Skip to main content

Home/ science/ Group items matching "gave" in title, tags, annotations or url

Group items matching
in title, tags, annotations or url

Sort By: Relevance | Date Filter: All | Bookmarks | Topics Simple Middle
thinkahol *

Mental problems gave early humans an edge - life - 07 November 2011 - New Scientist - 0 views

  •  
    Some argue that these genes bring benefits - mental illness and genius have a long-standing link - but archaeologist Penny Spikins at the University of York, UK, goes further. She believes that mental illness and conditions such as autism persist at such high levels because in the past they were advantageous to humanity. "I think that part of the reason Homo sapiens were so successful is because they were willing to include people with different minds in their society - people with autism or schizophrenia, for example."
Erich Feldmeier

Hachung Chung Species-Specific Microbes May Be Key to a Healthy Immune System: Scientific American - 0 views

  •  
    "Mice have a jungle of bacteria, viruses and fungi in their stomachs-and so do we. These microorganisms help both mice and us break down dinner. As we are finding, these bugs also help to regulate the immune system. But we are just starting to learn how these tiny organisms influence us and how changing their composition changes us... Interestingly, though, the mice with these microbes did not: their immune systems remained underdeveloped. Even when researchers gave rat microbiota to mice, the mice's immune systems failed to mature"
Charles Daney

Fossils Push Back Earliest Complex Animals 40 Million Years | Wired.com - 1 views

  •  
    A series of fossils unearthed in southwestern China has revealed the origins of complex life in unprecedented detail, and pushed its beginning back by at least 40 million years. The specimens come from the Doushantuo formation, a layer of sediments deposited about 590 million years ago, just before the Ediacaran period's primordial fauna gave way to the kaleidoscopically complex creatures of the Cambrian explosion.
Skeptical Debunker

Does promiscuity prevent extinction? - 0 views

  • Known as 'polyandry' among scientists, the phenomenon of females having multiple mates is shared across most animal species, from insects to mammals. This study suggests that polyandry reduces the risk of populations becoming extinct because of all-female broods being born. This can sometimes occur as a result of a sex-ratio distortion (SR) chromosome, which results in all of the Y chromosome 'male' sperm being killed before fertilisation. The all-female offspring will carry the SR chromosome, which will be passed on to their sons in turn resulting in more all-female broods. Eventually there will be no males and the population will die out. For this study, the scientists worked with the fruitfly Drosophila pseudoobscura. They gave some populations the opportunity to mate naturally, meaning that the females had multiple partners. The others were restricted to having one mate each. They bred several generations of these populations, so they could see how each fared over time. Over fifteen generations, five of the twelve populations that had been monogamous became extinct as a result of males dying out. The SR chromosome was far less prevalent in the populations in which females had the opportunity to have multiple mates and none of these populations became extinct. The study shows how having multiple mates can suppress the spread of the SR chromosome, making all-female broods a rarity. This is because males that carry the SR chromosome produce only half as many sperm as normal males. When a female mates with multiple males, their sperm will compete to fertilise her eggs. The few sperm produced by males carrying the SR chromosome are out-competed by the sperm from normal males, and the SR chromosome cannot spread.
  •  
    Promiscuous females may be the key to a species' survival, according to new research by the Universities of Exeter and Liverpool. Published today (25 February) in Current Biology, the study could solve the mystery of why females of most species have multiple mates, despite this being more risky for the individual.
Skeptical Debunker

Human cells exhibit foraging behavior like amoebae and bacteria - 0 views

  • "As far as we can tell, this is the first time this type of behavior has been reported in cells that are part of a larger organism," says Peter T. Cummings, John R. Hall Professor of Chemical Engineering, who directed the study that is described in the March 10 issue of the Public Library of Science journal PLoS ONE. The discovery was the unanticipated result of a study the Cummings group conducted to test the hypothesis that the freedom with which different cancer cells move - a concept called motility - could be correlated with their aggressiveness: That is, the faster a given type of cancer cell can move through the body the more aggressive it is. "Our results refute that hypothesis—the correlation between motility and aggressiveness that we found among three different types of cancer cells was very weak," Cummings says. "In the process, however, we began noticing that the cell movements were unexpectedly complicated." Then the researchers' interest was piqued by a paper that appeared in the February 2008 issue of the journal Nature titled, "Scaling laws of marine predator search behaviour." The paper contained an analysis of the movements of a variety of radio-tagged marine predators, including sharks, sea turtles and penguins. The authors found that the predators used a foraging strategy very close to a specialized random walk pattern, called a Lévy walk, an optimal method for searching complex landscapes. At the end of the paper's abstract they wrote, "...Lévy-like behaviour seems to be widespread among diverse organisms, from microbes to humans, as a 'rule' that evolved in response to patchy resource distributions." This gave Cummings and his colleagues a new perspective on the cell movements that they were observing in the microscope. They adopted the basic assumption that when mammalian cells migrate they face problems, such as efficiently finding randomly distributed targets like nutrients and growth factors, that are analogous to those faced by single-celled organisms foraging for food. With this perspective in mind, Alka Potdar, now a post-doctoral fellow at Case Western Reserve University and the Cleveland Clinic, cultured cells from three human mammary epithelial cell lines on two-dimensional plastic plates and tracked the cell motions for two-hour periods in a "random migration" environment free of any directional chemical signals. Epithelial cells are found throughout the body lining organs and covering external surfaces. They move relatively slowly, at about a micron per minute which corresponds to two thousandths of an inch per hour. When Potdar carefully analyzed these cell movements, she found that they all followed the same pattern. However, it was not the Lévy walk that they expected, but a closely related search pattern called a bimodal correlated random walk (BCRW). This is a two-phase movement: a run phase in which the cell travels primarily in one direction and a re-orientation phase in which it stays in place and reorganizes itself internally to move in a new direction. In subsequent studies, currently in press, the researchers have found that several other cell types (social amoeba, neutrophils, fibrosarcoma) also follow the same pattern in random migration conditions. They have also found that the cells continue to follow this same basic pattern when a directional chemical signal is added, but the length of their runs are varied and the range of directions they follow are narrowed giving them a net movement in the direction indicated by the signal.
  •  
    When cells move about in the body, they follow a complex pattern similar to that which amoebae and bacteria use when searching for food, a team of Vanderbilt researchers have found. The discovery has a practical value for drug development: Incorporating this basic behavior into computer simulations of biological processes that involve cell migration, such as embryo development, bone remodeling, wound healing, infection and tumor growth, should improve the accuracy with which these models can predict the effectiveness of untested therapies for related disorders, the researchers say.
Ivan Pavlov

Evolution: Revelatory relationship - 0 views

  • The most likely scenario for the emergence of eukaryotes is that they arose from a symbiosis in which the host was an archaeal cell and the symbiont was a bacterium. According to this theory, the bacterial symbiont subsequently gave rise to the mitochondria -- the intracellular organelles that are responsible for energy production in eukaryotic cells. One hypothesis proposes that the archaeal host was dependent on hydrogen for its metabolism, and that the precursor of the mitochondria produced it. This "hydrogen hypothesis" posits that the two partner cells presumably lived in an anoxic environment that was rich in hydrogen, and if they were separated from the hydrogen source they would have become more dependent on one another for survival potentially leading to an endosymbiotic event
1 - 6 of 6
Showing 20 items per page