Skip to main content

Home/ Dr. Goodyear/ Group items tagged diabetic

Rss Feed Group items tagged

64More

Testosterone and glucose metabolism in men: current concepts and controversies - 0 views

  • Around 50% of ageing, obese men presenting to the diabetes clinic have lowered testosterone levels relative to reference ranges based on healthy young men
  • The absence of high-level evidence in this area is illustrated by the Endocrine Society testosterone therapy in men with androgen deficiency clinical practice guidelines (Bhasin et al. 2010), which are appropriate for, but not specific to men with metabolic disorders. All 32 recommendations made in these guidelines are based on either very low or low quality evidence.
  • A key concept relates to making a distinction between replacement and pharmacological testosterone therapy
  • ...59 more annotations...
  • The presence of symptoms was more closely linked to increasing age than to testosterone levels
  • Findings similar to type 2 diabetes were reported for men with the metabolic syndrome, which were associated with reductions in total testosterone of −2.2 nmol/l (95% CI −2.41 to 1.94) and in free testosterone
  • low testosterone is more predictive of the metabolic syndrome in lean men
  • Cross-sectional studies uniformly show that 30–50% of men with type 2 diabetes have lowered circulating testosterone levels, relative to references based on healthy young men
  • In a recent cross-sectional study of 240 middle-aged men (mean age 54 years) with either type 2 diabetes, type 1 diabetes or without diabetes (Ng Tang Fui et al. 2013b), increasing BMI and age were dominant drivers of low total and free testosterone respectively.
  • both diabetes and the metabolic syndrome are associated with a modest reduction in testosterone, in magnitude comparable with the effect of 10 years of ageing
  • In a cross-sectional study of 490 men with type 2 diabetes, there was a strong independent association of low testosterone with anaemia
  • In men, low testosterone is a marker of poor health, and may improve our ability to predict risk
    • Nathan Goodyear
       
      probably the most important point made in this article
  • low testosterone identifies men with an adverse metabolic phenotype
  • Diabetic men with low testosterone are significantly more likely to be obese or insulin resistant
  • increased inflammation, evidenced by higher CRP levels
  • Bioavailable but not free testosterone was independently predictive of mortality
  • It remains possible that low testosterone is a consequence of insulin resistance, or simply a biomarker, co-existing because of in-common risk factors.
  • In prospective studies, reviewed in detail elsewhere (Grossmann et al. 2010) the inverse association of low testosterone with metabolic syndrome or diabetes is less consistent for free testosterone compared with total testosterone
  • In a study from the Framingham cohort, SHBG but not testosterone was prospectively and independently associated with incident metabolic syndrome
  • low SHBG (Ding et al. 2009) but not testosterone (Haring et al. 2013) with an increased risk of future diabetes
  • In cross-sectional studies of men with (Grossmann et al. 2008) and without (Bonnet et al. 2013) diabetes, SHBG but not testosterone was inversely associated with worse glycaemic control
  • SHBG may have biological actions beyond serving as a carrier protein for and regulator of circulating sex steroids
  • In men with diabetes, free testosterone, if measured by gold standard equilibrium dialysis (Dhindsa et al. 2004), is reduced
    • Nathan Goodyear
       
      expensive, laborious process filled with variables
  • Low free testosterone remains inversely associated with insulin resistance, independent of SHBG (Grossmann et al. 2008). This suggests that the low testosterone–dysglycaemia association is not solely a consequence of low SHBG.
  • Experimental evidence reviewed below suggests that visceral adipose tissue is an important intermediate (rather than a confounder) in the inverse association of testosterone with insulin resistance and metabolic disorders.
  • testosterone promotes the commitment of pluripotent stem cells into the myogenic lineage and inhibits their differentiation into adipocytes
  • testosterone regulates the metabolic functions of mature adipocytes (Xu et al. 1991, Marin et al. 1995) and myocytes (Pitteloud et al. 2005) in ways that reduce insulin resistance.
  • Pre-clinical evidence (reviewed in Rao et al. (2013)) suggests that at the cellular level, testosterone may improve glucose metabolism by modulating the expression of the glucose-transported Glut4 and the insulin receptor, as well as by regulating key enzymes involved in glycolysis.
  • More recently testosterone has been shown to protect murine pancreatic β cells against glucotoxicity-induced apoptosis
  • Interestingly, a reciprocal feedback also appears to exist, given that not only chronic (Cameron et al. 1990, Allan 2013) but also, as shown more recently (Iranmanesh et al. 2012, Caronia et al. 2013), acute hyperglycaemia can lower testosterone levels.
  • There is also evidence that testosterone regulates insulin sensitivity directly and acutely
  • In men with prostate cancer commencing androgen deprivation therapy, both total as well as, although not in all studies (Smith 2004), visceral fat mass increases (Hamilton et al. 2011) within 3 months
  • More prolonged (>12 months) androgen deprivation therapy has been associated with increased risk of diabetes in several large observational registry studies
  • Testosterone has also been shown to reduce the concentration of pro-inflammatory cytokines in some, but not all studies, reviewed recently in Kelly & Jones (2013). It is not know whether this effect is independent of testosterone-induced changes in body composition.
  • the observations discussed in this section suggest that it is the decrease in testosterone that causes insulin resistance and diabetes. One important caveat remains: the strongest evidence that low testosterone is the cause rather than consequence of insulin resistance comes from men with prostate cancer (Grossmann & Zajac 2011a) or biochemical castration, and from mice lacking the androgen receptor.
  • Several large prospective studies have shown that weight gain or development of type 2 diabetes is major drivers of the age-related decline in testosterone levels
  • there is increasing evidence that healthy ageing by itself is generally not associated with marked reductions in testosterone
  • Circulating testosterone, on an average 30%, is lower in obese compared with lean men
  • increased visceral fat is an important component in the association of low testosterone and insulin resistance
  • The vast majority of men with metabolic disorders have functional gonadal axis suppression with modest reductions in testosterone levels
  • obesity is a dominant risk factor
  • men with Klinefelter syndrome have an increased risk of metabolic disorders. Interestingly, greater body fat mass is already present before puberty
  • Only 5% of men with type 2 diabetes have elevated LH levels
  • inhibition of the gonadal axis predominantly takes place in the hypothalamus, especially with more severe obesity
  • Metabolic factors, such as leptin, insulin (via deficiency or resistance) and ghrelin are believed to act at the ventromedial and arcuate nuclei of the hypothalamus to inhibit gonadotropin-releasing hormone (GNRH) secretion from GNRH neurons situated in the preoptic area
  • kisspeptin has emerged as one of the most potent secretagogues of GNRH release
  • hypothesis that obesity-mediated inhibition of kisspeptin signalling contributes to the suppression of the HPT axis, infusion of a bioactive kisspeptin fragment has been recently shown to robustly increase LH pulsatility, LH levels and circulating testosterone in hypotestosteronaemic men with type 2 diabetes
  • A smaller study with a similar experimental design found that acute testosterone withdrawal reduced insulin sensitivity independent of body weight, whereas oestradiol withdrawal had no effects
  • suppression of the diabesity-associated HPT axis is functional, and may hence be reversible
  • Obesity and dysglycaemia and associated comorbidities such as obstructive sleep apnoea (Hoyos et al. 2012b) are important contributors to the suppression of the HPT axis
  • weight gain and development of diabetes accelerate the age-related decline in testosterone
  • Modifiable risk factors such as obesity and co-morbidities are more strongly associated with a decline in circulating testosterone levels than age alone
  • 55% of symptomatic androgen deficiency reverted to a normal testosterone or an asymptomatic state after 8-year follow-up, suggesting that androgen deficiency is not a stable state
  • Weight loss can reactivate the hypothalamic–pituitary–testicular axis
  • Leptin treatment resolves hypogonadism in leptin-deficient men
  • The hypothalamic–pituitary–testicular axis remains responsive to treatment with aromatase inhibitors or selective oestrogen receptor modulators in obese men
  • Kisspeptin treatment increases LH secretion, pulse frequency and circulating testosterone levels in hypotestosteronaemic men with type 2 diabetes
  • change in BMI was associated with the change in testosterone (Corona et al. 2013a,b).
  • weight loss can lead to genuine reactivation of the gonadal axis by reversal of obesity-associated hypothalamic suppression
  • There is pre-clinical and observational evidence that chronic hyperglycaemia can inhibit the HPT axis
  • in men who improved their glycaemic control over time, testosterone levels increased. By contrast, in those men in whom glycaemic control worsened, testosterone decreased
  • testosterone levels should be measured after successful weight loss to identify men with an insufficient rise in their testosterone levels. Such men may have HPT axis pathology unrelated to their obesity, which will require appropriate evaluation and management.
  •  
    Article discusses the expanding evidence of low T and Metabolic syndrome.
1More

Diabetes - 0 views

  •  
    Insulin is a hormone produced by the pancreas to control blood sugar. Diabetes can be caused by too little insulin, resistance to insulin, or both. To understand diabetes, it is important to first understand the normal process by which food is broken down and used by the body for energy. Several things happen when food is digested: A sugar called glucose enters the bloodstream. Glucose is a source of fuel for the body. An organ called the pancreas makes insulin. The role of insulin is to move glucose from the bloodstream into muscle, fat, and liver cells, where it can be used as fuel. People with diabetes have high blood sugar because their body cannot move sugar into fat, liver, and muscle cells to be stored for energy. This is because either: Their pancreas does not make enough insulin Their cells do not respond to insulin normally Both of the above There are two major types of diabetes. The causes and risk factors are different for each type: Type 1 diabetes can occur at any age, but it is most often diagnosed in children, teens, or young adults. In this disease, the body makes little or no insulin. Daily injections of insulin are needed. The exact cause is unknown. Type 2 diabetes makes up most diabetes cases. It most often occurs in adulthood. However, because of high obesity rates, teens and young adults are now being diagnosed with it. Many people with type 2 diabetes do not know they have it. Gestational diabetes is high blood sugar that develops at any time during pregnancy in a woman who does not have diabetes. Diabetes affects more than 20 million Americans. Over 40 million Americans have pre-diabetes (which often comes before type 2 diabetes).
14More

Statin use and risk of diabetes mellitus - 0 views

  • An increase in new onset diabetes, i.e., 3% in statin arm and 2.4% in placebo arm was reported. This was accompanied by increase in median value of glycated haemoglobin and was one of the earlier studies to report the increase in new onset diabetes in patients on statins
  • Even after adjustment for potential confounders, statin therapy was associated with an increased risk of new-onset diabetes mellitus
  • Authors suggest that statin-induced diabetes mellitus is a medication class effect
  • ...10 more annotations...
  • Another study also reported that as compared to placebo, statin group showed a higher risk of physician reported incident diabetes and it was also observed that risk was higher in women as compared to men
  • Meta-analysis of randomized controlled trials by Sattar et al[25] involving 91140 non-diabetic patients showed that statin therapy was associated with 9% increased risk of incident diabetes
  • A number of studies showed dose dependent association between statin administration and incident diabetes
  • intensive dose of statins was associated with high incidence of new - onset diabetes
  • Treatment with atorvastatin and simvastatin may be associated with an increased risk of new onset diabetes as compared to pravastatin
  • Increased incidence of diabetes was seen with atorvastatin in the Anglo-Scandinavian Cardiac Outcomes Trial
  • Increased insulin resistance secondary to statins was demonstrated in a prospective non randomised study in patients with coronary bypass surgery
  • downregulation of GLUT4
  • Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial--Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial
  • Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial--Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial
  •  
    Great review article of the increased risk of worsening insulin resistance, glycated hemoglobin, and diabetes risk.  Atorvastatin appears to be the worst culprit.  Mechanism partially through a decrease in GLUT4.
5More

JAMA Network | JAMA | Sex Differences of Endogenous Sex Hormones and Risk of Type 2 Dia... - 0 views

  • lack of reliable data on levels of free hormones
  • endogenous levels of testosterone and SHBG each exhibit sex-dependent relations with risk of type 2 diabetes
  • high testosterone levels were associated with greater type 2 diabetes risk in women but lower risk in men
  • ...1 more annotation...
  • the inverse association of SHBG was stronger in women than in men
  •  
    No surprise, testosterone in men and women have different effects.  I just wrote a post on this.  Testosterone is positively associated with increased risk of diabetes in women, but inversely with men.  That is increased T in women equals increased Diabetes in women; contrast with increased T associated with decreased Diabetes in men.   But the interesting point is SHBG.  This study found a strong inverse association between SHBG with diabetes in women when compared to men.  Meaning: low SHBG is associated with an increased risk of type II Diabetes.  This is at the same time that testosterone is associated with an increased risk.
1More

What blood sugar levels indicate good control of diabetes - 0 views

  •  
    Blood sugar levels are the most important parameter in diabetes. Find out what levels are considered good for control of diabetes and reduce complications
13More

Original Articles: Comparison of Insulin Action on Glucose versus Potassium Uptake in H... - 0 views

  • When treating hyperkalemia, insulin remains efficacious in diabetics and nondiabetics and one does not need to resort to b-agonists, and diabetics do not require different doses of insulin to shift potassium
  • the commonly encountered “insulin-resistant” patients actually have preserved insulin-induced potassium disposal, one wonders why their high insulin levels are not causing hypokalemia
  • insulin independently regulates glucose and potassium uptake into cells and this independence explains why in noninsulin-dependent diabetic insulin resistance leads to impaired insulin uptake into cells but has no effect on the cell's potassium disposal
  • ...9 more annotations...
  • insulin suppresses glycogenolysis, gluconeogenesis, lipolysis and fatty acid release, and protein catabolism and is the principal hormone that stimulates glucose uptake into mainly skeletal muscle and to a certain extent adipocytes
  • Plasma [K+] is a major determinant of the resting potential of all cells
  • Hyperkalemia and hypokalemia are silent yet fatal disturbances because of their arrhythmogenic potentials
  • Basal insulin maintains fasting plasma [K+] within the normal range
  • When insulin levels are suppressed, plasma [K+] rises and pronounced hyperkalemia develops after a potassium load
  • Potassium is a well proven insulin secretagogue
  • Insulin is a key defender against exogenous potassium load by using intracellular buffering to minimize hyperkalemia before renal excretion
  • Hyperkalemia is often encountered in patients with diabetes
  • The insulin-deficient state in type 1 diabetes predisposes to hyperkalemia because of an impaired ability of potassium to enter cells. During hyperglycemic hypertonic states in type 1 and type 2 diabetics, potassium is carried out of cells by convective flux as the most abundant intracellular cation
  •  
    good review of the potassium, glucose, insulin relationship mostly in diabetes.  In diabetes, hyperkalemia is present due to the hyperglycemia and the associated exchange.  Inuslin independantly regulates potassium and glucose intake into the cell.  INterestingly, in IR found in diabetes, the hyperkalemia is the norm, which should cause hypokalemia--the authors were perplexed by this finding.
63More

Testosterone level in men with type 2 diabetes mellitus and related metabolic... - 0 views

  • defined by consistent symptoms and signs of androgen deficiency, and an unequivocally low serum testosterone level
  • the threshold serum testosterone level below which adverse clinical outcomes occur in the general population is not known
  • most population-based studies use the serum testosterone level corresponding to the lower limit, quoted from 8.7 to 12.7 nmol/L, of the normal range for young Caucasian men as the threshold
    • Nathan Goodyear
       
      this equals 251 to 366 in serum Total Testosterone
  • ...57 more annotations...
  • Researchers tried to examine whether serum total or free testosterone would be a better/more reliable choice when studying the effect of testosterone. The results were mixed. Some reported significant associations of both serum total and free testosterone level with clinical parameters25, whereas others reported that only serum free testosterone26 or only serum total testosterone6 showed significant associations.
  • −0.124 nmol/L/year in serum total testosterone
    • Nathan Goodyear
       
      this equates to a 4 ng/dl decline annually in total Testosterone.
  • In experimental studies, androgen receptor knockout mice developed significant insulin resistance rapidly
  • In mouse models, testosterone promoted differentiation of pluripotent stem cells to the myogenic lineage
  • testosterone decreased insulin resistance by enhancing catecholamine induced lipolysis in vitro, and reducing lipoprotein lipase activity and triglyceride uptake in human abdominal tissue in vivo
  • by promoting lipolysis and myogenesis, testosterone might lead to improved insulin resistance
  • testosterone regulated skeletal muscle genes involved in glucose metabolism that led to decreased systemic insulin resistance
  • In the liver, hepatic androgen receptor signaling inhibited development of insulin resistance in mice
  • independent and inverse association of testosterone with hepatic steatosis shown in a cross-sectional study carried out in humans
  • In short, androgen improves insulin resistance by changing body composition and reducing body fat.
  • Although a low serum testosterone level could contribute to the development of obesity and type 2 diabetes through changes in body composition, obesity might also alter the metabolism of testosterone
  • In obese men, the peripheral conversion from testosterone to estrogen could attenuate the amplitude of luteinizing hormone pulses and centrally inhibit testosterone production
  • leptin, an adipokine, has been shown to be inversely correlated with serum testosterone level in men
  • Leydig cells expressed leptin receptors and leptin has been shown to inhibit testosterone secretion, suggesting a role of obesity and leptin in the pathogenesis of low testosterone
    • Nathan Goodyear
       
      So what is "unequivocal"?
  • Baltimore Longitudinal Study of Aging (BLSA) cohort made up of 3,565 middle-class, mostly Caucasian men from the USA, the incidence of low serum total testosterone increased from approximately 20% of men aged over 60 years, 30% over 70 years, to 50% over 80 years-of-age
  • 30–44% sex hormone binding globulin (SHBG)-bound testosterone and 54–68% albumin-bound testosterone
  • As the binding of testosterone to albumin is non-specific and therefore not tight, the sum of free and albumin-bound testosterone is named bioavailable testosterone, which reflects the hormone available at the cellular level
  • Serum total testosterone is composed of 0.5–3.0% of free testosterone unbound to plasma proteins
  • alterations in SHBG concentration might affect total serum testosterone level without altering free or bioavailable testosterone
  • listed in Table​T
  • A significant, independent and longitudinal effect of age on testosterone has been observed with an average change of −0.124 nmol/L/year in serum total testosterone28. The same trend has been shown in Europe and Australia
  • Asian men residing in HK and Japan, but not those living in the USA, had 20% higher serum total testosterone than in Caucasians living in the USA, as shown in a large multinational observational prospective cohort of the Osteoporotic Fractures in Men Study
  • subjects with chronic diseases consistently had a 10–15% lower level compared with age-matched healthy subjects
  • In Caucasians, the mean serum total testosterone level for men in large epidemiological studies has been reported to range from 15.1 to 16.6 nmol/L
  • Asians, higher values, ranging from 18.1 to 19.1 nmol/L, were seen in Korea and Japan
  • Chinese middle-aged men reported a similar mean serum testosterone level of 17.1 nmol/L in 179 men who had a family history of type 2 diabetes and 17.8 nmol/L in 128 men who had no family history of type 2 diabetes
  • The reduction of total testosterone was 0.4% per year in both groups
  • HK involving a cohort of 1,489 community-dwelling men with a mean age of 72 years, a mean serum total testosterone of 19.0 nmol/L was reported
  • pro-inflammatory factors, such as tumor necrosis factor-α in the testes, could locally inhibit testosterone biosynthesis in Leydig cells47, and testosterone treatment in men was shown to reduce the level of tumor necrosis factor-α
  • In Asians, a genetic deletion polymorphism of uridine diphosphate-glucuronosyltransferase UGT2B17 was associated with reduced androgen glucuronidation. This resulted in higher level of active androgen in Asians as compared to Caucasians, as Caucasians' androgen would be glucuronidated into inactive forms faster.
  • Compared with Caucasians, the frequency of this deletion polymorphism of UGT2B17 was 22-fold higher in Asian subjects
  • Other researchers have suggested that environmental, but not genetic, factors influenced serum total testosterone
  • The basal and ligand-induced activity of the AR is inversely associated with the length of the CAG repeat chain
  • In the European Male Aging Study, increased estrogen/androgen ratio in association with longer AR CAG repeat was observed
  • a smaller number of AR CAG repeat had been shown to be associated with benign prostate hypertrophy and faster prostate growth during testosterone treatment
  • In India, men with CAG ≤19 had increased risk of prostate cancer
  • the odds of having a short CAG repeat (≤17) were substantially higher in patients with lymph node-positive prostate cancer than in those with lymph node-negative disease or in the general population
  • assessing the polymorphism at the AR level could be a potential tool towards individualized assessment and treatment of hypogonadism.
  • In elderly men, there was reduced testicular response to gonadotropins with suppressed and altered pulsatility of the hypothalamic pulse generator
  • a significant, independent and longitudinal effect of age on serum total testosterone level had been observed
  • A significant graded inverse association between serum testosterone level and insulin levels independent of age has also been reported in Caucasian men
  • Low testosterone is commonly associated with a high prevalence of MES
  • most studies showed that changes in serum testosterone level led to changes in body composition, insulin resistance and the presence of MES, the reverse might also be possible
  • MES predicted a 2.6-fold increased risk of development of low serum testosterone level independent of age, smoking and other potential confounders
  • Other prospective studies have shown that development of MES accelerated the age-related decline in serum testosterone level
  • In men with type 2 diabetes, changes in serum testosterone level over time correlated inversely with changes in insulin resistance
  • weight loss by either diet control or bariatric surgery led to a substantial increase in total testosterone, especially in morbidly obese men, and the rise in serum testosterone level was proportional to the amount of weight lost
  • To date, published clinical trials are small, of short duration and often used pharmacological, not physiological, doses of testosterone
  • In the population-based Osteoporotic Fractures in Men Study cohort from Sweden, men in the highest quartile of serum testosterone level had the lowest risk of cardiovascular events compared with men in the other three quartiles (hazard ratio [HR] 0.70
  • low serum total testosterone was associated with a significant fourfold higher risk of cardiovascular events when comparing men from the lowest testosterone tertile with those in the highest tertile
  • Shores et al. were the first to report that low serum testosterone level, including both serum total and free testosterone, was associated with increased mortality
  • low serum total testosterone predicted increased risk of cardiovascular mortality with a HR of 1.38
  • low serum total testosterone increased all-cause (HR 1.35, 95% CI 1.13–1.62, P < 0.001) and cardiovascular mortality (HR 1.25
  • European Association for the Study of Diabetes 2013 suggested there was an inverse relationship between serum testosterone level and acute myocardial infarction
  • Diabetic men in the highest quartile of serum total testosterone had a significantly reduced risk of acute MI when compared with those in the lower quartiles
  • serum total testosterone level in the middle two quartiles at baseline predicted reduced incidence of death compared with having the highest and lowest levels
  •  
    Nice review of Testosterone levels and some of the evidence linking Diabetes with low T.  However, the conclusion by the authors regarding what is causing the low T in men with Diabetes is baffling.  The literature does not point to one cause, it is clearly multifactorial--obesity, inflammation, high aromatase activity...I would suggest the authors continue their readings in the manner.
2More

How To Prevent Diabetes Type 2 | Your Health Our Priority - 0 views

  •  
    How To Prevent Diabetes Type 2? You have just discovered that you are prediabetic. You can take meaningful steps to reduce your risk of diabetes. You can actually prevent diabetes simply by changing what you eat and how you invest in your physical health. The ball, my friend, is still in your court.
  •  
    How To Prevent Diabetes Type 2? You have just discovered that you are prediabetic. You can take meaningful steps to reduce your risk of diabetes. You can actually prevent diabetes simply by changing what you eat and how you invest in your physical health. The ball, my friend, is still in your court.
1More

Conditions Causing Type 2 Diabetes And High BP : Study - 0 views

  •  
    A study by scientists in a UK university has shown the scale of the prevalence of a condition that can lead to various cardiometabolic diseases. The study published in the Annals of Internal Medicine journal on Tuesday (January 4) has prompted calls for changes to healthcare policy after researchers revealed, for the first time, the scale of the impact of the condition associated with benign tumours that can lead to type 2 diabetes and high blood pressure. Up to 10 per cent of adults have a benign tumour, or lump, known as an 'adrenal incidentaloma' in their adrenal glands which can be associated with the overproduction of hormones including the stress steroid hormone cortisol that can lead to type 2 diabetes and high blood pressure. Previous small studies suggested that one in three adrenal incidentalomas produce excess cortisol, a condition called mild autonomous cortisol secretion (MACS). An international research team led by the University of Birmingham carried out the largest ever prospective study of over 1,305 patients with adrenal incidentalomas to assess their risk of high blood pressure and type 2 diabetes and their cortisol production by comparing patients with and without MACS.
1More

Treatment for Diabetic Kidney Disease - 0 views

  •  
    Silver Line is one of the top hospital in Kochi, Kerala, India for Diabetic Kidney Care. Silver line provide expert surgeons for kidney transplantation, dialysis and treatment for kidney failure, diabetic kidney disease, diabetic kidney problems, chronic kidney disease and diagnosis the symptoms of kidney failure like fatigue, nausea and vomiting, heartburn, itchy skin.
1More

Testosterone deficiency is associated with increased risk of mortality and testosterone... - 0 views

  •  
    Men with type II diabetes have lower Testosterone levels when compared to none diabetics.  This study found an increased mortality with low T in those with type II Diabetes.  The main association was found with bioavailable Testosterone.  Total Testosterone is proving useless as a functional tool.  Additionally, Testosterone therapy reduced mortality in those with Diabetes.
1More

Gut microbe levels are linked to type 2 diabetes and obesity -- ScienceDaily - 0 views

  •  
    Individuals with obesity and type II Diabetes been found to have significantly different gut bacteria populations compared to healthy individuals.  This is not new information.  The firmicutes:bacteroidetes ratio has been long known to be elevated in obese individuals vs those that are lean.  The question here is cause and effect.  Is the change in the bacterial population leading to obesity and type II diabetes?  Or is diabetes and obesity leading to changes in the bacterial population?  A heavy-laden carb diet is know to lead to a change to a more unhealthy gut bacterial population--maybe it is just a product of diet?  Maybe it is effected by vaginal delivery vs cesarean delivery?  Maybe breast feeding plays a role.  Maybe, all the above is required. The point is that the cause of obesity and type II diabetes may have its origins deep, deep in the...well you know. http://ow.ly/yqDML 
1More

Diabetes - State Rates - 0 views

  •  
    state Diabetes rates.  Notice that the south and all of its great cooking is leading the way in diabetes.  That is no surprise, because the research shows that diets high in saturated fats (see fried food?) leads to metabolic endotoxemia (systemic inflammation) and thus diabetes.
70More

Testosterone and the Cardiovascular System: A Comprehensive Review of the Clinical Lite... - 0 views

  • Low endogenous bioavailable testosterone levels have been shown to be associated with higher rates of all‐cause and cardiovascular‐related mortality.39,41,46–47 Patients suffering from CAD,13–18 CHF,137 T2DM,25–26 and obesity27–28
  • have all been shown to have lower levels of endogenous testosterone compared with those in healthy controls. In addition, the severity of CAD15,17,29–30 and CHF137 correlates with the degree of testosterone deficiency
  • In patients with CHF, testosterone replacement therapy has been shown to significantly improve exercise tolerance while having no effect on LVEF
  • ...66 more annotations...
  • testosterone therapy causes a shift in the skeletal muscle of CHF patients toward a higher concentration of type I muscle fibers
  • Testosterone replacement therapy has also been shown to improve the homeostatic model of insulin resistance and hemoglobin A1c in diabetics26,68–69 and to lower the BMI in obese patients.
  • Lower levels of endogenous testosterone have been associated with longer duration of the QTc interval
  • testosterone replacement has been shown to shorten the QTc interval
  • negative correlation has been demonstrated between endogenous testosterone levels and IMT of the carotid arteries, abdominal aorta, and thoracic aorta
  • These findings suggest that men with lower levels of endogenous testosterone may be at a higher risk of developing atherosclerosis.
  • Current guidelines from the Endocrine Society make no recommendations on whether patients with heart disease should be screened for hypogonadism and do not recommend supplementing patients with heart disease to improve survival.
  • The Massachusetts Male Aging Study also projects ≈481 000 new cases of hypogonadism annually in US men within the same age group
  • since 1993 prescriptions for testosterone, regardless of the formulation, have increased nearly 500%
  • Testosterone levels are lower in patients with chronic illnesses such as end‐stage renal disease, human immunodeficiency virus, chronic obstructive pulmonary disease, type 2 diabetes mellitus (T2DM), obesity, and several genetic conditions such as Klinefelter syndrome
  • A growing body of evidence suggests that men with lower levels of endogenous testosterone are more prone to develop CAD during their lifetimes
  • There are 2 major potential confounding factors that the older studies generally failed to account for. These factors are the subfraction of testosterone used to perform the analysis and the method used to account for subclinical CAD.
  • The biologically inactive form of testosterone is tightly bound to SHBG and is therefore unable to bind to androgen receptors
  • The biologically inactive fraction of testosterone comprises nearly 68% of the total testosterone in human serum
  • The biologically active subfraction of testosterone, also referred to as bioavailable testosterone, is either loosely bound to albumin or circulates freely in the blood, the latter referred to as free testosterone
  • It is estimated that ≈30% of total serum testosterone is bound to albumin, whereas the remaining 1% to 3% circulates as free testosterone
  • it can be argued that using the biologically active form of testosterone to evaluate the association with CAD will produce the most reliable results
  • English et al14 found statistically significant lower levels of bioavailable testosterone, free testosterone, and free androgen index in patients with catheterization‐proven CAD compared with controls with normal coronary arteries
  • patients with catheterization‐proven CAD had statistically significant lower levels of bioavailable testosterone
  • In conclusion, existing evidence suggests that men with CAD have lower levels of endogenous testosterone,13–18 and more specifically lower levels of bioavailable testosterone
  • low testosterone levels are associated with risk factors for CAD such as T2DM25–26 and obesity
  • In a meta‐analysis of these 7 population‐based studies, Araujo et al41 showed a trend toward increased cardiovascular mortality associated with lower levels of total testosterone, but statistical significance was not achieved (RR, 1.25
  • the authors showed that a decrease of 2.1 standard deviations in levels of total testosterone was associated with a 25% increase in the risk of cardiovascular mortality
  • the relative risk of all‐cause mortality in men with lower levels of total testosterone was calculated to be 1.35
  • higher risk of cardiovascular mortality is associated with lower levels of bioavailable testosterone
  • Existing evidence seems to suggest that lower levels of endogenous testosterone are associated with higher rates of all‐cause mortality and cardiovascular mortality
  • studies have shown that lower levels of endogenous bioavailable testosterone are associated with higher rates of all‐cause and cardiovascular mortality
  • It may be possible that using bioavailable testosterone to perform mortality analysis will yield more accurate results because it prevents the biologically inactive subfraction of testosterone from playing a potential confounding role in the analysis
  • The earliest published material on this matter dates to the late 1930s
  • the concept that testosterone replacement therapy improves angina has yet to be proven wrong
  • In more recent studies, 3 randomized, placebo‐controlled trials demonstrated that administration of testosterone improves myocardial ischemia in men with CAD
  • The improvement in myocardial ischemia was shown to occur in response to both acute and chronic testosterone therapy and seemed to be independent of whether an intravenous or transdermal formulation of testosterone was used.
  • testosterone had no effect on endothelial nitric oxide activity
  • There is growing evidence from in vivo animal models and in vitro models that testosterone induces coronary vasodilation by modulating the activity of ion channels, such as potassium and calcium channels, on the surface of vascular smooth muscle cells
  • Experimental studies suggest that the most likely mechanism of action for testosterone on vascular smooth muscle cells is via modulation of action of non‐ATP‐sensitive potassium ion channels, calcium‐activated potassium ion channels, voltage‐sensitive potassium ion channels, and finally L‐type calcium ion channels
  • Corona et al confirmed those results by demonstrating that not only total testosterone levels are lower among diabetics, but also the levels of free testosterone and SHBG are lower in diabetic patients
  • Laaksonen et al65 followed 702 Finnish men for 11 years and demonstrated that men in the lowest quartile of total testosterone, free testosterone, and SHBG were more likely to develop T2DM and metabolic syndrome.
  • Vikan et al followed 1454 Swedish men for 11 years and discovered that men in the highest quartile of total testosterone were significantly less likely to develop T2DM
  • authors demonstrated a statistically significant increase in the incidence of T2DM in subjects receiving gonadotropin‐releasing hormone antagonist therapy. In addition, a significant increase in the rate of myocardial infarction, stroke, sudden cardiac death, and development of cardiovascular disease was noted in patients receiving antiandrogen therapy.67
  • Several authors have demonstrated that the administration of testosterone in diabetic men improves the homeostatic model of insulin resistance, hemoglobin A1c, and fasting plasma glucose
  • Existing evidence strongly suggests that the levels of total and free testosterone are lower among diabetic patients compared with those in nondiabetics
  • insulin seems to be acting as a stimulant for the hypothalamus to secret gonadotropin‐releasing hormone, which consequently results in increased testosterone production. It can be argued that decreased stimulation of the hypothalamus in diabetics secondary to insulin deficiency could result in hypogonadotropic hypogonadism
  • BMI has been shown to be inversely associated with testosterone levels
  • This interaction may be a result of the promotion of lipolysis in abdominal adipose tissue by testosterone, which may in turn cause reduced abdominal adiposity. On the other hand, given that adipose tissue has a higher concentration of the enzyme aromatase, it could be that increased adipose tissue results in more testosterone being converted to estrogen, thereby causing hypogonadism. Third, increased abdominal obesity may cause reduced testosterone secretion by negatively affecting the hypothalamus‐pituitary‐testicular axis. Finally, testosterone may be the key factor in activating the enzyme 11‐hydroxysteroid dehydrogenase in adipose tissue, which transforms glucocorticoids into their inactive form.
  • increasing age may alter the association between testosterone and CRP. Another possible explanation for the association between testosterone level and CRP is central obesity and waist circumference
  • Bai et al have provided convincing evidence that testosterone might be able to shorten the QTc interval by augmenting the activity of slowly activating delayed rectifier potassium channels while simultaneously slowing the activity of L‐type calcium channels
  • consistent evidence that supplemental testosterone shortens the QTc interval.
  • Intima‐media thickness (IMT) of the carotid artery is considered a marker for preclinical atherosclerosis
  • Studies have shown that levels of endogenous testosterone are inversely associated with IMT of the carotid artery,126–128,32,129–130 as well as both the thoracic134 and the abdominal aorta
  • 1 study has demonstrated that lower levels of free testosterone are associated with accelerated progression of carotid artery IMT
  • another study has reported that decreased levels of total and bioavailable testosterone are associated with progression of atherosclerosis in the abdominal aorta
  • These findings suggest that normal physiologic testosterone levels may help to protect men from the development of atherosclerosis
  • Czesla et al successfully demonstrated that the muscle specimens that were exposed to metenolone had a significant shift in their composition toward type I muscle fibers
  • Type I muscle fibers, also known as slow‐twitch or oxidative fibers, are associated with enhanced strength and physical capability
  • It has been shown that those with advanced CHF have a higher percentage of type II muscle fibers, based on muscle biopsy
  • Studies have shown that men with CHF suffer from reduced levels of total and free testosterone.137 It has also been shown that reduced testosterone levels in men with CHF portends a poor prognosis and is associated with increased CHF mortality.138 Reduced testosterone has also been shown to correlate negatively with exercise capacity in CHF patients.
  • Testosterone replacement therapy has been shown to significantly improve exercise capacity, without affecting LVEF
  • the results of the 3 meta‐analyses seem to indicate that testosterone replacement therapy does not cause an increase in the rate of adverse cardiovascular events
  • Data from 3 meta‐analyses seem to contradict the commonly held belief that testosterone administration may increase the risk of developing prostate cancer
  • One meta‐analysis reported an increase in all prostate‐related adverse events with testosterone administration.146 However, when each prostate‐related event, including prostate cancer and a rise in PSA, was analyzed separately, no differences were observed between the testosterone group and the placebo group
  • the existing data from the 3 meta‐analyses seem to indicate that testosterone replacement therapy does not increase the risk of adverse cardiovascular events
  • the authors correctly point out the weaknesses of their study which include retrospective study design and lack of randomization, small sample size at extremes of follow‐up, lack of outcome validation by chart review and poor generalizability of the results given that only male veterans with CAD were included in this study
    • Nathan Goodyear
       
      The authors here present Total Testosterone as a "confounding" value
    • Nathan Goodyear
       
      This would be HSD-II
  • the studies that failed to find an association between testosterone and CRP used an older population group
  • low testosterone may influence the severity of CAD by adversely affecting the mediators of the inflammatory response such as high‐sensitivity C‐reactive protein, interleukin‐6, and tumor necrosis factor–α
  •  
    Good review of Testosterone and CHD.  Low T is associated with increased all cause mortality and cardiovascular mortality, CAD, CHF, type II diabetes, obesity, increased IMT,  increased severity of CAD and CHF.  Testosterone replacement in men with low T has been shown to improve exercise tolerance in CHF, improve insulin resistance, improve HgbA1c and lower BMI in the obese.
1More

Endogenous Sex Hormones and the Development of Type 2 Diabetes in Older Men and Women: ... - 0 views

  •  
    A prospective study of aging men and women in the development risk of type II diabetes.  The sexes bring significant differences.  In men, low Testosterone predicts the development of type II diabetes.  In women, just the opposite is seen--high Testosterone levels and low SHBG are most predictive of type II diabetes risk.
1More

Diabetic neuropathic pain: a role for testosterone metabolites - 0 views

  •  
    Great article.  Really shows the depth of the androgens and androgen metabolites in diabetes and diabetic complications.  In this study, DHT and its metabolis 3-alpha androstanediol were shown to reduce inflammation and pain associated with diabetic neuropathy.  Significant reduction in inflammation signaling (IL-1beta, TNF-alpha) was seen as was potential neurodegenerative processes (glutamate release and astrocyte immunoreactivity).
1More

Effect of Testosterone Treatment on Glucose Metabolism in men With Type 2 Diabetes: A R... - 0 views

  •  
    Study finds no improvement with glucose control in diabetics.  This study looked at moderately controlled diabetes. Studies have previously shown that poorly controlled diabetes definitely benefits more than those with more mild glucose control problems.  Additionally, the Testosterone levels in this study would not have met the definition of low T by other studies.  So, the question is did these men need T?  Second, did the authors design the study long enough to see changes in the insulin sensitivity and glucose control?  Abstract only available and thus I don't have access to that information.  Third, and this might support the 2nd point, increased lean mass and decreased fat mass was found.  This points to positive metabolic change.  Would this have, given more time, resulted in improved glucose control? No change in visceral adiposity was seen.  This finding, also, is not new.  Testosterone therapy does not improve visceral adiposity.  Though, increasing fat adiposity, low Testosterone, and associated increase in systemic inflammatory cytokine production results in visceral adiposity, Testosterone therapy does reverse the visceral adiposity.  
9More

Unintended effects of statins from observational studies in the general population: sys... - 0 views

  • A markedly increased risk of myopathy was observed
  • One cohort study (Women’s Health Initiative) of higher quality and larger sample size found stronger evidence of an increased risk of self-reported T2DM (OR=1.47; 95% CI 1.32 to 1.64) for the groups of women who reported statin use at baseline and three years later
  • Hippisley-Cox et al. found an increased risk of liver enzyme changes
  • ...5 more annotations...
  • weak evidence of an increased risk of type 2 diabetes mellitus (T2DM) was observed
  • Smeeth et al. found an increased risk of incident liver disease in the first year after the index date
  • The cumulative incidence of T2DM after three years of statin treatment was 6.25%, corresponding to an excess risk of 2.25%
  • We found no increased risk of peripheral neuropathy, depression, common eye diseases, renal disorders or arthritis associated with taking statins. Studies of higher quality did not show previously reported protective effects of statins on fractures, venous thrombo-embolism or pneumonia
  • There was evidence of an increase in myopathy, raised liver enzymes and diabetes.
  •  
    Statin use associated with increased myopathy, liver dysfunction, and type II Diabetes.  The authors conclude that the absolute risk is very low, yet OR was 1.47 for type II Diabetes (translated 47% increased odds of developing Diabetes as a result of statins) and OR of 2.63 in risk of myopathy (translated 163% increased odds of developing myopathy as a result of statins).  Seems the authors "low risk" statement is just applies to those without symptoms/side effects.  Physicians need to do a better job of understanding risks and customizing therapies.
1More

What are diabetes complications and how you can avoid them - 0 views

  •  
    Diabetes complications are avoidable: find out how good control of blood sugar helps in reducing your chances of getting these debilitating complications
1More

Mortality and Other Important Diabetes-Related Outcomes With Insulin vs Other Antihyper... - 0 views

  •  
    Insulin therapy in people with type II diabetes shown to increase complications, cancer, and mortality.  The reason?  Insulin is not the problem.  Treat the cause.  Diabetes can not be properly managed without dietary changes and weight loss.
1 - 20 of 569 Next › Last »
Showing 20 items per page