Skip to main content

Home/ qmstech2/ Group items matching "and" in title, tags, annotations or url

Group items matching
in title, tags, annotations or url

Sort By: Relevance | Date Filter: All | Bookmarks | Topics Simple Middle
1More

Geothermal Energy: Resource Exploration and Drilling Impacts - 1 views

  •  
    "Primary sources of noise associated with exploration include earth-moving equipment (related to road, well pad, and sump pit construction), vehicle traffic, seismic surveys, blasting, and drill rigoperations. Well drilling and testing activities are estimated to produce noise levels ranging from about 80 to 115 decibels at the site boundary. Air Quality Emissions generated during the exploration and drilling phase include exhaust from vehicular traffic and drill rigs, fugitive dust from traffic on paved and unpaved roads, and the release of geothermal fluid vapors (especially hydrogen sulfide, carbon dioxide, mercury, arsenic, and boron, if present in the reservoir). Initial exploration activities such as surveying and sampling would have minimal air quality impacts. Activities such as site clearing and grading, road construction, well pad development, sump pit construction, and the drilling of production and injection wells would have more intense exhaust-related emissions over a period of 1 to 5 years. Impacts would depend upon the amount, duration, location, and characteristics of the emissions and the meteorological conditions (e.g., wind speed and direction, precipitation, and relative humidity). Emissions during this phase would not have a measurable impact on climate change. State and local regulators may require permits and air monitoring programs. Cultural Resources Cultural resources could be impacted if additional roads or routes are developed across or within the historic landscape of a cultural resource. Additional roads could lead to increased surface and subsurface disturbance that could increase illegal collection and vandalism. The magnitude and extent of impacts would depend on the current state of the resources and their eligibility for the National Register of Historic Places. Drilling activities could result in long-term impacts on archeological artifacts and historic buildings or structures, if present. Surveys conducted during this phase
21More

Is Current Wind Growth Sustainable? | Renewable Energy World Magazine Article - 0 views

  • wind farms are not only capital intensive but also have a long gestation period – could prove to be prohibitive for many potential investors.
  • terms of global policy, governments need to boost investments in onshore and offshore wind generation through the right mix of supportive policies and incentives.
  • wind energy will become even more attractive as it serves as an insurance against future increases in fuel and carbon prices, while reducing our dependency on fossil fuels imported from volatile regions.
  • ...17 more annotations...
  • Both in Europe and in the US, some 40% of all new power generating capacity installed in the past two years was wind energy. If the economic crisis continues, however, the reduction in power demand will start to impact wind energy, simply because of lower demand for new power plants. Nevertheless, the medium and long-term outlook remains very healthy, as political momentum is building towards a low carbon economy, without which humankind will not overcome three of the biggest concerns of our time – climate protection, energy security and the provision of jobs.
  • Wind power’s credentials as a rapidly deployable clean technology have put it at the forefront in the fight against climate change. Neither new nuclear capacity or carbon capture and storage (CCS) will contribute to CO2 reductions within the timeframe that the climate scientists give us. As a no-fuel, no-carbon emissions source of electricity, wind energy will play a big part in reducing carbon emissions before 2020.
  • A key element for policy makers is to dramatically improve competition in power markets, to ensure that investors, rather than consumers, are exposed to
  • The growth in wind power capacity has shown no signs of slowing, even in these tough economic times. For two years running there has been more new wind power capacity installed than any other power generating technology in Europe – including coal, gas and nuclear. In 2009 the European market for wind turbines experienced a 23% growth rate, the same as the average growth rate over the last 15 years.
  • future carbon and fuel price risk.
  • Wind power is a leader now, and will remain so in the future, attracting big investments and creating jobs. There is a boom waiting to happen in offshore wind energy. But, Europe’s ageing electricity grids must be upgraded and extended, and the EU must also pursue a drive to build an offshore grid in the North and Baltic seas that will connect offshore wind farms to the shore, piping vast amounts of CO2-free energy to consumers at affordable prices.
  • cleaner energy
  • he fact that wind is the most cost effective and scalable renewable source of energy.
  • past several years.
  • dynamic growth rate of the
  • Because of the small size of the existing installed base, the offshore wind sector will see higher growth percentages while the number of onshore turbines will continue to outpace those installed offshore.
  • Continued investment in grid infrastructure is critical for growth as well as wind turbine technology investments that improve efficiency and reliability while driving down emissions. Countries with the most efficient and flexible permitting processes will benefit by realizing the installation of the most advanced technology.
  • but renewable sources, and in large part, wind energy, have an extremely important role to play.
  • A fundamental value of wind is that it lowers risk in the overall generation mix by bringing in a fixed electricity cost. You don’t have any fuel risk, so you don’t have these big price spikes that you see when you generate electricity from gas or oil.
  • The wind power market is still intact. Demand for ‘green’ power stations remains unabated and nearly all governments have adopted policies aimed at environmental sustainability.
  • As our industry is still very young, wind power currently contributes only around 1.5% to global electricity supplies.
  • this merely serves to highlight the enormous potential for the future, especially as wind power is not only clean but also inexpensive. This is something that more and more governments and energy companies are realizing.
  •  
    "The growth in wind power capacity has shown no signs of slowing, even in these tough economic times. For two years running there has been more new wind power capacity installed than any other power generating technology in Europe - including coal, gas and nuclear. In 2009 the European market for wind turbines experienced a 23% growth rate, the same as the average growth rate over the last 15 years."Both in Europe and in the US, some 40% of all new power generating capacity installed in the past two years was wind energy. If the economic crisis continues, however, the reduction in power demand will start to impact wind energy, simply because of lower demand for new power plants. Nevertheless, the medium and long-term outlook remains very healthy, as political momentum is building towards a low carbon economy, without which humankind will not overcome three of the biggest concerns of our time - climate protection, energy security and the provision of jobs." "Wind power is a leader now, and will remain so in the future, attracting big investments and creating jobs. There is a boom waiting to happen in offshore wind energy. But, Europe's ageing electricity grids must be upgraded and extended, and the EU must also pursue a drive to build an offshore grid in the North and Baltic seas that will connect offshore wind farms to the shore, piping vast amounts of CO2-free energy to consumers at affordable prices."
1More

What are the advantages and disadvantages of solar energy - 0 views

  •  
    "Advantages: Solar power gives you a return on your investment, while paying your utility for electricity gives you 0% return. Solar energy is renewable unlike the conventional resources (coal, oil) which will inevitably run out. Non-polluting, no carbon dioxide like fossil fuels Free except for capital expenses. Longevity - solar panels can last over twenty years Low maintenance - solar panels require very little upkeep Independence - an off-grid system allows you to break free from the electrical grid Environmentally friendly because the conversion of energy doesn't produce any carbon dioxide. It comes from the sun, which, unless you are in The South or North pole, comes out almost everyday Solar power is better for the environment, compared to burning fossil fuels and other electrical power. sun is renewable You get clean energy without harming the environment [in term of carbon emissions] , in certain countries, excessive power generated can be sold back to local electricity provider reduces pollution helps create jobs - shores up economy - to build -> you hire - innovate-maintain - basically economic activities reduced dependence on fossil fuels Once installed, the power is free It is environmentally friendly and no pollution is associated with solar power You can sell your excess power back to the power companies It can be installed anywhere You can use batteries to store power for use at night Energy from the sun is renewable, that is, it keeps on coming It is free It does no damage to the earth or its atmosphere It produces no carbon dioxide It doesn't have to be dug up from the ground like coal, oil, natural gas, or uranium It doesn't have to be cut down, like wood from forests. It produces clean, green power in the form of electricity and can be used to power just about everything we need. There is more solar energy landing on the earth every day than it would take to supply the world for a year. Solar energy can heat swimming pools, power calcul
15More

Tidal Energy | Pros for Wave and Tidal Power - 3 views

  • Tidal energy is one of the oldest forms of energy used by humans. Indeed, tide mills, in use on the Spanish, French and British coasts, date back to 787 A.D.. Tide mills consisted of a storage pond, filled by the incoming (flood) tide through a sluice and emptied during the outgoing (ebb) tide through a water wheel. The tides turned waterwheels, producing mechanical power to mill grain. We even have one remaining in New York- which worked well into the 20th century.
  • Tidal power is non-polluting, reliable and predictable.Tidal barrages, undersea tidal turbines - like wind turbines but driven by the sea - and a variety of machines harnessing undersea currents are under development. Unlike wind and waves, tidal currents are entirely predictable.
  • A tidal range of at least 7 m is required for economical operation and for sufficient head of water for the turbines
  • ...10 more annotations...
  • Currently, although the technology required to harness tidal energy is well established, tidal power is expensive, and there is only one major tidal generating station in operation. This is a 240 megawatt (1 megawatt = 1 MW = 1 million watts) at the mouth of the La Rance river estuary on the northern coast of France
  • Tidal electricity can be used to displace electricity which would otherwise be generated by fossil fuel (coal, oil, natural gas) fired power plants, thus reducing emissions of greenhouse and acid gasses.
  • There is a high capital cost for a tidal energy project, with possibly a 10-year construction period.
  • Electricity can be generated by water flowing both into and out of a bay. As there are two high and two low tides each day, electrical generation from tidal power plants is characterized by periods of maximum generation every twelve hours, with no electricity generation at the six hour mark in between.
  • Tidal energy is a renewable source of electricity which does not result in the emission of gases responsible for global warming or acid rain associated with fossil fuel generated electricity. Use of tidal energy could also decrease the need for nuclear power, with its associated radiation risks. Changing tidal flows by damming a bay or estuary could, however, result in negative impacts on aquatic and shoreline ecosystems, as well as navigation and recreation.
  • Indeed, tide mills, in use on the Spanish, French and British coasts,
  • date back to 787 A.D..
  • Tidal power is non-polluting, reliable and predictable.Tidal barrages, undersea tidal turbines - like wind turbines but driven by the sea - and a variety of machines harnessing undersea currents are under development. Unlike wind and waves, tidal currents are entirely predictable.
  • idal energy is one of the oldest forms of energy used by humans. Indeed, tide mills, in use on the Spanish, French and British coasts, date back to 787 A.D.. Tide mills consisted of a storage pond, filled by the incoming (flood) tide through a sluice and emptied during the outgoing (ebb) tide through a water wheel. The tides turned waterwheels, producing mechanical power to mill grain. We even have one remaining in New York- which worked well into the 20th century. Tidal power is non-polluting, reliable and predictable.Tidal barrages, undersea tidal turbines - like wind turbines but driven by the sea - and a variety of machines harnessing undersea currents are under development. Unlike wind and waves, tidal currents are entirely predictable.
  • Tidal power is non-polluting, reliable and predictable.Tidal barrages, undersea tidal turbines - like wind turbines but driven by the sea - and a variety of machines harnessing undersea currents are under development. Unlike wind and waves, tidal currents are entirely predictable.
  •  
    "Tidal power is non-polluting, reliable and predictable.Tidal barrages, undersea tidal turbines - like wind turbines but driven by the sea - and a variety of machines harnessing undersea currents are under development. Unlike wind and waves, tidal currents are entirely predictable."
  •  
    when it started to be used and who it was used by.
3More

Geothermal Energy: Construction Impacts - 0 views

  • Emissions generated during the construction phase include exhaust from vehicular traffic and construction equipment, fugitive dust from traffic on paved and unpaved roads, and the release of geothermal fluid vapors (especially hydrogen sulfide, carbon dioxide, mercury, arsenic, and boron, if present in the reservoir). Activities such as site clearing and grading, power plant and pipeline system construction, and transmission line construction would have more intense exhaust-related emissions over a period of 2 to 10 years. Impacts would depend upon the amount, duration, location, and characteristics of the emissions and the meteorological conditions (e.g., wind speed and direction, precipitation, and relative humidity).
  • Most impacts to ecological resources (vegetation, wildlife, aquatic biota, special status species, and their habitats) would be low to moderate and localized during the construction phase (although impacts due to noise could be high). Activities such as site clearing and grading, road construction, power plant construction, ancillary facility construction, and vehicle traffic have the potential to affect ecological resources by disturbing habitat, increasing erosion and runoff, and creating noise at the project site. Impacts to vegetation include loss of native species and species diversity; increased risk of invasive species; increased risk of topsoil erosion and seed bank depletion; increased risk of fire; and alteration of water and seed dispersal.
  • Solid and industrial waste would be generated during construction activities. Much of the solid waste would be nonhazardous, consisting of containers and packaging materials, miscellaneous wastes from equipment assembly and presence of construction crews (food wrappers and scraps), and woody vegetation. Industrial wastes would include minor amounts of paints, coatings, and spent solvents. Most of these materials would likely be transported off-site for disposal.
8More

Sierra Club Green Home » Blog Archive Fuel Cells: Environmental Benefits » Si... - 0 views

  • The use of fuel cells can significantly diminish our dependency on foreign oil. Since fuel cells make energy electrochemically and do not burn fuel like conventional combustion systems, they are much more efficient. Admittedly, some fuel cells need fossil fuels to start their functions; most residential systems run partially off of natural gas. If just 20% of the cars in America used fuel cells, we could cut oil imports by 1.5 million barrels per day. This is $44 billion per year that could remain in the country!
  • The use of fuel cells can significantly diminish our dependency on foreign oil. Since fuel cells make energy electrochemically and do not burn fuel like conventional combustion systems, they are much more efficient. Admittedly, some fuel cells need fossil fuels to start their functions; most residential systems run partially off of natural gas. If just 20% of the cars in America used fuel cells, we could cut oil imports by 1.5 million barrels per day. This is $44 billion per year that could remain in the country!
  • The use of fuel cells can significantly diminish our dependency on foreign oil. Since fuel cells make energy electrochemically and do not burn fuel like conventional combustion systems, they are much more efficient. Admittedly, some fuel cells need fossil fuels to start their functions; most residential systems run partially off of natural gas. If just 20% of the cars in America used fuel cells, we could cut oil imports by 1.5 million barrels per day. This is $44 billion per year that could remain in the country!
  • ...4 more annotations...
  • fuel cells
  • metimes produce a by-product of water or heat, though hydrogen fuel cells are considered more difficult to work with because of transportation and storage. More user friendly fuel cells which use natural gas with emissions that are much lower than those produced by conventional engines or energy sources and can reduce your carbon footprint by around 40%. Additionally, there are only negligible levels of NOx, SOx, Volatile organic compounds and particulates, which is a drastic improvement over traditional means of grid power production. Besides the decreased CO2 emissions and high efficiency rates, fuel c
  • The use of fuel cells can significantly diminish our dependency on foreign oil. Since fuel cells make energy electrochemically and do not burn fuel like conventional combustion systems, they are much more efficient. Admittedly, some fuel cells need fossil fuels to start their functions; most residential systems run partially off of natural gas. If just 20% of the cars in America used fuel cells, we could cut oil imports by 1.5 million barrels per day. This is $44 billion per year that could remain in the country!
  • The use of fuel cells can significantly diminish our dependency on foreign oil. Since fuel cells make energy electrochemically and do not burn fuel like conventional combustion systems, they are much more efficient. Admittedly, some fuel cells need fossil fuels to start their functions; most residential systems run partially off of natural gas. If just 20% of the cars in America used fuel cells, we could cut oil imports by 1.5 million barrels per day. This is $44 billion per year that could remain in the country!
  •  
    " The environmental impact of fuel cells depends on the type of cell and the fuel being used. Fuel cells can run on a variety of sources, from natural gas to hydrogen to ethanol to biogas. Those that run on hydrogen can sometimes produce a by-product of water or heat, though hydrogen fuel cells are considered more difficult to work with because of transportation and storage. More user friendly fuel cells which use natural gas with emissions that are much lower than those produced by conventional engines or energy sources and can reduce your carbon footprint by around 40%. Additionally, there are only negligible levels of NOx, SOx, Volatile organic compounds and particulates, which is a drastic improvement over traditional means of grid power production. Besides the decreased CO2 emissions and high efficiency rates, fuel cells offer plenty of positive environmental impacts that should be considered by investors and consumers as solutions for cleaner energy are being further researched. 1. Fuel Conservation The use of fuel cells can significantly diminish our dependency on foreign oil. Since fuel cells make energy electrochemically and do not burn fuel like conventional combustion systems, they are much more efficient. Admittedly, some fuel cells need fossil fuels to start their functions; most residential systems run partially off of natural gas. If just 20% of the cars in America used fuel cells, we could cut oil imports by 1.5 million barrels per day. This is $44 billion per year that could remain in the country! 2. Combined Heat and Power The greatest benefit from high powered, well designed fuel cells is the heat and power produced. This means that a property can reduce additional investments to heat their indoor areas or water. In this case, less is more. Since the heat can be redirected to heat water, the environmental benefit from this is the ability to heat the hot water supply without a need for a separate system as is the case with home solar."
10More

Advantages and Disadvantages Of Wave Energy - 0 views

  • Wave energy is as source of power that comes from the endless march of the waves as they roll into the shore then back out again. Humans harness this power along the coastal regions of the United States, Canada, Scotland, and Australia. Energy that comes from the waves in the ocean sounds like a boundless, harmless supply.
  • Advantages of Wave Energy 1. Renewable: The best thing about wave energy is that it will never run out. There will always be waves crashing upon the shores of nations, near the populated coastal regions. The waves flow back from the shore, but they always return. Unlike fossil fuels, which are running out, in some places in the world, just as quickly as people can discover them. Unlike ethanol, a corn product, waves are not limited by a season. They require no input from man to make their power, and they can always be counted on
  • Also unlike fossil fuels, creating power from waves creates no harmful byproducts such as gas, waste, and pollution. The energy from waves can be taken directly into electricity-producing machinery and used to power generators and power plants nearby. In today’s energy-powered world, a source of clean energy is hard to come by.
  • ...7 more annotations...
  • Another benefit to using this energy is its nearness to places that can use it. Lots of big cities and harbors are next to the ocean and can harness the power of the waves for their use. Coastal cities tend to be well-populated, so lots of people can get use from wave energy plants.
  • A final benefit is that there are a variety of ways to gather it. Current gathering methods range from installed power plant with hydro turbines to seafaring vessels equipped with massive structures that are laid into the sea to gather the wave energy.
  • The biggest advantages of wave power as against most of the other alternative energy sources is that it is easily predictable and can be used to calculate the amount that it can produce. The wave energy is consistent and proves much better than other sources which are dependent on wind or sun exposure.
  • The biggest disadvantage to getting your energy from the waves is location. Only power plants and towns near the ocean will benefit directly from it. Because of its source, wave energy is not a viable power source for everyone. Landlocked nations and cities far from the sea have to find alternate sources of power, so wave energy is not the clean energy solution for everyone.
  • As clean as wave energy is, it still creates hazards for some of the creatures near it. Large machines have to be put near and in the water to gather energy from the waves. These machines disturb the seafloor, change the habitat of near-shore creatures (like crabs and starfish) and create noise that disturbs the sea life around them. There is also a danger of toxic chemicals that are used on wave energy platforms spilling and polluting the water near them.
  • Another downside is that it disturbs commercial and private vessels. Power plants that gather wave energy have to be placed by the coastline to do their job, and they have to be near cities and other populated areas to be of much use to anybody. But these are places that are major thoroughfares for cargo ships, cruise ships, recreational vehicles and beach goers. All of these people and vessels will be disrupted by the installation of a wave energy gathering source. This means that government officials and private companies that want to invest in wave energy sources have to take into account and consider the needs of those they may be disturbing.
  • Wind power is highly dependent on wavelength i.e. wave speed, wave length, wavelength and water density. They require a consistent flow of powerful waves to generate significant amount of wave power. Some areas experience unreliable wave behavior and it becomes unpredictable to forecast accurate wave power and therefore cannot be trusted as reliable energy source.
9More

Wind Turbines - Kinetic wind energy generator technology - 0 views

  • Though our scientists may claim that they are inventing something new by using wind as a source of generating energy, the truth is that wind is being used for centuries for this purpose. An example of this is an article published in 1838, which clearly shows that even in those times, wind was considered an important source of energy. Here are a few quotes that were recorded in the past, which prove that wind was always important in generating energy
  • Renewable energy production and demand growth is gaining momentum in many ways across the world. There is a booming demand of wind power today and all wind energy equipment manufacturers are gearing up to meet the demand and take advantage of it. Wind power capacity growth will be reaching 447GW in the next five years and by year 2014 end, Asia will lead the world in installed wind capacity.
  • Yes, the day is not far off when reaching for sky is the new motto for generating cost-effective renewable energy. Initially it was considered to be technically non-viable to tap high-altitude winds. But today, technically-advanced materials and innovative computer know-how are giving new life to this scheme with innovative autonomous aerial structures using wind energy to generate power
  • ...6 more annotations...
  • It's an expert estimation that the total energy stored in wind is 100 times higher than actually needed by humans on this earth. The catch is that we have to learn and devise ways to trap this wind power blowing across the planet earth. Experts tell us one more thing that most of the wind energy is available at high altitude and we can’t manufacture turbines of that height. So we have to think of new ways to trap that wind power blowing at a significant height. Some experts estimate that the total energy contained in wind is 100 times the amount needed by everyone on the planet. However, most of this energy is at high altitudes, far beyond the reach of any wind turbine.
  • A research company in New Hampshire recently patented its bladeless wind turbine, which is based on a patent issued to Nikola Tesla in 1913. This wind turbine is christened as the Fuller Wind Turbine. This turbine is developed by Solar Aero. The specialty of Fuller Wind Turbine is it has only one rotating part, known as the turbine-driveshaft. The entire machinery is assembled inside a housing. Wind turbines are often disliked by environmentalists because they kill birds and bats and often generate noise for the residents living nearby
  • Presently Fluid Dynamics Expert, John Dabiri, is very much on the quest of improving designs of wind turbines. Spotting behaviours that may throw light on energy-related practices in biological system and trying to implement that in real-life situations is part of that quest and Mr.Dabiri is jubilant that he is learning lessons from a school of fish! Water-energy, and wind energy are both studied.
  • GE, the US industrial group, is promoting and showing confidence in offshore wind technology by buying ScanWind, which makes direct-drive turbine components. This move will help in generating thousands of new jobs in the field of designing and manufacturing turbines. This move will affirm the confidence of investors in the fledgling offshore wind industry, which has been weighed down by concerns about costs and reliability. GE is moving ahead with establishing turbine manufacturing facilities to serve the European markets at first. They have to make up their mind about the size of the investment and location
  • The Metropolis Magazine has been holding Next Generation Design Competition since 2003. They want to provide a platform for young designers to promote the spirit of activism, social involvement, and entrepreneurship. They offer prize money of $ 10,000. But the real attraction is the publicity given to the projects of winners and runners-up. This recognition helps abstract ideas take concrete forms. For 2009, the theme for the Next Generation Design Competition was: How do we fix our energy addiction? They offered some guidelines, "Think about how we live and work, what we use, how we get where we need to go, hidden costs to our pocket books and the environment, across the whole design spectrum. Focus on one area that needs fixing—products, interiors, buildings and landscape, communication systems, or anything else you can imagine—and develop your idea fully. and above all, think of our energy addiction as a design problem at all scales."
  • sector. Wind turbines generate clean and green power for us but they have certain precondition. One of it is the power unit has to be set up in strong wind area. But Green Energy Technologies has developed a brand new wind power generator known as the WindCube. It is smaller compared to the normal wind generator. WindCube is specially designed to set up on the roof of a building in urban and rural areas. WindCube carries a 22 x 22 x 12 feet framework and its single unit can produce a maximum of 60kW of power
8More

EIA Energy Kids - Biomass - 1 views

  • Biomass is organic material made from plants and animals (microorganisms). Biomass contains stored energy from the sun. Plants absorb the sun's energy in a process called photosynthesis. The chemical energy in plants gets passed on to animals and people that eat them. Biomass is a renewable energy source because we can always grow more trees and crops, and waste will always exist. Some examples of biomass fuels are wood, crops, manure, and some garbage. When burned, the chemical energy in biomass is released as heat. If you have a fireplace, the wood you burn in it is a biomass fuel. Wood waste or garbage can be burned to produce steam for making electricity, or to provide heat to industries and homes.
  • Crops like corn and sugar cane can be fermented to produce ethanol. Biodiesel, another transportation fuel, can be produced from left-over food products like vegetable oils and animal fats.
  • Ethanol and biodiesel were the fuels used in the first automobile and diesel engines, but lower cost gasoline and diesel fuel made from crude oil became the dominant vehicle fuels. The Federal government has promoted ethanol use in vehicles to help reduce oil imports since the mid-1970s.
  • ...5 more annotations...
  • Compared to petroleum diesel, biodiesel combustion produces less sulfur oxides, particulate matter, carbon monoxide, and unburned and other hydrocarbons, but more nitrogen oxide.
  • Biofuels may be considered to be carbon-neutral because the plants that are used to make biofuels (such as corn and sugarcane for ethanol, and soy beans and palm oil trees for biodiesel) absorb CO2 as they grow and may offset the CO2 produced when biofuels are made and burned.
  • Growing plants for biofuels is controversial however, as the land, fertilizers, and energy used to grow biofuel crops could be used to grow food crops instead. Also, in some parts of the world, large areas of natural vegetation and forests have been cut down to grow sugar cane for ethanol and soybeans and palm-oil trees to make biodiesel.
  • Biomass — Renewable Energy from Plants and Animals Source: The National Energy Education Project (Public Domain) Source: The National Energy Education Project (Public Domain) Biomass is organic material made from plants
  • Biomass fuels provided about 4% of the energy used in the United States in 2010. Of this, about 46% was from wood and wood-derived biomass, 43% from biofuels (mainly ethanol),
12More

Geothermal Energy - 3 views

  • Resources of geothermal energy range from the shallow ground to hot water and hot rock found a few miles beneath the Earth's surface, and down even deeper to the extremely high temperatures of molten rock called magma.
  • Hot water near the surface of Earth can be used directly for heat.
  • Wells can be drilled into underground reservoirs for the generation of electricity. Some geothermal power plants use the steam from a reservoir to power a turbine/generator, while others use the hot water to boil a working fluid that vaporizes and then turns a turbine.
  • ...3 more annotations...
  • Geothermal energy is the heat from the Earth. It's clean and sustainable. Resources of geothermal energy range from the shallow ground to hot water and hot rock found a few miles beneath the Earth's surface, and down even deeper to the extremely high temperatures of molten rock called magma.
  • Hot dry rock resources occur at depths of 3 to 5 miles everywhere beneath the Earth's surface and at lesser depths in certain areas.
  • of geothermal energy range from the shallow ground to hot water and hot rock found a few miles beneath the Earth's surface, and down even deeper to the extremely hig
  •  
    "Geothermal energy is the heat from the Earth. It's clean and sustainable. Resources of geothermal energy range from the shallow ground to hot water and hot rock found a few miles beneath the Earth's surface, and down even deeper to the extremely high temperatures of molten rock called magma."
  • ...3 more comments...
  •  
    "Geothermal energy is the heat from the Earth. It's clean and sustainable. Resources of geothermal energy range from the shallow ground to hot water and hot rock found a few miles beneath the Earth's surface, and down even deeper to the extremely high temperatures of molten rock called magma."
  •  
    "Geothermal energy is the heat from the Earth. It's clean and sustainable. Resources of geothermal energy range from the shallow ground to hot water and hot rock found a few miles beneath the Earth's surface, and down even deeper to the extremely high temperatures of molten rock called magma."
  •  
    Geothermal energy can be easily found close to the surface or far down in the core.
  •  
    "Geothermal energy is the heat from the Earth. It's clean and sustainable. Resources of geothermal energy range from the shallow ground to hot water and hot rock found a few miles beneath the Earth's surface, and down even deeper to the extremely high temperatures of molten rock called magma."
  •  
    "Geothermal energy is the heat from the Earth. It's clean and sustainable. Resources of geothermal energy range from the shallow ground to hot water and hot rock found a few miles beneath the Earth's surface, and down even deeper to the extremely high temperatures of molten rock called magma."
11More

A Basic Overview of Fuel Cell Technology - 0 views

  • they generate electricity with very little pollution—much of the hydrogen and oxygen used in generating electricity ultimately combine to form a harmless byproduct, namely water.
  • Scientists and inventors have designed many different types and sizes of fuel cells in the search for greater efficiency, and the technical details of each kind vary
  • in general terms, hydrogen atoms enter a fuel cell at the anode where a chemical reaction strips them of their electrons. The hydrogen atoms are now “ionized,” and carry a positive electrical charge. The negatively charged electrons provide the current through wires to do work. If alternating current (AC) is needed, the DC output of the fuel cell must be routed through a conversion device called an inverter.
  • ...6 more annotations...
  • But in general terms, hydrogen atoms enter a fuel cell at the anode where a chemical reaction strips them of their electrons. The hydrogen atoms are now �ionized,� and carry a positive electrical charge. The negatively charged electrons provide the current through wires to do work. If alternating current (AC) is needed, the DC output of the fuel cell must be routed through a conversion device called an inverter.
  • Every fuel cell also has an electrolyte, which carries electrically charged particles from one electrode to the other, and a catalyst, which speeds the reactions at the electrodes. Hydrogen is the basic fuel, but fuel cells also require oxygen. One great appeal of fuel cells is that they generate electricity with very little pollution–much of the hydrogen and oxygen used in generating electricity ultimately combine to form a harmless byproduct, namely water.
  • A fuel cell is a device that generates electricity by a chemical reaction. Every fuel cell has two electrodes, one positive and one negative, called, respectively, the anode and cathode. The reactions that produce electricity take place at the electrodes.
  • fuel cell is a device that generates electricity by a chemical reaction. Every fuel cell has two electrodes, one positive and one negative, called, respectively, the anode and cathode.
  • One detail of terminology:
  • Oxygen enters the fuel cell at the cathode and, in some cell types (like the one illustrated above), it there combines with electrons returning from the electrical circuit and hydrogen ions that have traveled through the electrolyte from the anode. In other cell types the oxygen picks up electrons and then travels through the electrolyte to the anode, where it combines with hydrogen ions. The electrolyte plays a key role. It must permit only the appropriate ions to pass between the anode and cathode. If free electrons or other substances could travel through the electrolyte, they would disrupt the chemical reaction. Whether they combine at anode or cathode, together hydrogen and oxygen form water, which drains from the cell. As long as a fuel cell is supplied with hydrogen and oxygen, it will generate electricity. Even better, since fuel cells create electricity chemically, rather than by combustion, they are not subject to the thermodynamic laws that limit a conventional power plant (see "Carnot Limit" in the glossary). Therefore, fuel cells are more efficient in extracting energy from a fuel. Waste heat from some cells can also be harnessed, boosting system efficiency still further
  •  
    "A fuel cell is a device that generates electricity by a chemical reaction. Every fuel cell has two electrodes, one positive and one negative, called, respectively, the anode and cathode. The reactions that produce electricity take place at the electrodes."
  •  
    "A fuel cell is a device that generates electricity by a chemical reaction. Every fuel cell has two electrodes, one positive and one negative, called, respectively, the anode and cathode."
3More

How Geothermal Energy Works | Union of Concerned Scientists - 1 views

  • Many regions of the world are already tapping geothermal energy as an affordable and sustainable solution to reducing dependence on fossil fuels, and the global warming and public health risks that result from their use. For example, more than 8,900 megawatts (MW) of large, utility-scale geothermal capacity in 24 countries now produce enough electricity to meet the annual needs of nearly 12 million typical U.S. households (GEA 2008a). Geothermal plants produce 25 percent or more of electricity in the Philippines, Iceland, and El Salvador.
  •  
    "The U.S. Department of Energy found that heat pumps can save a typical home hundreds of dollars in energy costs each year, with the system typically paying for itself in 8 to 12 years. Tax credits and other incentives can reduce the payback period to 5 years or less.10                                                  "
  •  
    "Heat from the earth can be used as an energy source in many ways, from large and complex power stations to small and relatively simple pumping systems. This heat energy, known as geothermal energy, can be found almost anywhere-as far away as remote deep wells in Indonesia and as close as the dirt in our backyards. FROM OUR BLOG The Latest on Renewable Energy from Our Experts and Analysts Will Clean Energy Research and Development Be Sequestered? Laura Wisland PTC Extension Already Making a Big Difference for Wind Steve Clemmer The Local Energy Movement: Coming to a Town Near You Laura Wisland Subscribe to the Energy blog feed Many regions of the world are already tapping geothermal energy as an affordable and sustainable solution to reducing dependence on fossil fuels, and the global warming and public health risks that result from their use. For example, more than 8,900 megawatts (MW) of large, utility-scale geothermal capacity in 24 countries now produce enough electricity to meet the annual needs of nearly 12 million typical U.S. households (GEA 2008a). Geothermal plants produce 25 percent or more of electricity in the Philippines, Iceland, and El Salvador."
8More

World of Wind Energy.com - The World's #1 Wind Energy Site! - News - WIND ECOLOGY AND P... - 1 views

  • Wind power is a renewable resource, which means using it will not deplete the earth's supply of fossil fuels. It also is a clean energy source, and operation does not produce carbon dioxide, sulfur dioxide, mercury, particulates, or any other type of air pollution, as do conventional fossil fuel power sources.
  • Wind power consumes no fuel for continuing operation, and has no emissions directly related to electricity production.
  • Wind power's ability to reduce pollution and greenhouse gas emissions will depend on the amount of wind energy produced, and hence scalability.
  • ...4 more annotations...
  • Wind power may also have an indirect effect on pollution at other production facilities, due to the need for reserve and regulation, and may affect the efficiency profile of plants used to balance demand and supply, particularly if those facilities use fossil fuel sources. Compared to other power sources, however, wind energy's direct emissions are low, and the materials used in construction (concrete, steel, fiberglass, generation components) and transportation are straightforward.
  • Wind power's ability to reduce pollution and greenhouse gas emissions will depend on the amount of wind energy produced, and hence scalability.
  • Wind power may also have an indirect effect on pollution at other production facilities, due to the need for reserve and regulation, and may affect the efficiency profile of plants used to balance demand and supply, particularly if those facilities use fossil fuel sources. Compared to other power sources, however, wind energy's direct emissions are low, and the materials used in construction (concrete, steel, fiberglass, generation components) and transportation are straightforward.
  • carbon dioxide, sulfur dioxide, mercury, particulates, or any other type of air pollution, as do conventional fossil fuel power sources.
  •  
    " United States, onshore and near-shore turbines kill 70,000 birds per year, compared to 57 million killed by cars and 97.5 million killed by collisions with plate glass."
14More

Wind power - Wikipedia, the free encyclopedia - 1 views

  • Wind power is the conversion of wind energy into a useful form of energy, such as using wind turbines to make electricity, windmills for mechanical power, windpumps for water pumping or drainage, or sails to propel ships
  • Wind power is the conversion of wind energy into a useful form of energy, such as using wind turbines to make electricity, windmills for mechanical power, windpumps for water pumping or drainage, or sails to propel ships.
  • The total amount of available power from the wind is considerably more than present human power use from all sources.[3] At the end of 2011, worldwide nameplate capacity of wind-powered generators was 238 gigawatts (GW), growing by 41 GW over the preceding year.[4] Wind power now (2010 data) has the capacity to generate 430 TWh annually, which is about 2.5% of worldwide electricity usage.[5][6] Over the past five years (2010 data) the average annual growth in new installations has been 27.6 percent. Wind power market penetration is expected to reach 3.35 percent by 2013 and 8 percent by 2018.[7][8] Several countries have already achieved relatively high levels of wind power penetration, such as 21% of stationary electricity production in Denmark,[5] 18% in Portugal,[5] 16% in Spain,[5] 14% in Ireland[9] and 9% in Germany in 2010.[5][10] As of 2011, 83 countries around the world are using wind power on a commercial basis
  • ...8 more annotations...
  • A large wind farm may consist of several hundred individual wind turbines which are connected to the electric power transmission network. Offshore wind power can harness the better wind speeds that are available offshore compared to on land, so offshore wind power’s contribution in terms of electricity supplied is higher.[11] Small onshore wind facilities are used to provide electricity to isolated locations and utility companies increasingly buy back surplus electricity produced by small domestic wind turbines. Although a variable source of power, the intermittency of wind seldom creates problems when using wind power to supply up to 20% of total electricity demand, but as the proportion rises, increased costs, a need to use storage such as pumped-storage hydroelectricity, upgrade the grid, or a lowered ability to supplant conventional production may occur.[12][13][14] Power management techniques such as excess capacity, storage, dispatchable backing supply (usually natural gas), exporting and importing power to neighboring areas or reducing demand when wind production is low, can mitigate these problems.
  • Wind power, as an alternative to fossil fuels, is plentiful, renewable, widely distributed, clean, produces no greenhouse gas emissions during operation, and uses little land. In operation, the overall cost per unit of energy produced is similar to the cost for new coal and natural gas installations.[15] The construction of wind farms is not universally welcomed, but any effects on the environment from wind power are generally much less problematic than those of any other power source
  • Wind is the movement of air across the surface of the Earth, affected by areas of high pressure and of low pressure.[35] The surface of the Earth is heated unevenly by the Sun, depending on factors such as the angle of incidence of the sun's rays at the surface (which differs with latitude and time of day) and whether the land is open or covered with vegetation. Also, large bodies of water, such as the oceans, heat up and cool down slower than the land. The heat energy absorbed at the Earth's surface is transferred to the air directly above it and, as warmer air is less dense than cooler air, it rises above the cool air to form areas of high pressure and thus pressure differentials. The rotation of the Earth drags the atmosphere around with it causing turbulence. These effects combine to cause a constantly varying pattern of winds across the surface of the Earth.[35]
  • Wind power is the conversion of wind energy into a useful form of energy, such as using wind turbines to make electrical power, windmills for mechanical power, wind pumps for water pumping or drainage, or sails to propel ships.
  • Compared to the environmental impact of traditional energy sources, the environmental impact of wind power is relatively minor in terms of pollution
  • Wind energy is the kinetic energy of air in motion, also called wind
  • ind power, as an alternative to fossil fuels, is plentiful, renewable, widely distributed, clean, produces no greenhouse gas emissions during operation and uses little land.[2] The effects on the environment are generally less problematic than those from other powe
  • Wind power is very consistent from year to year but has significant variation over shorter time scales. The intermittency of wind seldom creates problems when used to supply up to 20% of total electricity demand,[5] but as the proportion increases, a need to upgrade the grid, and a lowered ability to supplant conventional production can occur.
  •  
    wind turbine stuff
  •  
    "Wind power is the conversion of wind energy into a useful form of energy, such as using wind turbines to make electrical power, windmills for mechanical power, wind pumps for water pumping or drainage, or sails to propel ships."
  •  
    Wind power, as an alternative to fossil fuels, is plentiful, renewable, widely distributed, clean, produces no greenhouse gas emissions during operation and uses little land.[2] The effects on the environment are generally less problematic than those from other power sources. As of 2011, Denmark is generating more than a quarter of its electricity from wind and 83 countries around the world are using wind power on a commercial basis.[3] In 2010 wind energy production was over 2.5% of total worldwide electricity usage, and growing rapidly at more than 25% per annum. The monetary cost per unit of energy produced is similar to the cost for new coal and natural gas installations.[4]
3More

What are the advantages and disadvantages of alternative tidal power as an energy source - 1 views

  • Advantages: Tidal energy is an alternative energy. The energy produced is clean and non polluting. There is no carbon dioxide or any other by-products released. It produces no greenhouse gases or other waste.It is a renewable energy that will help reduce our reliance on the burning of fossil fuels. There are two tides every day and they can be relied on. The energy is there for the taking.So the electricity supply is constant and efficient.Once you've built it, the energy is free because it comes from the ocean's powerIt needs no fuel.It produces electricity reliably.Not expensive to maintain.Tides are definitely predictable. There are two tides every day and they can be relied on. So the electricity supply is constant. Offshore turbines and vertical-axis turbines are not ruinously expensive to build and do not have a large environmental impact.A plant is expected to be in production for 75 to 100 yearsUses an abundant, inexpensive fuel source (water) to generate powerMay protect coastline against damage from high storm tides and provide a ready-made road bridge
  • Holding back the tide allows silt to build up on the river bed.The dams and barrages sometimes interfere with shipping. You will need to find a way to connect the electricity to the grid.Pose same threats as large dams, altering the flow of saltwater in and out of estuaries, which changes the hydrology and salinity and possibly negatively affects the marine mammals that use the estuaries as their habitatTurbidity decreases as a result of smaller volume of water being exchanged between the basin and the sea.The average salinity inside the basin decreases, also affecting the ecosystemA barrage across an estuary is very expensive to build, and affects a very wide area - the environment is changed for many miles upstream and downstream. Many birds rely on the tide uncovering the mud flats so that they can feed.There are few suitable sites for tidal barrages.Only provides power for around 10 hours each day, when the tide is actually moving in or out.
  • It only provides about 7% of the power needed for England and Wales that means that some people get their energy close to free and some pay a lot of moneyWater is not replenished, it cannot flow away so any dirt or pollution lingers around the coast much longerNeeds a very big piece of sea to be cost effectiveCannot be used inlandBarrage systems require salt resistant parts and lots of maintenanceAffects the lives of the people who rely on fishing for a means of livingLimited because the tide never speeds up or slows down, and occurs on 6 hour cycles. It is also dependent on the fetch distance. The fetch is the distance the tide rises and falls, so some beaches have a very small fetch, and others have a big fetch but hardly any have a large enough fetch to support tidal energy
24More

Wind Energy Basics - 5 views

  • Wind is a form of solar energy. Winds are caused by the uneven heating of the atmosphere by the sun, the irregularities of the earth's surface, and rotation of the earth. Wind flow patterns are modified by the earth's terrain, bodies of water, and vegetative cover. This wind flow, or motion energy, when "harvested" by modern wind turbines, can be used to generate electricity.
  • The terms "wind energy" or "wind power" describe the process by which the wind is used to generate mechanical power or electricity
  • The terms "wind energy" or "wind power" describe the process by which the wind is used to generate mechanical power or electricity. Wind turbines convert the kinetic energy in the wind into mechanical power
  • ...19 more annotations...
  • Wind turbines, like aircraft propeller blades, turn in the moving air and power an electric generator that supplies an electric current
  • Modern wind turbines fall into two basic groups; the horizontal-axis variety, like the traditional farm windmills used for pumping water, and the vertical-axis design, like the eggbeater-style Darrieus model
  • wind farm, and generate bulk electrical power
  • Utility-scale turbines range in size from 50 to 750 kilowatts. Single small turbines, below 50 kilowatts
  • Wind energy is very abundant in many parts of the United States. Wind resources are characterized by wind-power density classes, ranging from class 1 (the lowest) to class 7 (the highest). Good wind resources (e.g., class 3 and above, which have an average annual wind speed of at least 13 miles per hour) are found in many locations (see United States Wind Energy Resource Map)
  • free, renewable resource, so no matter how much is used today, there will still be the same supply in the future
  • clean, non-polluting, electricity. Unlike conventional power plants, wind plants emit no air pollutants or greenhouse gases
  • higher initial investment than fossil-fueled generators. Roughly 80% of the cost is the machinery, with the balance being site preparation and installation.
  • Although wind power plants have relatively little impact on the environment compared to fossil fuel power plants, there is some concern over the noise produced by the rotor blades, aesthetic (visual) impacts, and birds and bats having been killed (avian/bat mortality) by flying into the rotors. Most of these problems have been resolved or greatly reduced through technological development or by properly siting wind plants
  • remote locations far from areas of electric power demand (such as cities)
  • alternative uses may be more highly valued than electricity generation. However, wind turbines can be located on land that is also used for grazing or even farming
  • Wind is a form of solar energy. Winds are caused by the uneven heating of the atmosphere by the sun, the irregularities of the earth's surface, and rotation of the earth. Wind flow patterns are modified by the earth's terrain, bodies of water, and vegetative cover. This wind flow, or motion energy, when "harvested" by modern wind turbines, can be used to generate electricity.
  • The terms "wind energy" or "wind power" describe the process by which the wind is used to generate mechanical power or electricity. Wind turbines convert the kinetic energy in the wind into mechanical power. This mechanical power can be used for specific tasks (such as grinding grain or pumping water) or a generator can convert this mechanical power into electricity to power homes, businesses, schools, and the like.
  • Wind turbines, like aircraft propeller blades, turn in the moving air and power an electric generator that supplies an electric current. Simply stated, a wind turbine is the opposite of a fan. Instead of using electricity to make wind, like a fan, wind turbines use wind to make electricity. The wind turns the blades, which spin a shaft, which connects to a generator and makes electricity.
  • Modern wind turbines fall into two basic groups; the horizontal-axis variety, like the traditional farm windmills used for pumping water, and the vertical-axis design, like the eggbeater-style Darrieus model, named after its French inventor. Most large modern wind turbines are horizontal-axis turbines.
  • Wind is a form of solar energy
  • The terms "wind energy" or "wind power
  • describe the process by which the wind is used to generate mechanical power or electricity.
  • Wind turbines, like aircraft propeller blades, turn in the moving air and power an electric generator that supplies an electric current. Simply stated, a wind turbine is the opposite of a fan. Instead of using electricity to make wind, like a fan, wind turbines use wind to make electricity. The wind turns the blades, which spin a shaft, which connects to a generator and makes electricity.
  •  
    "Wind is a form of solar energy. Winds are caused by the uneven heating of the atmosphere by the sun, the irregularities of the earth's surface, and rotation of the earth. Wind flow patterns are modified by the earth's terrain, bodies of water, and vegetative cover. This wind flow, or motion energy, when "harvested" by modern wind turbines, can be used to generate electricity."
  •  
    "Modern wind turbines fall into two basic groups; the horizontal-axis variety, like the traditional farm windmills used for pumping water, and the vertical-axis design, like the eggbeater-style Darrieus model, named after its French inventor. Most large modern wind turbines are horizontal-axis turbines."
15More

Fuel cell - Wikipedia, the free encyclopedia - 0 views

  • A fuel cell is a device that converts the chemical energy from a fuel into electricity through a chemical reaction with oxygen or another oxidizing agent.[1] Hydrogen is the most common fuel, but hydrocarbons such as natural gas and alcohols like methanol are sometimes used. Fuel cells are different from batteries in that they require a constant source of fuel and oxygen to run, but they can produce electricity continually for as long as these inputs are supplied
  • A fuel cell is a device that converts the chemical energy from a fuel into electricity through a chemical reaction with oxygen or another oxidizing agent.
  • A fuel cell is a device that converts the chemical energy from a fuel into electricity through a chemical reaction with oxygen or another oxidizing agent.[1] Hydrogen is the most common fuel, but hydrocarbons such as natural gas and alcohols like methanol are sometimes used. Fuel cells are different from batteries in that they require a constant source of fuel and oxygen to run, but they can produce electricity continually for as long as these inputs are supplied.
  • ...8 more annotations...
  • A fuel cell is a device that converts the chemical energy from a fuel into electricity through a chemical reaction with oxygen or another oxidizing agent
  • There are many types of fuel cells, but they all consist of an anode (negative side), a cathode (positive side) and an electrolyte that allows charges to move between the two sides of the fuel cell.
  • The principle of the fuel cell was discovered by German scientist Christian Friedrich Schönbein in 1838
  • Stationary fuel cells are used for commercial, industrial and residential primary and backup power generation. Fuel cells are very useful as power sources in remote locations, such as spacecraft, remote weather stations, large parks, communications centers, rural locations including research stations, and in certain military applications. A fuel cell system running on hydrogen can be compact and lightweight, and have no major moving parts. Because fuel cells have no moving parts and do not involve combustion, in ideal conditions they can achieve up to 99.9999% reliability.[49] This equates to less than one minute of downtime in a six-year period.
  • Although there are currently no Fuel cell vehicles available for commercial sale, over 20 FCEVs prototypes and demonstration cars have been released since 2009. Demonstration models include the Honda FCX Clarity, Toyota FCHV-adv, and Mercedes-Benz F-Cell.[64] As of June 2011 demonstration FCEVs had driven more than 4,800,000 km (3,000,000 mi), with more than 27,000 refuelings.[65]
  • A fuel cell is a device that converts the chemical energy from a fuel into electricity through a chemical reaction with oxygen or another oxidizing agent.[1] Hydrogen is the most common fuel, but hydrocarbons such as natural gas and alcohols like methanol are sometimes used.
  • The fuel cell he made used similar materials to today's phosphoric-acid fuel cell.
  • In 2003, U.S. President George W. Bush proposed the Hydrogen Fuel Initiative (HFI). This aimed at further developing hydrogen fuel cells and infrastructure technologies with the goal of producing commercial fuel cell vehicles. By 2008, the U.S. had contributed 1 billion dollars to this project
  •  
    "A fuel cell is a device that converts the chemical energy from a fuel into electricity through a chemical reaction with oxygen or another oxidizing agent.[1] Hydrogen is the most common fuel, but hydrocarbons such as natural gas and alcohols like methanol are sometimes used. Fuel cells are different from batteries in that they require a constant source of fuel and oxygen to run, but they can produce electricity continually for as long as these inputs are supplied."
  • ...1 more comment...
  •  
    Explains what a fuel cell is.
  •  
    "Individual fuel cells produce relatively small electrical potentials, about 0.7 volts, so cells are "stacked", or placed in series, to increase the voltage and meet an application's requirements.[2] In addition to electricity, fuel cells produce water, heat and, depending on the fuel source, very small amounts of nitrogen dioxide and other emissions. The energy efficiency of a fuel cell is generally between 40-60%, or up to 85% efficient if waste heat is captured for use."
  •  
    "A fuel cell is a device that converts the chemical energy from a fuel into electricity through a chemical reaction with oxygen or another oxidizing agent.[1] Hydrogen is the most common fuel, but hydrocarbons such as natural gas and alcohols like methanol are sometimes used."
17More

EIA Energy Kids - Biofuels - 0 views

  • "Biofuels" are transportation fuels like ethanol and biodiesel that are made from biomass materials.
  • Ethanol and biodiesel are usually more expensive than the fossil fuels that they replace, but they are also cleaner-burning fuels, producing fewer air pollutants.
  • What Is Ethanol? Ethanol is an alcohol fuel made from the sugars found in grains, such as:
  • ...14 more annotations...
  • Most of the ethanol used in the United States today is distilled from corn
  • As a transportation fuel, ethanol can be used as a total or partial replacement for gasoline
  • Unlike gasoline, pure ethanol is nontoxic and biodegradable; it quickly breaks down into harmless substances if spilled.
  • Ethanol and ethanol-gasoline mixtures burn cleaner and have higher octane than pure gasoline, but have higher "evaporative emissions" from fuel tanks and dispensing equipment. These evaporative emissions contribute to the formation of harmful, ground-level ozone and smog.
  • Ethanol may be considered to be carbon-neutral because the plants that are used to make fuel ethanol (such as corn and sugarcane) absorb CO2 as they grow and may offset the CO2 produced when ethanol is made and burned.
  • However, in some parts of the world, large areas of natural vegetation and forests have been cleared and burned to grow soybeans and palm oil trees to make biodiesel
  • Fueling engines with biodiesel has just started to catch on, but it isn't a new idea. Before petroleum diesel fuel became popular, Rudolf Diesel, the inventor of the diesel engine in 1897, experimented with using vegetable oil (biodiesel) as fuel.
  • Biodiesel as a Transportation Fuel A Bus Powered by Soybean Oil Source: Stock photography (copyrighted) Most trucks, buses, and tractors in the United States use diesel fuel.
  • Using a gallon of biodiesel produced in the United States avoids the CO2 emissions that result from burning about a gallon of petroleum diesel. Biodiesel may be considered to be carbon-neutral because the plants that are used to make it, such as soy beans and palm oil trees, absorb carbon dioxide (CO2) as they grow and may offset the CO2 produced when biodiesel is made and burned.
  • Biodiesel is a renewable fuel that can be used instead of diesel fuel, which is made from petroleum. Biodiesel can be made from vegetable oils, animal fats, or greases. Most biodiesel today is made from soybean oil. About half of biodiesel producers are able to make biodiesel from used oils or fats, including recycled restaurant grease.
  • early all gasoline so
  • Nearly all gasoline sold now in the U.S. contains some ethanol.
  • About 99% of the fuel ethanol consumed in the U.S. is added to gasoline in mixtures of up to 10% ethanol and 90% gasoline.
  • he U.S. Environmental Protection Agency ruled in October 2010, that cars and light trucks of model year 2007 and newer can use E15
6More

Wave power - Wikipedia, the free encyclopedia - 2 views

  • Waves are generated by wind passing over the surface of the sea. As long as the waves propagate slower than the wind speed just above the waves, there is an energy transfer from the wind to the waves.
  • The first known patent to utilize energy from ocean waves dates back to 1799 and was filed in Paris by Girard and his son.[12] An early application of wave power was a device constructed around 1910 by Bochaux-Praceique to light and power his house at Royan, near Bordeaux in France
  • Once the wave energy is captured at a wave source, power must be carried to the point of use or to a connection to the electrical grid by transmission power cables.[2
  • ...2 more annotations...
  • The realistically usable worldwide resource has been estimated to be greater than 2 TW.[49][50] Locations with the most potential for wave power include the western seaboard of Europe, the northern coast of the UK, and the Pacific coastlines of North and South America, Southern Africa, Australia, and New Zealand. The north and south temperate zones have the best sites for capturing wave power. The prevailing westerlies in these zones blow strongest in winter. Waves are very predictable; waves that are caused by winds can be predicted five days in advance.[citation needed]
  • There is a potential impact on the marine environment. Noise pollution, for example, could have negative impact if not monitored, although the noise and visible impact of each design varies greatly.[5]. Other biophysical impacts (flora and fauna, sediment regimes and water column structure and flows) of scaling up the technology is being studied.[51] In terms of socio-economic challenges, wave farms can result in the displacement of commercial and recreational fishermen from productive fishing grounds, can change the pattern of beach sand nourishment, and may represent hazards to safe navigation.[52] Waves generate about 2,700 gigawatts of power
  •  
    Stay Online on the worldwide web on the worldwide web on the world wide web online on the world wide web online roulette from Modern contemporary modern sydney, Fun and Free! Now you is able of doing Real "www.funlivecasino.com.au" Stay Online on the worldwide web on the worldwide web on the world wide web online on the world wide web online roulette for Fun in Modern contemporary modern sydney on a product new web page, FunLiveCasino.com.au. Using the newest on the worldwide web working technology, Fun Stay Gambling house allows you be a factor of a genuine action occurring on a genuine desk in a genuine betting house, all approved on Live! You can see other real gamers in the betting house betting on the same outcomes you do providing you greatest believe in in the outcomes as they are not designed 'just for you a, like other action being affected by products such as 'live studios' or pc designed actions. Its awesome to think when your really in the betting house that you might be on digicam, and individuals on the worldwide web might be watching! The long run is scary! Believe one day soon this will be the only way individuals would bet on the worldwide web because the worldwide web is complete of fraudsters, you have to be extremely cautious, and why would you perform Online Online on the worldwide web on the worldwide web on the world wide web online on the world wide web online roulette any other way except from a Real Gambling house you can assess out, see, pay interest to and trust! Amazingly this web page is definitely 100 % 100 % 100 % 100 % 100 % 100 % 100 % free and has no determining upon up process, no junk, no pc bunny rabbit bunny rabbit rabbit mouse mouse clicks and no stress. Just Immediate Fun "www.funlivecasino.com.au" 100 % 100 % 100 % 100 % 100 % 100 % 100 % free Stay Roulette! Give it a try, its value verifying out! "www.funlivecasino.com.au" Australia's Online Fun Stay Casino! Backlink designed from http://fiverr.c
8More

Wind Turbine Syndrome | Wind energy: The "least sustainable energy option" - 0 views

  • Wind turbine installations impact vast amounts of land, far more than traditional power plants.
  • Raptors, bats and other beautiful flying creatures continue to be sliced and diced by wind turbines.
  • Principal health issues are associated with noise – not just annoying audible noise, but inaudible, low-frequency “infrasound” that causes headache, dizziness, “deep nervous fatigue” and symptoms akin to seasickness. “Wind turbine syndrome” also includes irritability, depression, and concentration and sleep problems. Others include “shadow flicker” or “strobe effect” from whirling blades, which can trigger seizures in epileptics, “vibroacoustic” effects on the heart and lungs, and non-lethal harm to animals. Serious lung, heart, cancer and other problems have been documented from rare earth mining, smelting and manufacturing in China, under its less rigorous health, workplace and environmental regulations.
  • ...3 more annotations...
  • Wind turbine installations require vast amounts of steel, copper, rare earth metals, fiberglass, concrete, rebar and other materials for the turbines, towers and bases.
  • Wind turbines are supposed to reduce pollution and carbon dioxide emissions. But because backup generators must repeatedly surge to full power and back to standby, as wind speed rises and falls, they operate inefficiently, use more fuel and emit more – much like cars forced to stop repeatedly on freeways.
  • Even huge subsidies cannot cure wind power’s biggest defects: its electricity costs far more than coal, gas or nuclear alternatives – and its intermittent nature wreaks havoc on power grids and consumers.
    • dpurdy
       
      Be cautious as this site is obviously anti wind power. The points might be valid though.
  •  
    wind turbine impacts 
1 - 20 of 545 Next › Last »
Showing 20 items per page