tissue, the observed effect size on DNA methylation was small in comparison to disease states such as cancer
  • a preferential localization outside of CpG Islands/Shelves/Shores
  • endurance training especially influences enhancers
  • negative correlation was more prominent for probes in promoter/5′UTR/1st exon regions, while gene bodies had a stronger peak of positive correlation
  • The significant changes in DNA methylation, that primarily occurred in enhancer regions, were to a large extent associated with relevant changes in gene expression
  • The main findings of this study were that 3 months of endurance training in healthy human volunteers induced significant methylation changes at almost 5000 sites across the genome and significant differential expression of approximately 4000 genes
  • DMPs that increased in methylation were mainly associated to structural remodeling of the muscle and glucose metabolism, while the DMPs with decreased methylation were associated to inflammatory/immunological processes and transcriptional regulation
  • This suggests that the changes in methylation seen with training were not a random effect across the genome but rather a controlled process that likely contributes to skeletal muscle adaptation to endurance training
  • Correlation of the changes in DNA methylation to the changes in gene expression showed that the majority of significant methylation/expression pairs were found in the groups representing either increases in expression with a concomitant decrease in methylation or vice versa
  • The fraction of genes showing both significant decrease in methylation and upregulation was 7.5% of the DEGs or 2.3% of all genes detected in muscle tissue with at least one measured DNA methylation position. Correspondingly, 7.0% of the DEGs or 2.1% of all genes showed both significant increase in methylation and downregulation
  • we show that DNA methylation changes are associated to gene expression changes in roughly 20% of unique genes that significantly changed with training
  • Examples of structural genes include COL4A1, COL4A2 and LAMA4. These genes have also been identified as important for differences in responsiveness to endurance training
  • methylation status could be part of the mechanism behind variable training response
  • Among the metabolic genes, MDH1 catalyzes the reversible oxidation of malate to oxaloacetate, utilizing the NAD/NADH cofactor system in the citric acid cycle and NDUFA8 plays an important role in transferring electrons from NADH to the respiratory chain
  • PPP1R12A,
  • In the present study, methylation predominantly changed in enhancer regions with enrichment for binding motifs for different transcription factors suggesting that enhancer methylation may be highly relevant also in exercise biology
  • Of special interest in the biology of endurance training may be that MRFs, through binding to the PGC-1α core promoter, can regulate this well-studied co-factor for mitochondrial biogenesis
  • That endurance training led to an increased methylation in enhancer regions containing motifs for the MRFs and MEFs is somewhat counterintuitive since it should lead to the repression of the action of the above discussed transcription factors
  • decrease with training in this study, including CDCH15, MYH3, TNNT2, RYR1 and SH3GLB1
  • expression of MEF2A itself decreased with training
  • this study demonstrates that the transcriptional alterations in skeletal muscle in response to a long-term endurance exercise intervention are coupled to DNA methylation changes
  • We suggest that the training-induced coordinated epigenetic reprogramming mainly targets enhancer regions, thus contributing to differences in individual response to lifestyle interventions
  • a physiological health-enhancing stimulus can induce highly consistent modifications in DNA methylation that are associated to gene expression changes concordant with observed phenotypic adaptations
  •  
    Exercise alters gene expression via methylation--the power of epigenetics.  Interestingly, the majority of the methylation was outside the CPG island regions.  This 3 month study found methylation of 5,000 sites across the genome resulting in altered expression of apps 4,000 genes.  The altered muscle changes of the endurance training was linked to DNA methylation changes.
1 - 6 of 6
Showing 20 items per page