Skip to main content

Home/ qmstech2/ Group items tagged to

Rss Feed Group items tagged

tushabeper99

What are the advantages and disadvantages of solar energy - 0 views

  •  
    "Advantages: Solar power gives you a return on your investment, while paying your utility for electricity gives you 0% return. Solar energy is renewable unlike the conventional resources (coal, oil) which will inevitably run out. Non-polluting, no carbon dioxide like fossil fuels Free except for capital expenses. Longevity - solar panels can last over twenty years Low maintenance - solar panels require very little upkeep Independence - an off-grid system allows you to break free from the electrical grid Environmentally friendly because the conversion of energy doesn't produce any carbon dioxide. It comes from the sun, which, unless you are in The South or North pole, comes out almost everyday Solar power is better for the environment, compared to burning fossil fuels and other electrical power. sun is renewable You get clean energy without harming the environment [in term of carbon emissions] , in certain countries, excessive power generated can be sold back to local electricity provider reduces pollution helps create jobs - shores up economy - to build -> you hire - innovate-maintain - basically economic activities reduced dependence on fossil fuels Once installed, the power is free It is environmentally friendly and no pollution is associated with solar power You can sell your excess power back to the power companies It can be installed anywhere You can use batteries to store power for use at night Energy from the sun is renewable, that is, it keeps on coming It is free It does no damage to the earth or its atmosphere It produces no carbon dioxide It doesn't have to be dug up from the ground like coal, oil, natural gas, or uranium It doesn't have to be cut down, like wood from forests. It produces clean, green power in the form of electricity and can be used to power just about everything we need. There is more solar energy landing on the earth every day than it would take to supply the world for a year. Solar energy can heat swimming pools, power calcul
rutalil00

Wind power - Wikipedia, the free encyclopedia - 1 views

  • Wind power is the conversion of wind energy into a useful form of energy, such as using wind turbines to make electricity, windmills for mechanical power, windpumps for water pumping or drainage, or sails to propel ships
  • Wind power is the conversion of wind energy into a useful form of energy, such as using wind turbines to make electricity, windmills for mechanical power, windpumps for water pumping or drainage, or sails to propel ships.
  • The total amount of available power from the wind is considerably more than present human power use from all sources.[3] At the end of 2011, worldwide nameplate capacity of wind-powered generators was 238 gigawatts (GW), growing by 41 GW over the preceding year.[4] Wind power now (2010 data) has the capacity to generate 430 TWh annually, which is about 2.5% of worldwide electricity usage.[5][6] Over the past five years (2010 data) the average annual growth in new installations has been 27.6 percent. Wind power market penetration is expected to reach 3.35 percent by 2013 and 8 percent by 2018.[7][8] Several countries have already achieved relatively high levels of wind power penetration, such as 21% of stationary electricity production in Denmark,[5] 18% in Portugal,[5] 16% in Spain,[5] 14% in Ireland[9] and 9% in Germany in 2010.[5][10] As of 2011, 83 countries around the world are using wind power on a commercial basis
  • ...8 more annotations...
  • A large wind farm may consist of several hundred individual wind turbines which are connected to the electric power transmission network. Offshore wind power can harness the better wind speeds that are available offshore compared to on land, so offshore wind power’s contribution in terms of electricity supplied is higher.[11] Small onshore wind facilities are used to provide electricity to isolated locations and utility companies increasingly buy back surplus electricity produced by small domestic wind turbines. Although a variable source of power, the intermittency of wind seldom creates problems when using wind power to supply up to 20% of total electricity demand, but as the proportion rises, increased costs, a need to use storage such as pumped-storage hydroelectricity, upgrade the grid, or a lowered ability to supplant conventional production may occur.[12][13][14] Power management techniques such as excess capacity, storage, dispatchable backing supply (usually natural gas), exporting and importing power to neighboring areas or reducing demand when wind production is low, can mitigate these problems.
  • Wind power, as an alternative to fossil fuels, is plentiful, renewable, widely distributed, clean, produces no greenhouse gas emissions during operation, and uses little land. In operation, the overall cost per unit of energy produced is similar to the cost for new coal and natural gas installations.[15] The construction of wind farms is not universally welcomed, but any effects on the environment from wind power are generally much less problematic than those of any other power source
  • Wind is the movement of air across the surface of the Earth, affected by areas of high pressure and of low pressure.[35] The surface of the Earth is heated unevenly by the Sun, depending on factors such as the angle of incidence of the sun's rays at the surface (which differs with latitude and time of day) and whether the land is open or covered with vegetation. Also, large bodies of water, such as the oceans, heat up and cool down slower than the land. The heat energy absorbed at the Earth's surface is transferred to the air directly above it and, as warmer air is less dense than cooler air, it rises above the cool air to form areas of high pressure and thus pressure differentials. The rotation of the Earth drags the atmosphere around with it causing turbulence. These effects combine to cause a constantly varying pattern of winds across the surface of the Earth.[35]
  • Wind power is the conversion of wind energy into a useful form of energy, such as using wind turbines to make electrical power, windmills for mechanical power, wind pumps for water pumping or drainage, or sails to propel ships.
  • Compared to the environmental impact of traditional energy sources, the environmental impact of wind power is relatively minor in terms of pollution
  • Wind energy is the kinetic energy of air in motion, also called wind
  • ind power, as an alternative to fossil fuels, is plentiful, renewable, widely distributed, clean, produces no greenhouse gas emissions during operation and uses little land.[2] The effects on the environment are generally less problematic than those from other powe
  • Wind power is very consistent from year to year but has significant variation over shorter time scales. The intermittency of wind seldom creates problems when used to supply up to 20% of total electricity demand,[5] but as the proportion increases, a need to upgrade the grid, and a lowered ability to supplant conventional production can occur.
  •  
    wind turbine stuff
  •  
    "Wind power is the conversion of wind energy into a useful form of energy, such as using wind turbines to make electrical power, windmills for mechanical power, wind pumps for water pumping or drainage, or sails to propel ships."
  •  
    Wind power, as an alternative to fossil fuels, is plentiful, renewable, widely distributed, clean, produces no greenhouse gas emissions during operation and uses little land.[2] The effects on the environment are generally less problematic than those from other power sources. As of 2011, Denmark is generating more than a quarter of its electricity from wind and 83 countries around the world are using wind power on a commercial basis.[3] In 2010 wind energy production was over 2.5% of total worldwide electricity usage, and growing rapidly at more than 25% per annum. The monetary cost per unit of energy produced is similar to the cost for new coal and natural gas installations.[4]
tuckeremi99

Is Current Wind Growth Sustainable? | Renewable Energy World Magazine Article - 0 views

  • wind farms are not only capital intensive but also have a long gestation period – could prove to be prohibitive for many potential investors.
  • terms of global policy, governments need to boost investments in onshore and offshore wind generation through the right mix of supportive policies and incentives.
  • wind energy will become even more attractive as it serves as an insurance against future increases in fuel and carbon prices, while reducing our dependency on fossil fuels imported from volatile regions.
  • ...17 more annotations...
  • Both in Europe and in the US, some 40% of all new power generating capacity installed in the past two years was wind energy. If the economic crisis continues, however, the reduction in power demand will start to impact wind energy, simply because of lower demand for new power plants. Nevertheless, the medium and long-term outlook remains very healthy, as political momentum is building towards a low carbon economy, without which humankind will not overcome three of the biggest concerns of our time – climate protection, energy security and the provision of jobs.
  • Wind power’s credentials as a rapidly deployable clean technology have put it at the forefront in the fight against climate change. Neither new nuclear capacity or carbon capture and storage (CCS) will contribute to CO2 reductions within the timeframe that the climate scientists give us. As a no-fuel, no-carbon emissions source of electricity, wind energy will play a big part in reducing carbon emissions before 2020.
  • A key element for policy makers is to dramatically improve competition in power markets, to ensure that investors, rather than consumers, are exposed to
  • The growth in wind power capacity has shown no signs of slowing, even in these tough economic times. For two years running there has been more new wind power capacity installed than any other power generating technology in Europe – including coal, gas and nuclear. In 2009 the European market for wind turbines experienced a 23% growth rate, the same as the average growth rate over the last 15 years.
  • future carbon and fuel price risk.
  • Wind power is a leader now, and will remain so in the future, attracting big investments and creating jobs. There is a boom waiting to happen in offshore wind energy. But, Europe’s ageing electricity grids must be upgraded and extended, and the EU must also pursue a drive to build an offshore grid in the North and Baltic seas that will connect offshore wind farms to the shore, piping vast amounts of CO2-free energy to consumers at affordable prices.
  • cleaner energy
  • he fact that wind is the most cost effective and scalable renewable source of energy.
  • past several years.
  • dynamic growth rate of the
  • Because of the small size of the existing installed base, the offshore wind sector will see higher growth percentages while the number of onshore turbines will continue to outpace those installed offshore.
  • Continued investment in grid infrastructure is critical for growth as well as wind turbine technology investments that improve efficiency and reliability while driving down emissions. Countries with the most efficient and flexible permitting processes will benefit by realizing the installation of the most advanced technology.
  • but renewable sources, and in large part, wind energy, have an extremely important role to play.
  • A fundamental value of wind is that it lowers risk in the overall generation mix by bringing in a fixed electricity cost. You don’t have any fuel risk, so you don’t have these big price spikes that you see when you generate electricity from gas or oil.
  • The wind power market is still intact. Demand for ‘green’ power stations remains unabated and nearly all governments have adopted policies aimed at environmental sustainability.
  • As our industry is still very young, wind power currently contributes only around 1.5% to global electricity supplies.
  • this merely serves to highlight the enormous potential for the future, especially as wind power is not only clean but also inexpensive. This is something that more and more governments and energy companies are realizing.
  •  
    "The growth in wind power capacity has shown no signs of slowing, even in these tough economic times. For two years running there has been more new wind power capacity installed than any other power generating technology in Europe - including coal, gas and nuclear. In 2009 the European market for wind turbines experienced a 23% growth rate, the same as the average growth rate over the last 15 years."Both in Europe and in the US, some 40% of all new power generating capacity installed in the past two years was wind energy. If the economic crisis continues, however, the reduction in power demand will start to impact wind energy, simply because of lower demand for new power plants. Nevertheless, the medium and long-term outlook remains very healthy, as political momentum is building towards a low carbon economy, without which humankind will not overcome three of the biggest concerns of our time - climate protection, energy security and the provision of jobs." "Wind power is a leader now, and will remain so in the future, attracting big investments and creating jobs. There is a boom waiting to happen in offshore wind energy. But, Europe's ageing electricity grids must be upgraded and extended, and the EU must also pursue a drive to build an offshore grid in the North and Baltic seas that will connect offshore wind farms to the shore, piping vast amounts of CO2-free energy to consumers at affordable prices."
westkea00

Advantages and Disadvantages Of Wave Energy - 0 views

  • Wave energy is as source of power that comes from the endless march of the waves as they roll into the shore then back out again. Humans harness this power along the coastal regions of the United States, Canada, Scotland, and Australia. Energy that comes from the waves in the ocean sounds like a boundless, harmless supply.
  • Advantages of Wave Energy 1. Renewable: The best thing about wave energy is that it will never run out. There will always be waves crashing upon the shores of nations, near the populated coastal regions. The waves flow back from the shore, but they always return. Unlike fossil fuels, which are running out, in some places in the world, just as quickly as people can discover them. Unlike ethanol, a corn product, waves are not limited by a season. They require no input from man to make their power, and they can always be counted on
  • Also unlike fossil fuels, creating power from waves creates no harmful byproducts such as gas, waste, and pollution. The energy from waves can be taken directly into electricity-producing machinery and used to power generators and power plants nearby. In today’s energy-powered world, a source of clean energy is hard to come by.
  • ...7 more annotations...
  • Another benefit to using this energy is its nearness to places that can use it. Lots of big cities and harbors are next to the ocean and can harness the power of the waves for their use. Coastal cities tend to be well-populated, so lots of people can get use from wave energy plants.
  • A final benefit is that there are a variety of ways to gather it. Current gathering methods range from installed power plant with hydro turbines to seafaring vessels equipped with massive structures that are laid into the sea to gather the wave energy.
  • The biggest advantages of wave power as against most of the other alternative energy sources is that it is easily predictable and can be used to calculate the amount that it can produce. The wave energy is consistent and proves much better than other sources which are dependent on wind or sun exposure.
  • The biggest disadvantage to getting your energy from the waves is location. Only power plants and towns near the ocean will benefit directly from it. Because of its source, wave energy is not a viable power source for everyone. Landlocked nations and cities far from the sea have to find alternate sources of power, so wave energy is not the clean energy solution for everyone.
  • As clean as wave energy is, it still creates hazards for some of the creatures near it. Large machines have to be put near and in the water to gather energy from the waves. These machines disturb the seafloor, change the habitat of near-shore creatures (like crabs and starfish) and create noise that disturbs the sea life around them. There is also a danger of toxic chemicals that are used on wave energy platforms spilling and polluting the water near them.
  • Another downside is that it disturbs commercial and private vessels. Power plants that gather wave energy have to be placed by the coastline to do their job, and they have to be near cities and other populated areas to be of much use to anybody. But these are places that are major thoroughfares for cargo ships, cruise ships, recreational vehicles and beach goers. All of these people and vessels will be disrupted by the installation of a wave energy gathering source. This means that government officials and private companies that want to invest in wave energy sources have to take into account and consider the needs of those they may be disturbing.
  • Wind power is highly dependent on wavelength i.e. wave speed, wave length, wavelength and water density. They require a consistent flow of powerful waves to generate significant amount of wave power. Some areas experience unreliable wave behavior and it becomes unpredictable to forecast accurate wave power and therefore cannot be trusted as reliable energy source.
labrumbra99

Sierra Club Green Home » Blog Archive Fuel Cells: Environmental Benefits » Si... - 0 views

  • The use of fuel cells can significantly diminish our dependency on foreign oil. Since fuel cells make energy electrochemically and do not burn fuel like conventional combustion systems, they are much more efficient. Admittedly, some fuel cells need fossil fuels to start their functions; most residential systems run partially off of natural gas. If just 20% of the cars in America used fuel cells, we could cut oil imports by 1.5 million barrels per day. This is $44 billion per year that could remain in the country!
  • The use of fuel cells can significantly diminish our dependency on foreign oil. Since fuel cells make energy electrochemically and do not burn fuel like conventional combustion systems, they are much more efficient. Admittedly, some fuel cells need fossil fuels to start their functions; most residential systems run partially off of natural gas. If just 20% of the cars in America used fuel cells, we could cut oil imports by 1.5 million barrels per day. This is $44 billion per year that could remain in the country!
  • The use of fuel cells can significantly diminish our dependency on foreign oil. Since fuel cells make energy electrochemically and do not burn fuel like conventional combustion systems, they are much more efficient. Admittedly, some fuel cells need fossil fuels to start their functions; most residential systems run partially off of natural gas. If just 20% of the cars in America used fuel cells, we could cut oil imports by 1.5 million barrels per day. This is $44 billion per year that could remain in the country!
  • ...4 more annotations...
  • fuel cells
  • metimes produce a by-product of water or heat, though hydrogen fuel cells are considered more difficult to work with because of transportation and storage. More user friendly fuel cells which use natural gas with emissions that are much lower than those produced by conventional engines or energy sources and can reduce your carbon footprint by around 40%. Additionally, there are only negligible levels of NOx, SOx, Volatile organic compounds and particulates, which is a drastic improvement over traditional means of grid power production. Besides the decreased CO2 emissions and high efficiency rates, fuel c
  • The use of fuel cells can significantly diminish our dependency on foreign oil. Since fuel cells make energy electrochemically and do not burn fuel like conventional combustion systems, they are much more efficient. Admittedly, some fuel cells need fossil fuels to start their functions; most residential systems run partially off of natural gas. If just 20% of the cars in America used fuel cells, we could cut oil imports by 1.5 million barrels per day. This is $44 billion per year that could remain in the country!
  • The use of fuel cells can significantly diminish our dependency on foreign oil. Since fuel cells make energy electrochemically and do not burn fuel like conventional combustion systems, they are much more efficient. Admittedly, some fuel cells need fossil fuels to start their functions; most residential systems run partially off of natural gas. If just 20% of the cars in America used fuel cells, we could cut oil imports by 1.5 million barrels per day. This is $44 billion per year that could remain in the country!
  •  
    " The environmental impact of fuel cells depends on the type of cell and the fuel being used. Fuel cells can run on a variety of sources, from natural gas to hydrogen to ethanol to biogas. Those that run on hydrogen can sometimes produce a by-product of water or heat, though hydrogen fuel cells are considered more difficult to work with because of transportation and storage. More user friendly fuel cells which use natural gas with emissions that are much lower than those produced by conventional engines or energy sources and can reduce your carbon footprint by around 40%. Additionally, there are only negligible levels of NOx, SOx, Volatile organic compounds and particulates, which is a drastic improvement over traditional means of grid power production. Besides the decreased CO2 emissions and high efficiency rates, fuel cells offer plenty of positive environmental impacts that should be considered by investors and consumers as solutions for cleaner energy are being further researched. 1. Fuel Conservation The use of fuel cells can significantly diminish our dependency on foreign oil. Since fuel cells make energy electrochemically and do not burn fuel like conventional combustion systems, they are much more efficient. Admittedly, some fuel cells need fossil fuels to start their functions; most residential systems run partially off of natural gas. If just 20% of the cars in America used fuel cells, we could cut oil imports by 1.5 million barrels per day. This is $44 billion per year that could remain in the country! 2. Combined Heat and Power The greatest benefit from high powered, well designed fuel cells is the heat and power produced. This means that a property can reduce additional investments to heat their indoor areas or water. In this case, less is more. Since the heat can be redirected to heat water, the environmental benefit from this is the ability to heat the hot water supply without a need for a separate system as is the case with home solar."
sankeyrya00

Wind Turbines - Kinetic wind energy generator technology - 0 views

  • Though our scientists may claim that they are inventing something new by using wind as a source of generating energy, the truth is that wind is being used for centuries for this purpose. An example of this is an article published in 1838, which clearly shows that even in those times, wind was considered an important source of energy. Here are a few quotes that were recorded in the past, which prove that wind was always important in generating energy
  • Renewable energy production and demand growth is gaining momentum in many ways across the world. There is a booming demand of wind power today and all wind energy equipment manufacturers are gearing up to meet the demand and take advantage of it. Wind power capacity growth will be reaching 447GW in the next five years and by year 2014 end, Asia will lead the world in installed wind capacity.
  • Yes, the day is not far off when reaching for sky is the new motto for generating cost-effective renewable energy. Initially it was considered to be technically non-viable to tap high-altitude winds. But today, technically-advanced materials and innovative computer know-how are giving new life to this scheme with innovative autonomous aerial structures using wind energy to generate power
  • ...6 more annotations...
  • It's an expert estimation that the total energy stored in wind is 100 times higher than actually needed by humans on this earth. The catch is that we have to learn and devise ways to trap this wind power blowing across the planet earth. Experts tell us one more thing that most of the wind energy is available at high altitude and we can’t manufacture turbines of that height. So we have to think of new ways to trap that wind power blowing at a significant height. Some experts estimate that the total energy contained in wind is 100 times the amount needed by everyone on the planet. However, most of this energy is at high altitudes, far beyond the reach of any wind turbine.
  • Presently Fluid Dynamics Expert, John Dabiri, is very much on the quest of improving designs of wind turbines. Spotting behaviours that may throw light on energy-related practices in biological system and trying to implement that in real-life situations is part of that quest and Mr.Dabiri is jubilant that he is learning lessons from a school of fish! Water-energy, and wind energy are both studied.
  • A research company in New Hampshire recently patented its bladeless wind turbine, which is based on a patent issued to Nikola Tesla in 1913. This wind turbine is christened as the Fuller Wind Turbine. This turbine is developed by Solar Aero. The specialty of Fuller Wind Turbine is it has only one rotating part, known as the turbine-driveshaft. The entire machinery is assembled inside a housing. Wind turbines are often disliked by environmentalists because they kill birds and bats and often generate noise for the residents living nearby
  • GE, the US industrial group, is promoting and showing confidence in offshore wind technology by buying ScanWind, which makes direct-drive turbine components. This move will help in generating thousands of new jobs in the field of designing and manufacturing turbines. This move will affirm the confidence of investors in the fledgling offshore wind industry, which has been weighed down by concerns about costs and reliability. GE is moving ahead with establishing turbine manufacturing facilities to serve the European markets at first. They have to make up their mind about the size of the investment and location
  • The Metropolis Magazine has been holding Next Generation Design Competition since 2003. They want to provide a platform for young designers to promote the spirit of activism, social involvement, and entrepreneurship. They offer prize money of $ 10,000. But the real attraction is the publicity given to the projects of winners and runners-up. This recognition helps abstract ideas take concrete forms. For 2009, the theme for the Next Generation Design Competition was: How do we fix our energy addiction? They offered some guidelines, "Think about how we live and work, what we use, how we get where we need to go, hidden costs to our pocket books and the environment, across the whole design spectrum. Focus on one area that needs fixing—products, interiors, buildings and landscape, communication systems, or anything else you can imagine—and develop your idea fully. And above all, think of our energy addiction as a design problem at all scales."
  • sector. Wind turbines generate clean and green power for us but they have certain precondition. One of it is the power unit has to be set up in strong wind area. But Green Energy Technologies has developed a brand new wind power generator known as the WindCube. It is smaller compared to the normal wind generator. WindCube is specially designed to set up on the roof of a building in urban and rural areas. WindCube carries a 22 x 22 x 12 feet framework and its single unit can produce a maximum of 60kW of power
wooddan99

Geothermal Energy - 3 views

  • Resources of geothermal energy range from the shallow ground to hot water and hot rock found a few miles beneath the Earth's surface, and down even deeper to the extremely high temperatures of molten rock called magma.
  • Hot water near the surface of Earth can be used directly for heat.
  • Wells can be drilled into underground reservoirs for the generation of electricity. Some geothermal power plants use the steam from a reservoir to power a turbine/generator, while others use the hot water to boil a working fluid that vaporizes and then turns a turbine.
  • ...3 more annotations...
  • Geothermal energy is the heat from the Earth. It's clean and sustainable. Resources of geothermal energy range from the shallow ground to hot water and hot rock found a few miles beneath the Earth's surface, and down even deeper to the extremely high temperatures of molten rock called magma.
  • Hot dry rock resources occur at depths of 3 to 5 miles everywhere beneath the Earth's surface and at lesser depths in certain areas.
  • of geothermal energy range from the shallow ground to hot water and hot rock found a few miles beneath the Earth's surface, and down even deeper to the extremely hig
  •  
    "Geothermal energy is the heat from the Earth. It's clean and sustainable. Resources of geothermal energy range from the shallow ground to hot water and hot rock found a few miles beneath the Earth's surface, and down even deeper to the extremely high temperatures of molten rock called magma."
  • ...3 more comments...
  •  
    "Geothermal energy is the heat from the Earth. It's clean and sustainable. Resources of geothermal energy range from the shallow ground to hot water and hot rock found a few miles beneath the Earth's surface, and down even deeper to the extremely high temperatures of molten rock called magma."
  •  
    "Geothermal energy is the heat from the Earth. It's clean and sustainable. Resources of geothermal energy range from the shallow ground to hot water and hot rock found a few miles beneath the Earth's surface, and down even deeper to the extremely high temperatures of molten rock called magma."
  •  
    Geothermal energy can be easily found close to the surface or far down in the core.
  •  
    "Geothermal energy is the heat from the Earth. It's clean and sustainable. Resources of geothermal energy range from the shallow ground to hot water and hot rock found a few miles beneath the Earth's surface, and down even deeper to the extremely high temperatures of molten rock called magma."
  •  
    "Geothermal energy is the heat from the Earth. It's clean and sustainable. Resources of geothermal energy range from the shallow ground to hot water and hot rock found a few miles beneath the Earth's surface, and down even deeper to the extremely high temperatures of molten rock called magma."
rosskyl99

The Disadvantages of Wave Energy | eHow.com - 0 views

  • Because waves are erratic, the amount of energy a wave generator can produce is unpredictable and, therefore, cannot be used as a sole reliable energy source.
  • accidental hydraulic fluid leaks can cause a major environmental problem.
  • A collision could cause a hydraulic spill or leak and become an environmental hazard.
  • ...6 more annotations...
  • Boats not able to see the generators could cause a potential collision hazard and pose problems for the safety of both those on board and to the wave energy generator.
  • Wave energy boasts many advantages such as its low cost, zero to no pollution, and a large energy output.
  • Wave energy generators can cause noise pollution and be a nuisance to those living close to them, according to the UK Department for Business Innovation & Skills. The noise emanating from a generator, though, is often covered up by the noise of the waves.
  • Wave energy generators can cause noise pollution and be a nuisance to those living close to them, according to the UK Department for Business Innovation & Skills. The noise emanating from a generator, though, is often covered up by the noise of the waves. Wave power generators can also be unsightly to some.
  • Wave energy generators can cause noise pollution and be a nuisance to those living close to them, according to the UK Department for Business Innovation & Skills. The noise emanating from a generator, though, is often covered up by the noise of the waves. Wave power generators can also be unsightly to some.
  • Wave energy generators can cause noise pollution and be a nuisance to those living close to them, according to the UK Department for Business Innovation & Skills. The noise emanating from a generator, though, is often covered up by the noise of the waves. Wave power generators can also be unsightly to some. Floating devices are large snake-like machines floating parallel to one another throughout an area close to the seashore. Some may find them offensive or unpleasant.
  •  
    wave cost is low
faglejoh98

Geothermal Energy Information, Geothermal Power Facts - National Geographic - 0 views

  • Geothermal energy has been used for thousands of years in some countries for cooking and heating. It is simply power derived from the Earth's internal heat.This thermal energy is contained in the rock and fluids beneath Earth's crust. It can be found from shallow ground to several miles below the surface, and even farther down to the extremely hot molten rock called magma.These underground reservoirs of steam and hot water can be tapped to generate electricity or to heat and cool buildings directly.A geothermal heat pump system can take advantage of the constant temperature of the upper ten feet (three meters) of the Earth's surface to heat a home in the winter, while extracting heat from the building and transferring it back to the relatively cooler ground in the summer
  • There are three types of geothermal power plants: dry steam, flash, and binary. Dry steam, the oldest geothermal technology, takes steam out of fractures in the ground and uses it to directly drive a turbine. Flash plants pull deep, high-pressure hot water into cooler, low-pressure water. The steam that results from this process is used to drive the turbine. In binary plants, the hot water is passed by a secondary fluid with a much lower boiling point than water. This causes the secondary fluid to turn to vapor, which then drives a turbine. Most geothermal power plants in the future will be binary plants.
  • It can be extracted without burning a fossil fuel such as coal, gas, or oil. Geothermal fields produce only about one-sixth of the carbon dioxide that a relatively clean natural-gas-fueled power plant produces.
  • ...1 more annotation...
  • wer plants: dry steam, flash, and binary. Dry steam, the oldest geothermal technology, takes steam out of fractures in the ground and uses it to directly drive a turbine. Flash plants
  •  
    good info.
  •  
    Geothermal energy doesn't release much CO2
  •  
    "There are three types of geothermal power plants: dry steam, flash, and binary. Dry steam, the oldest geothermal technology, takes steam out of fractures in the ground and uses it to directly drive a turbine. Flash plants pull deep, high-pressure hot water into cooler, low-pressure water. The steam that results from this process is used to drive the turbine. In binary plants, the hot water is passed by a secondary fluid with a much lower boiling point than water. This causes the secondary fluid to turn to vapor, which then drives a turbine. Most geothermal power plants in the future will be binary plants."
knightoli99

What Is Geothermal Energy? - 1 views

  • What is geothermal energy? Simply put, it is energy from the Earth. Geo refers to the solid part of the Earth and thermal refers to heat energy. Anywhere the Earth's surface is in close proximity to magma or volcanic activity under or near the Earth's surface, we can harness the energy.
  •  
    "What is geothermal energy? Simply put, it is energy from the Earth. Geo refers to the solid part of the Earth and thermal refers to heat energy. Anywhere the Earth's surface is in close proximity to magma or volcanic activity under or near the Earth's surface, we can harness the energy. According to the Department of Energy,"Geothermal energy technologies use the heat of the earth for direct-use applications, geothermal heat pumps, and electrical power production. Resources of geothermal energy range from the shallow ground to hot water and hot rock found a few miles beneath the Earth's surface and down even deeper to the extremely high temperatures of molten rock called magma. Three power plant technologies are being used to convert hydrothermal fluids to electricity. The type of conversion used depends on whether the fluid is steam or water and its temperature."
dpurdy

EIA Energy Kids - Wind - 1 views

  • Wind is simply air in motion. It is caused by the uneven heating of the Earth's surface by the sun. Because the Earth's surface is made of very different types of land and water, it absorbs the sun's heat at different rates. One example of this uneven heating can be found in the daily wind cycle.
  • The Daily Wind Cycle During the day, the air above the land heats up more quickly than the air over water. The warm air over the land expands and rises, and the heavier, cooler air rushes in to take its place, creating wind. At night, the winds are reversed because the air cools more rapidly over land than over water. In the same way, the atmospheric winds that circle the earth are created because the land near the Earth's equator is heated more by the sun than the land near the North and South Poles. Wind Energy for Electricity Generation Today, wind energy is mainly used to generate electricity. Wind is a renewable energy source because the wind will blow as long as the sun shines
  • Like old fashioned windmills, today’s wind machines (also called wind turbines) use blades to collect the wind’s kinetic energy. The wind flows over the blades creating lift, like the effect on airplane wings, which causes them to turn. The blades are connected to a drive shaft that turns an electric generator to produce electricity. With the new wind machines, there is still the problem of what to do when the wind isn't blowing. At those times, other types of power plants must be used to make electricity.
  • ...12 more annotations...
  • Wind Production In 2010, wind turbines in the United States generated about 2% of total U.S. electricity generation. Although this is a small fraction of the Nation's total electricity production, it was equal to the annual electricity use of about 8.7 million households.
  • Operating a wind power plant is not as simple as just building a windmill in a windy place. Wind plant owners must carefully plan where to locate their machines. It is important to consider how fast and how much the wind blows at the site
  • As a rule, wind speed increases with altitude and over open areas that have no windbreaks. Good sites for wind plants are the tops of smooth, rounded hills, open plains or shorelines, and mountain gaps that produce wind funneling.
  • Conditions are well suited along much of the coasts of the United States to use wind energy. However, there are people who oppose putting turbines just offshore, near the coastlines, because they think the wind turbines will spoil the view of the ocean. There is a plan to build an offshore wind plant off the coast of Cape Cod, Massachusetts.
  • Wind is a renewable energy source that does not pollute, so some people see it as a good alternative to fossil fuels.
  • Since early recorded history, people have been harnessing the energy of the wind. Wind energy propelled boats along the Nile River as early as 5000 B.C.
  • As late as the 1920s, Americans used small windmills to generate electricity in rural areas without electric service. When power lines began to transport electricity to rural areas in the 1930s, local windmills were used less and less,
  • In the early 1980s, wind energy really took off in California, partly because of State policies that encouraged renewable energy sources.
  • Wind is a clean source of energy, and overall, the use of wind for energy has fewer environmental impacts than using many other energy sources. Wind turbines (often called windmills) do not release emissions that pollute the air or water (with rare exceptions), and they do not require water for cooling. They may also reduce the amount of electricity generated from fossil fuels and therefore reduce the amount of air pollution, carbon dioxide emissions, and water use of fossil fuel power plants.
  • Modern wind turbines are very large machines, and some people do not like their visual impact on the landscape.
  • Some people do not like the sound that wind turbine blades make. Some types of wind turbines and wind projects cause bird and bat deaths. These deaths may contribute to declines in species that are also being affected by other human-related impacts.
  • Most wind power projects on land also require service roads that add to their physical impact on the environment.
  •  
    Most quality online stores. Know whether you are a trusted online retailer in the world. Whatever we can buy very good quality. and do not hesitate. Everything is very high quality. Including clothes, accessories, bags, cups. Highly recommended. This is one of the trusted online store in the world. View now www.retrostyler.com
rodriguezjos99

Is Tidal Energy a sustainable way to produce power? | GreenAnswers - 4 views

  • It does not create any emissions that may contribute to global warming.
  • Tidal energy is most sustainable and beneficial as a tool in a larger tool belt of renewable energy sources needed to meet our energy demands.
  •  
    "tidal power is a renewable source of electrical power that is used in addition to other sources of energy. It does not create any emissions that may contribute to global warming. Tidal power is not entirely the most consistent source of electricity though, as it does not adhere to peak usage schedules, due to daily tidal cycles (differing energy harnessing potential between Ebb and Flood tides). Tidal energy is most sustainable and beneficial as a tool in a larger tool belt of renewable energy sources needed to meet our energy demands."
  •  
    "Yes, tidal power is a renewable source of electrical power that is used in addition to other sources of energy. It does not create any emissions that may contribute to global warming. Tidal power is not entirely the most consistent source of electricity though, as it does not adhere to peak usage schedules, due to daily tidal cycles (differing energy harnessing potential between Ebb and Flood tides). Tidal energy is most sustainable and beneficial as a tool in a larger tool belt of renewable energy sources needed to meet our energy demands."
dpurdy

Directory:Cents Per Kilowatt-Hour - PESWiki - 9 views

  • Method Cents/kW-h Limitations and Externalities WindCurrently supplies approximately 1.4% of the global electricity demand. Wind is considered to be about 30% reliable. 4.0 - 6.0 Cents/kW-h Wind is currently the only cost-effective alternative energy method, but has a number of problems. Wind farms are highly subject to lightning strikes, have high mechanical fatigue failure, are limited in size by hub stress, do not function well, if at all, under conditions of heavy rain, icing conditions or very cold climates, and are noisy and cannot be insulated for sound reduction due to their size and subsequent loss of wind velocity and power. GeothermalCurrently supplies approximately 0.23% of the global electricity demand. Geothermal is considered 90-95% reliable. 4.5 - 30 Cents/kW-h New low temperature conversion of heat to electricity is likely to make geothermal substantially more plausible (more shallow drilling possible) and less expensive. Generally, the bigger the plant, the less the cost and cost also depends upon the depth to be drilled and the temperature at the depth. The higher the temperature, the lower the cost per kwh. Cost may also be affect by where the drilling is to take place as concerns distance from the grid and another factor may be the permeability of the rock. HydroCurrently supplies around 19.9% of the global electricity demand. Hydro is considered to be 60% reliable. 5.1 - 11.3 Cents/kW-h Hydro is currently the only source of renewable energy making substantive contributions to global energy demand. Hydro plants, however, can (obviously) only be built in a limited number of places, and can significantly damage aquatic ecosystems. SolarCurrently supplies approximately 0.8% of the global electricity demand. 15 - 30 Cents/kW-h Solar power has been expensive, but soon is expected to drop to as low as 3.5 cents/kW-h. Once the silicon shortage is remedied through alternative materials, a solar energy revolution is expected.
  • Tide 2 - 5 Cents/kW-h Blue Energy's tidal fence, engineered and ready for implementation, would provide a land bridge (road) while also generating electricity. Environmental impact is low. Tides are highly predictable.
  • Method Cents/kW-h Limitations and Externalities GasCurrently supplies around 15% of the global electricity demand. 3.9 - 4.4 Cents/kW-h Gas-fired plants and generally quicker and less expensive to build than coal or nuclear, but a relatively high percentage of the cost/KWh is derived from the cost of the fuel. Due to the current (and projected future) upwards trend in gas prices, there is uncertainty around the cost / KWh over the lifetime of plants. Gas burns more cleanly than coal, but the gas itself (largely methane) is a potent greenhouse gas. Some energy conversions to calculate your cost of natural gas per kwh. 100 cubic feet (CCF)~ 1 Therm = 100,000 btu ~ 29.3 kwh. CoalCurrently supplies around 38% of the global electricity demand. 4.8 - 5.5 Cents/kW-h Increasingly difficult to build new coal plants in the developed world, due to environmental requirements governing the plants. Growing concern about coal fired plants in the developing world (China, for instance, imposes less environmental overhead, and has large supplies of high sulphur content coal). The supply of coal is plentiful, but the coal generation method is perceived to make a larger contribution to air pollution than the rest of the methods combined.
pondalb98

Wind Energy Basics - 5 views

  • Wind is a form of solar energy. Winds are caused by the uneven heating of the atmosphere by the sun, the irregularities of the earth's surface, and rotation of the earth. Wind flow patterns are modified by the earth's terrain, bodies of water, and vegetative cover. This wind flow, or motion energy, when "harvested" by modern wind turbines, can be used to generate electricity.
  • The terms "wind energy" or "wind power" describe the process by which the wind is used to generate mechanical power or electricity
  • The terms "wind energy" or "wind power" describe the process by which the wind is used to generate mechanical power or electricity. Wind turbines convert the kinetic energy in the wind into mechanical power
  • ...19 more annotations...
  • Wind turbines, like aircraft propeller blades, turn in the moving air and power an electric generator that supplies an electric current
  • Modern wind turbines fall into two basic groups; the horizontal-axis variety, like the traditional farm windmills used for pumping water, and the vertical-axis design, like the eggbeater-style Darrieus model
  • wind farm, and generate bulk electrical power
  • Utility-scale turbines range in size from 50 to 750 kilowatts. Single small turbines, below 50 kilowatts
  • Wind energy is very abundant in many parts of the United States. Wind resources are characterized by wind-power density classes, ranging from class 1 (the lowest) to class 7 (the highest). Good wind resources (e.g., class 3 and above, which have an average annual wind speed of at least 13 miles per hour) are found in many locations (see United States Wind Energy Resource Map)
  • free, renewable resource, so no matter how much is used today, there will still be the same supply in the future
  • clean, non-polluting, electricity. Unlike conventional power plants, wind plants emit no air pollutants or greenhouse gases
  • higher initial investment than fossil-fueled generators. Roughly 80% of the cost is the machinery, with the balance being site preparation and installation.
  • remote locations far from areas of electric power demand (such as cities)
  • Although wind power plants have relatively little impact on the environment compared to fossil fuel power plants, there is some concern over the noise produced by the rotor blades, aesthetic (visual) impacts, and birds and bats having been killed (avian/bat mortality) by flying into the rotors. Most of these problems have been resolved or greatly reduced through technological development or by properly siting wind plants
  • alternative uses may be more highly valued than electricity generation. However, wind turbines can be located on land that is also used for grazing or even farming
  • Wind is a form of solar energy. Winds are caused by the uneven heating of the atmosphere by the sun, the irregularities of the earth's surface, and rotation of the earth. Wind flow patterns are modified by the earth's terrain, bodies of water, and vegetative cover. This wind flow, or motion energy, when "harvested" by modern wind turbines, can be used to generate electricity.
  • The terms "wind energy" or "wind power" describe the process by which the wind is used to generate mechanical power or electricity. Wind turbines convert the kinetic energy in the wind into mechanical power. This mechanical power can be used for specific tasks (such as grinding grain or pumping water) or a generator can convert this mechanical power into electricity to power homes, businesses, schools, and the like.
  • Wind turbines, like aircraft propeller blades, turn in the moving air and power an electric generator that supplies an electric current. Simply stated, a wind turbine is the opposite of a fan. Instead of using electricity to make wind, like a fan, wind turbines use wind to make electricity. The wind turns the blades, which spin a shaft, which connects to a generator and makes electricity.
  • Modern wind turbines fall into two basic groups; the horizontal-axis variety, like the traditional farm windmills used for pumping water, and the vertical-axis design, like the eggbeater-style Darrieus model, named after its French inventor. Most large modern wind turbines are horizontal-axis turbines.
  • Wind is a form of solar energy
  • The terms "wind energy" or "wind power
  • describe the process by which the wind is used to generate mechanical power or electricity.
  • Wind turbines, like aircraft propeller blades, turn in the moving air and power an electric generator that supplies an electric current. Simply stated, a wind turbine is the opposite of a fan. Instead of using electricity to make wind, like a fan, wind turbines use wind to make electricity. The wind turns the blades, which spin a shaft, which connects to a generator and makes electricity.
  •  
    "Wind is a form of solar energy. Winds are caused by the uneven heating of the atmosphere by the sun, the irregularities of the earth's surface, and rotation of the earth. Wind flow patterns are modified by the earth's terrain, bodies of water, and vegetative cover. This wind flow, or motion energy, when "harvested" by modern wind turbines, can be used to generate electricity."
  •  
    "Modern wind turbines fall into two basic groups; the horizontal-axis variety, like the traditional farm windmills used for pumping water, and the vertical-axis design, like the eggbeater-style Darrieus model, named after its French inventor. Most large modern wind turbines are horizontal-axis turbines."
stewartlas97

History of Wind Power - 0 views

  •  
    "China has also laid claims to having invented windmills around 2,000 years ago, but the first documented claims appear in the 1200's. Around 250 A.D. the Romans introduced windmills into their culture and in the 700's so did Afghanistan. The Afghanistan windmills were also of the vertical axis style and cloth sails or reed matting was developed to catch the air. These windmills were used to grind corn and sugarcane plus draw water. In the 13th century Holland started developing large horizontal axis windmills. These four-blade windmills were larger, carried more torque and wind speed and could do more work than other windmills previously designed. The Holland windmills were also being used to grind grains and to drain part of the Rhine River. In the 19th century Denmark had an estimated 2,500 windmills and in the U. S. windmills were starting to be used to pump water. The Halladay windmill of 1854 is one such example of this. The first windmill in the world built for electrical production was in 1887 in Scotland built by Professor James Blyth. A year later in 1888 in the U. S. Charles Brush of Cleveland, Ohio built a large wind turbine used to generate electricity."
glinbizzivic98

Geothermal Energy: Resource Exploration and Drilling Impacts - 1 views

  •  
    "Primary sources of noise associated with exploration include earth-moving equipment (related to road, well pad, and sump pit construction), vehicle traffic, seismic surveys, blasting, and drill rigoperations. Well drilling and testing activities are estimated to produce noise levels ranging from about 80 to 115 decibels at the site boundary. Air Quality Emissions generated during the exploration and drilling phase include exhaust from vehicular traffic and drill rigs, fugitive dust from traffic on paved and unpaved roads, and the release of geothermal fluid vapors (especially hydrogen sulfide, carbon dioxide, mercury, arsenic, and boron, if present in the reservoir). Initial exploration activities such as surveying and sampling would have minimal air quality impacts. Activities such as site clearing and grading, road construction, well pad development, sump pit construction, and the drilling of production and injection wells would have more intense exhaust-related emissions over a period of 1 to 5 years. Impacts would depend upon the amount, duration, location, and characteristics of the emissions and the meteorological conditions (e.g., wind speed and direction, precipitation, and relative humidity). Emissions during this phase would not have a measurable impact on climate change. State and local regulators may require permits and air monitoring programs. Cultural Resources Cultural resources could be impacted if additional roads or routes are developed across or within the historic landscape of a cultural resource. Additional roads could lead to increased surface and subsurface disturbance that could increase illegal collection and vandalism. The magnitude and extent of impacts would depend on the current state of the resources and their eligibility for the National Register of Historic Places. Drilling activities could result in long-term impacts on archeological artifacts and historic buildings or structures, if present. Surveys conducted during this phase
dpurdy

How do Photovoltaics Work? - NASA Science - 1 views

  • Photovoltaics is the direct conversion of light into electricity at the atomic level. Some materials exhibit a property known as the photoelectric effect that causes them to absorb photons of light and release electrons. When these free electrons are captured, an electric current results that can be used as electricity.
  • When light energy strikes the solar cell, electrons are knocked loose from the atoms in the semiconductor material. If electrical conductors are attached to the positive and negative sides, forming an electrical circuit, the electrons can be captured in the form of an electric current -- that is, electricity. This electricity can then be used to power a load, such as a light or a tool.
  •  
    " Solar cells are made of the same kinds of semiconductor materials, such as silicon, used in the microelectronics industry. For solar cells, a thin semiconductor wafer is specially treated to form an electric field, positive on one side and negative on the other. When light energy strikes the solar cell, electrons are knocked loose from the atoms in the semiconductor material. If electrical conductors are attached to the positive and negative sides, forming an electrical circuit, the electrons can be captured in the form of an electric current -- that is, electricity. This electricity can then be used to power a load, such as a light or a too"
  •  
    "The photoelectric effect was first noted by a French physicist, Edmund Bequerel, in 1839, who found that certain materials would produce small amounts of electric current when exposed to light. In 1905, Albert Einstein described the nature of light and the photoelectric effect on which photovoltaic technology is based, for which he later won a Nobel prize in physics. The first photovoltaic module was built by Bell Laboratories in 1954. It was billed as a solar battery and was mostly just a curiosity as it was too expensive to gain widespread use. In the 1960s, the space industry began to make the first serious use of the technology to provide power aboard spacecraft. Through the space programs, the technology advanced, its reliability was established, and the cost began to decline. During the energy crisis in the 1970s, photovoltaic technology gained recognition as a source of power for non-space applications."
knightoli99

Geothermal Electricity Production - Geothermal Energy - Renewable Energy World - 0 views

  •  
    " Geothermal Electricity Production Most power plants need steam to generate electricity. The steam rotates a turbine that activates a generator, which produces electricity. Many power plants still use fossil fuels to boil water for steam. Geothermal power plants, however, use steam produced from reservoirs of hot water found a couple of miles or more below the Earth's surface. There are three types of geothermal power plants: dry steam, flash steam, and binary cycle. Dry steam power plants draw from underground resources of steam. The steam is piped directly from underground wells to the power plant, where it is directed into a turbine/generator unit. There are only two known underground resources of steam in the United States: The Geysers in northern California and Yellowstone National Park in Wyoming, where there's a well-known geyser called Old Faithful. Since Yellowstone is protected from development, the only dry steam plants in the country are at The Geysers. This geothermal power plant generates electricity for the Imperial Valley in California. Credit: Warren Gretz Flash steam power plants are the most common. They use geothermal reservoirs of water with temperatures greater than 360°F (182°C). This very hot water flows up through wells in the ground under its own pressure. As it flows upward, the pressure decreases and some of the hot water boils into steam. The steam is then separated from the water and used to power a turbine/generator. Any leftover water and condensed steam are injected back into the reservoir, making this a sustainable resource. Binary cycle power plants operate on water at lower temperatures of about 225°-360°F (107°-182°C). These plants use the heat from the hot water to boil a working fluid, usually an organic compound with a low boiling point. The working fluid is vaporized in a heat exchanger and used to turn a turbine. The water is then injected back into the ground to be reheated. The water and the working fluid are
parkergar99

HELCO seeking additional geothermal energy | Hawaii 24/7 | Hawaii247.com | Hawaii's New... - 0 views

  •  
    "The company is seeking to add up to 50 megawatts (MW) of geothermal energy from geothermal resource developers at prices not tied to the cost of oil to help lower electricity costs for customers. The added power must also blend operationally with other resources, including renewable energy from wind, solar, biomass and hydro. "Moving forward on geothermal is important to Hawaii Island because we want to increase our use of renewable energy and bring down costs to our customers,"
behanjos99

What are geothermal energy advantages and disadvantages? - 0 views

  • Advantages: Geothermal energy cost is extremely low compared to many other energy sources. It has low pollution compared to fossil fuels and nuclear energy. Geothermal energy is a renewable energy source. Almost no environmental impact when using geothermal heat from nuclear decay. Geothermal heat pump systems can reduce your energy use storing heat from the summer/sun and makes use of it in the night and winter. Low maintenance systems.
  • Disadvantages: The most important disadvantage is absolutely the geological problem.  The heat source is mostly close to volcanic activity of some sort. Chemicals are byproducts of the production electricity with hot ground water. Some geothermal plants use a lot of water and it needs to go somewhere its after use. Some of the poluting chemicals in that water and steam are sulfur, mercury, hydrogen sulfide, arsenic, ammonia. Earth is a changing creature.  A drilled hole in the ground could supply thousands of homes heat and one earthquake could change that in a second.  It can also change gradually over time. Location, location, location.  That is certainly true of geothermal energy.  It cannot be transported over vast distances.  If used to heat up houses or for hot tap water it is only the quality of the pipe that delivers the water that determines how far it can go and if it will be of any use when it arrives. If the heat is used for electrical production it helps to have plants close so the energy loss is not too great. 
  • Corrosion is a big problem.  Composition of the chemicals can vary but it is always a problem.  It is among other the reason they need to heat up clean water to use and do not use it directly in to heating of houses.  In cases it has been used directly it causes pipes to corrode. In nuclear heating rock the rock cools down over few decades and hundreds of years are needed to get initial heating back.  Power stations of that sort are therefore not considered as profitable. Geothermal Heat pump systems do have high installation cost. Some areas run out of water or run low on ground water during seasonal dry spells. Less water means less heat and less energy to produce. Some drilling sites are too hot to handle.  Yea. Drillers have actually tried and tried some holes and they just can’t get the needed equipment in because the holes shoot it out like guns.   With workers running to stay alive while steel rains down on them. 
1 - 20 of 535 Next › Last »
Showing 20 items per page