Skip to main content

Home/ Dr. Goodyear/ Group items tagged dehydroascorbic acid

Rss Feed Group items tagged

Nathan Goodyear

Phase I safety trial of intravenous ascorbic acid in patients with severe sepsis - 1 views

  • Padayatty and colleagues showed that high-level ascorbic acid plasma concentrations could only be achieved by intravenous administration
  • No patient in the low or high dose ascorbic acid treatment arms of this study suffered any identifiable adverse event
  • a pharmacologic ascorbic acid treatment strategy in critically ill patients with severe sepsis appears to be safe
  • ...7 more annotations...
  • subnormal plasma ascorbic acid levels are a predictable feature in patients with severe sepsis
  • Ascorbic acid depletion in sepsis results from ascorbic acid consumption by the reduction of plasma free iron, ascorbic acid consumption by the scavenging of aqueous free radicals (peroxyl radicals), and by the destruction of the oxidized form of ascorbic acid dehydroascorbic acid
  • Sepsis further inhibits intracellular reduction of dehydroascorbic acid, producing acute intracellular ascorbic acid depletion
  • Ascorbic acid treated patients in this study exhibited rapid and sustained increases in plasma ascorbic acid levels using an intermittent every six hours administration protocol
  • Septic ascorbic acid-deficient neutrophils fail to undergo normal apoptosis. Rather, they undergo necrosis thereby releasing hydrolytic enzymes in tissue beds, thus contributing to organ injury
  • We speculate that intravenous ascorbic acid acts to restore neutrophil ascorbic acid levels
  • Repletion of ascorbic acid in this way allows for normal apoptosis, thus, preventing the release of organ damaging hydrolytic enzymes.
  •  
    Study finds IV vitamin C in patients with sepsis is very safe and blunts the effects (endothelial damage, end organ damage...) of sepsis.  Of note, the IV vitamin C group reached serum levels of ascorbic acid of 1,592 to 5,722 micromol/L.  The IV groups maintained elevated serum C levels for up to 96 hours post infusion.  
Nathan Goodyear

Dehydroascorbic acid, a blood-brain barrier transportable form of vitamin C, mediates p... - 0 views

  •  
    vitamin C does not cross the BBB, but its oxidize form, dehydroascorbic acid does.  This experimental model looked at IV DHA. The findings was that IV DHA resulted in higher brain C levels compared to IV vitamin C.
Nathan Goodyear

Clinical experience with intravenous administration of ascorbic acid: achievable levels... - 0 views

  • Patients with higher tumor markers are likely to have higher tumor burden, higher oxidative stress and, therefore, are more likely to have lower post IVC plasma levels.
  • Our data also showed that cancer patients with metastasis tend to have lower post-IVC vitamin C levels than those without metastasis
  • Lower peak plasma concentrations are obtained in cancer patients than in healthy subjects. Cancer patients who are deficient in vitamin C prior to therapy tend to achieve lower plasma levels post infusion.
  • ...25 more annotations...
  • Patients with higher inflammation or tumor burdens, as measured by CRP levels or tumor antigen levels, tend to show lower peak plasma ascorbate levels after IVC.
  • Patients with metastatic tumors tend to achieve lower post infusion plasma ascorbate levels than those with localized tumors.
  • Meta-analyses of clinical studies involving cancer and vitamins also conclude that antioxidant supplementation does not interfere with the efficacy of chemotherapeutic regiments
  • Most of the prostate cancer patients studied, 75±19% (95% confidence), showed reductions in PSA levels during the course of their IVC therapy
  • Laboratory studies suggest that, at high concentrations, ascorbate does not interfere with chemotherapy or irradiation and may enhance efficacy in some situations
  • Cameron and Pauling observed fourfold survival times in terminal cancer patients treated with intravenous ascorbate infusions followed by oral supplementation
  • The inflammatory microenvironment of cancer cells leads to increasing oxidative stress, which apparently depletes vitamin C, resulting in lower plasma ascorbate concentrations in blood samples post IVC infusion. Another explanation for this finding may be that cancers are themselves more metabolically active in their uptake of vitamin C, causing subjects to absorb more of the vitamin, and as a results show lower plasma ascorbate concentrations in blood post IVC infusion.
  • patients with severely elevated CRP levels attain plasma ascorbate concentrations after IVC infusions that are only 65% of those attained for subjects with normal CRP levels
  • The finding of decreased plasma ascorbate levels in cancer patients may relate to the molecular structure of ascorbic acid; in particular, the similarity of its oxidized form, dihydroascorbic acid, to glucose
  • Since tumor have increased requirement for glucose [67], transport of dehydroascorbate into the cancer cells via glucose transport molecules and ascorbate through sodium-dependent transporter may be elevated
  • Increased accumulation of ascorbic acid in the tumor site was supported by measurements of the level of ascorbic acid in tumors in animal experiments
  • patients with advanced malignancies may have lower level of ascorbic acid in tissue, creating a higher demand for the vitamin C
  • IVC therapy appears to reduce CRP levels in cancer patients.
  • CRP concentrations directly correlate with disease activity in many cases and can contribute to disease progression through a range of pro-inflammatory properties.
  • Being an exquisitely sensitive marker of systemic inflammation and tissue damage, CRP is very useful in screening for organic disease and monitoring treatment responses
  • ncreases in CRP concentrations have been associated with poorer prognosis of survival in cancer patients, particularly with advance disease independent of tumor stage
  • Regarding inflammation, 73±13% of subjects (95% confidence) showed a reduction in CRP levels during therapy. This was an even more dramatic 86±13% (95% confidence) in subjects who started therapy with CRP levels above 10 mg/L
  • patients treated by IVC with follow-up several year showed that suppression of inflammation in cancer patients by high-dose IVC is feasible and potentially beneficial
  • Inflammation is a marker of high cancer risk, and poor treatment outcome
  • The subjects with highly elevated CRP concentrations have a three-fold elevation “all-cause” mortality risk and a twenty-eight fold increase in cancer mortality risk
  • cancer patients may need higher doses to achieve a given plasma concentration.
  • patients with lower vitamin C levels may see more distribution of intravenously administered ascorbate into tissues and thus attain less in plasma.
  • When treating patients with IVC, the first treatment likely serves to replenish depleted tissue stores, if those subjects were vitamin C deficient at the beginning of the treatment. Then, in subsequent treatments, with increasing doses, higher plasma concentrations can be attained. On-going treatments serve to progressively reduce oxidative stress in cancer patients.
  • large doses given intravenously may result in maximum plasma concentrations of roughly 30 mM, a level that has been shown to be sufficient for preferential cytotoxicity against cancer cells
  • oral intake of vitamin C exceeded 200 mg administered once daily, it was difficult to increase plasma and tissue concentrations above roughly 200 μM.
  •  
    Great review on the use of IV vitamin C in cancer and to reduce inflammation.  The article does a great job of discussing the mechanism of vitamin C therapy in cancer as well as the proposed reasons for low vitamin C in cancer patients.  The study also highlights the obstacles to rise in vitamin C levels post IV vitamin C in cancer patients.
Nathan Goodyear

Pharmacologic ascorbic acid concentrations selectively kill cancer cells: Action as a p... - 0 views

  • Taken together, these data indicate that ascorbate at concentrations achieved only by i.v. administration may be a pro-drug for formation of H2O2, and that blood can be a delivery system of the pro-drug to tissues.
  • These findings give plausibility to i.v. ascorbic acid in cancer treatment, and have unexpected implications for treatment of infections where H2O2 may be beneficial
  • pharmacologic concentrations of ascorbate killed cancer but not normal cells, that cell death was dependent only on extracellular but not intracellular ascorbate, and that killing was dependent on extracellular hydrogen peroxide (H2O2) formation with ascorbate radical as an intermediate
  • ...48 more annotations...
  • Our data show that ascorbic acid selectively killed cancer but not normal cells, using concentrations that could only be achieved by i.v. administration
  • Ascorbate-mediated cell death was due to protein-dependent extracellular H2O2 generation, via ascorbate radical formation from ascorbate as the electron donor. Like glucose, when ascorbate is infused i.v., the resulting pharmacologic concentrations should distribute rapidly in the extracellular water space (42). We showed that such pharmacologic ascorbate concentrations in media, as a surrogate for extracellular fluid, generated ascorbate radical and H2O2. In contrast, the same pharmacologic ascorbate concentrations in whole blood generated little detectable ascorbate radical and no detectable H2O2. These findings can be accounted for by efficient and redundant H2O2 catabolic pathways in whole blood (e.g., catalase and glutathione peroxidase) relative to those in media or extracellular fluid
  • ascorbic acid administered i.v. in pharmacologic concentrations may serve as a pro-drug for H2O2 delivery to the extracellular milieu
  • H2O2 generated in blood is normally removed by catalase and glutathione peroxidase within red blood cells, with internal glutathione providing reducing equivalents
  • The electron source for glutathione is NADPH from the pentose shunt, via glucose-6-phosphate dehydrogenase. If activity of this enzyme is diminished, the predicted outcome is impaired H2O2 removal causing intravascular hemolysis, the observed clinical finding.
    • Nathan Goodyear
       
      The mechansism here is inadequate recycling of GSH due to lack of G6PD, build up of intracellular H2O2 and RBC lysis--hemolysis.
  • Only recently has it been understood that the discordant clinical findings can be explained by previously unrecognized fundamental pharmacokinetics properties of ascorbate
  • Intracellular transport of ascorbate is tightly controlled in relation to extracellular concentration
  • Intravenous ascorbate infusion is expected to drastically change extracellular but not intracellular concentrations
  • For i.v. ascorbate to be clinically useful in killing cancer cells, pharmacologic but not physiologic extracellular concentrations should be effective, independent of intracellular ascorbate concentrations.
    • Nathan Goodyear
       
      accumulation of extracellular vitamin C is the effect.
  • It is unknown why ascorbate, via H2O2, killed some cancer cells but not normal cells.
  • There was no correlation with ascorbate-induced cell death and glutathione, catalase activity, or glutathione peroxidase activity.
  • H2O2, as the product of pharmacologic ascorbate concentrations, has potential therapeutic uses in addition to cancer treatment, especially in infections
  • Neutrophils generate H2O2 from superoxide,
  • i.v. ascorbate is effective in some viral infections
  • H2O2 is toxic to hepatitis C
  • Use of ascorbate as an H2O2-delivery system against sensitive pathogens, viral or bacterial, has substantial clinical implications that deserve rapid exploration.
  • Recent pharmacokinetics studies in men and women show that 10 g of ascorbate given i.v. is expected to produce plasma concentrations of nearly 6 mM, which are >25-fold higher than those concentrations from the same oral dose
  • As much as a 70-fold difference in plasma concentrations is expected between oral and i.v. administration,
  • Complementary and alternative medicine practitioners worldwide currently use ascorbate i.v. in some patients, in part because there is no apparent harm
  • Human Burkitt's lymphoma cells
  • We first investigated whether ascorbate in pharmacologic concentrations selectively affected the survival of cancer cells by studying nine cancer cell lines
  • Clinical pharmacokinetics analyses show that pharmacologic concentrations of plasma ascorbate, from 0.3 to 15 mM, are achievable only from i.v. administration
  • plasma ascorbate concentrations from maximum possible oral doses cannot exceed 0.22 mM because of limited intestinal absorption
  • For five of the nine cancer cell lines, ascorbate concentrations causing a 50% decrease in cell survival (EC50 values) were less than 5 mM, a concentration easily achievable from i.v. infusion
  • All tested normal cells were insensitive to 20 mM ascorbate.
    • Nathan Goodyear
       
      meaning safe.
  • Lymphoma cells were selected because of their sensitivity to ascorbate
  • As ascorbate concentration increased, the pattern of death changed from apoptosis to pyknosis/necrosis, a pattern suggestive of H2O2-mediated cell death
  • Apoptosis occurred by 6 h after exposure, and cell death by pyknosis was ≈90% at 14 h after exposure
    • Nathan Goodyear
       
      work continued beyond the IVC therapy itself
  • In contrast to lymphoma cells, there was little or no killing of normal lymphocytes and monocytes by ascorbate
  • Ascorbate is transported into cells as such by sodium-dependent transporters, whereas dehydroascorbic acid is transported into cells by glucose transporters and then immediately reduced internally to ascorbate
  • Whether or not intracellular ascorbate was preloaded, extracellular ascorbate induced the same amount and type of death.
  • extracellular ascorbate in pharmacologic concentrations mediates death of lymphoma cells by apoptosis and pyknosis/necrosis, independently of intracellular ascorbate.
  • H2O2 as the effector species mediating pharmacologic ascorbate-induced cell death
  • Superoxide dismutase was not protective
  • Because these data implicated H2O2 in cell killing, we added H2O2 to lymphoma cells and studied death patterns using nuclear staining (19, 28). The death patterns found with exogenous H2O2 exposure were similar to those found with ascorbate
  • For both ascorbate and H2O2, death changed from apoptosis to pyknosis/necrosis as concentrations increased
  • Sensitivity to direct exposure to H2O2 was greater in lymphoma cells compared with normal lymphocytes and normal monocytes
  • There was no association between the EC50 for ascorbate-mediated cell death and intracellular glutathione concentrations, catalase activity, or glutathione peroxidase activity
  • H2O2 generation was dependent on time, ascorbate concentration, and the presence of trace amounts of serum in media
  • ascorbate radical is a surrogate marker for H2O2 formation.
  • whatever H2O2 is generated should be removed by glutathione peroxidase and catalase within red blood cells, because H2O2 is membrane permeable
  • The data are consistent with the hypothesis that ascorbate in pharmacologic concentrations is a pro-drug for H2O2 generation in the extracellular milieu but not in blood.
  • The occurrence of one predicted complication, oxalate kidney stones, is controversial
  • In patients with glucose-6-phosphate dehydrogenase deficiency, i.v. ascorbate is contraindicated because it causes intravascular hemolysis
  • ascorbate at pharmacologic concentrations in blood is a pro-drug for H2O2 delivery to tissues.
  • ascorbate, an electron-donor in such reactions, ironically initiates pro-oxidant chemistry and H2O2 formation
  • data here showed that ascorbate initiated H2O2 formation extracellularly, but H2O2 targets could be either intracellular or extracellular, because H2O2 is membrane permeant
    • Nathan Goodyear
       
      the conversion of ascorbate to H2O2 occurs extracellular
  • More than 100 patients have been described, presumably without glucose-6-phosphate dehydrogenase deficiency, who received 10 g or more of i.v. ascorbate with no reported adverse effects other than tumor lysis
  •  
    IV vitamin C benefits cancer patients
Nathan Goodyear

Total vitamin C, ascorbic acid, and dehydroascorbic acid concentrations in plasma of cr... - 0 views

  •  
    Vitamin levels decreased in critically ill.
Nathan Goodyear

Pharmacologic ascorbic acid concentrations selectively kill cancer cells: Action as a p... - 0 views

  • Ascorbate is transported into cells as such by sodium-dependent transporters, whereas dehydroascorbic acid is transported into cells by glucose transporters and then immediately reduced internally to ascorbate
  •  
    vitamin C inhibits tumor growth via prooxidant effect of vitamin C.
Nathan Goodyear

Expression and/or activity of the SVCT2 ascorbate transporter may be decreased in many ... - 0 views

  •  
    To be fully read later.
Nathan Goodyear

Ascorbic acid: Chemistry, biology and the treatment of cancer - 0 views

  • iron and ascorbate has long been used as an oxidizing system; the combination of these two reagents is referred to as the Udenfriend system
  • ascorbate serves as a reducing cofactor for many enzymes
  • uptake of ascorbate from the intestinal tract is very tightly controlled
  • ...11 more annotations...
  • pharmacokinetic data indicate that intravenous administration of ascorbate can bypass this tight control resulting in highly elevated plasma levels
  • ascorbate readily oxidizes to produce H2O2, pharmacological ascorbate has been proposed as a prodrug for the delivery of H2O2 to tumors
  • Ascorbate is an excellent reducing agent and readily undergoes two consecutive, one-electron oxidations to form ascorbate radical (Asc•−) and dehydroascorbic acid (DHA)
  • Ascorbate oxidizes readily. The rate of oxidation is dependent on pH and is accelerated by catalytic metals
  • In near-neutral buffers with contaminating metals, the oxidation and subsequent loss of ascorbate can be very rapid
  • Ascorbate is required for maintaining iron in the ferrous state
  • In the presence of catalytic metal ions, ascorbate can also exert pro-oxidant effects
  • Ascorbate is an excellent one-electron reducing agent that can reduce ferric (Fe3+) to ferrous (Fe2+) iron, while being oxidized to ascorbate radical
  • In a classic Fenton reaction, Fe2+ reacts with H2O2 to generate Fe3+ and the very oxidizing hydroxyl radical
  • e presence of ascorbate can allow the recycling of Fe3+ back to Fe2+, which in turn will catalyze the formation of highly reactive oxidants from H2O2
  • Depending on concentrations, the effects of ascorbate on models of lipid peroxidation can be pro- or antioxidant
  •  
    ferritin released enhanced pharmacologic ascorbate induced-cytotoxicity, indicating that ferritin with high iron-saturation could be a source of catalytic iron. Consistent with this, ascorbate has also been shown to be capable of releasing iron from cellular ferritin
Nathan Goodyear

Transport of Vitamin C in Cancer | Antioxidants & Redox Signaling - 0 views

  •  
    Need to access full article to read.
1 - 17 of 17
Showing 20 items per page