Skip to main content

Home/ qmstech2/ Group items tagged power plant

Rss Feed Group items tagged

knightoli99

Geothermal Electricity Production - Geothermal Energy - Renewable Energy World - 0 views

  •  
    " Geothermal Electricity Production Most power plants need steam to generate electricity. The steam rotates a turbine that activates a generator, which produces electricity. Many power plants still use fossil fuels to boil water for steam. Geothermal power plants, however, use steam produced from reservoirs of hot water found a couple of miles or more below the Earth's surface. There are three types of geothermal power plants: dry steam, flash steam, and binary cycle. Dry steam power plants draw from underground resources of steam. The steam is piped directly from underground wells to the power plant, where it is directed into a turbine/generator unit. There are only two known underground resources of steam in the United States: The Geysers in northern California and Yellowstone National Park in Wyoming, where there's a well-known geyser called Old Faithful. Since Yellowstone is protected from development, the only dry steam plants in the country are at The Geysers. This geothermal power plant generates electricity for the Imperial Valley in California. Credit: Warren Gretz Flash steam power plants are the most common. They use geothermal reservoirs of water with temperatures greater than 360°F (182°C). This very hot water flows up through wells in the ground under its own pressure. As it flows upward, the pressure decreases and some of the hot water boils into steam. The steam is then separated from the water and used to power a turbine/generator. Any leftover water and condensed steam are injected back into the reservoir, making this a sustainable resource. Binary cycle power plants operate on water at lower temperatures of about 225°-360°F (107°-182°C). These plants use the heat from the hot water to boil a working fluid, usually an organic compound with a low boiling point. The working fluid is vaporized in a heat exchanger and used to turn a turbine. The water is then injected back into the ground to be reheated. The water and the working fluid are
faglejoh98

Geothermal Energy Information, Geothermal Power Facts - National Geographic - 0 views

  • Geothermal energy has been used for thousands of years in some countries for cooking and heating. It is simply power derived from the Earth's internal heat.This thermal energy is contained in the rock and fluids beneath Earth's crust. It can be found from shallow ground to several miles below the surface, and even farther down to the extremely hot molten rock called magma.These underground reservoirs of steam and hot water can be tapped to generate electricity or to heat and cool buildings directly.A geothermal heat pump system can take advantage of the constant temperature of the upper ten feet (three meters) of the Earth's surface to heat a home in the winter, while extracting heat from the building and transferring it back to the relatively cooler ground in the summer
  • There are three types of geothermal power plants: dry steam, flash, and binary. Dry steam, the oldest geothermal technology, takes steam out of fractures in the ground and uses it to directly drive a turbine. Flash plants pull deep, high-pressure hot water into cooler, low-pressure water. The steam that results from this process is used to drive the turbine. In binary plants, the hot water is passed by a secondary fluid with a much lower boiling point than water. This causes the secondary fluid to turn to vapor, which then drives a turbine. Most geothermal power plants in the future will be binary plants.
  • It can be extracted without burning a fossil fuel such as coal, gas, or oil. Geothermal fields produce only about one-sixth of the carbon dioxide that a relatively clean natural-gas-fueled power plant produces.
  • ...1 more annotation...
  • wer plants: dry steam, flash, and binary. Dry steam, the oldest geothermal technology, takes steam out of fractures in the ground and uses it to directly drive a turbine. Flash plants
  •  
    good info.
  •  
    Geothermal energy doesn't release much CO2
  •  
    "There are three types of geothermal power plants: dry steam, flash, and binary. Dry steam, the oldest geothermal technology, takes steam out of fractures in the ground and uses it to directly drive a turbine. Flash plants pull deep, high-pressure hot water into cooler, low-pressure water. The steam that results from this process is used to drive the turbine. In binary plants, the hot water is passed by a secondary fluid with a much lower boiling point than water. This causes the secondary fluid to turn to vapor, which then drives a turbine. Most geothermal power plants in the future will be binary plants."
dpurdy

EIA Energy Kids - Geothermal - 3 views

  • Geothermal Basics What Is Geothermal Energy? The word geothermal comes from the Greek words geo (earth) and therme (heat). So, geothermal energy is heat from within the Earth. We can recover this heat as steam or hot water and use it to heat buildings or generate electricity. Geothermal energy is a renewable energy source because the heat is continuously produced inside the Earth.
  • Geothermal energy is generated in the Earth's core. Temperatures hotter than the sun's surface are continuously produced inside the Earth by the slow decay of radioactive particles, a process that happens in all rocks. The Earth has a number of different layers:
  • Where Geothermal Energy is Found The ring of fire goes around the edges of the Pacific. The map shows that volcanic activity occurs around the Pacific rim.Source: National Energy Education Development Project (Public Domain) Naturally occurring large areas of hydrothermal resources are called geothermal reservoirs. Most geothermal reservoirs are deep underground with no visible clues showing above ground. But geothermal energy sometimes finds its way to the surface in the form of: Volcanoes and fumaroles (holes where volcanic gases are released) Hot springs Geysers
  • ...6 more annotations...
  • U.S. Geothermal Is Mostly in the West Most of the geothermal reservoirs in the United States are located in the western States and Hawaii.
  • Electricity generation power plants require water or steam at very high temperature (300° to 700°F). Geothermal power plants are generally built where geothermal reservoirs are located within a mile or two of the surface.
  • The United States Is the Leader in Geothermal Power Generation The United States leads the world in electricity generation with geothermal power.  In 2009, U.S. geothermal power plants produced 15 billion kilowatt-hours (kWh), or 0.4% of total U.S. electricity generation.  In 2009, five States had geothermal power plants:
  • Geothermal power plants use hydrothermal resources that have two common ingredients: water (hydro) and heat (thermal). Geothermal plants require high temperature (300°F to 700°F) hydrothermal resources that may come from either dry steam wells or hot water wells.
  • high-pressure hot water from deep inside the Earth and convert it to steam to drive the generator turbines. When the steam cools, it condenses to water and is injected back into the ground to be used over and over again. Most geothermal power plants are flash steam plants.
  • Geothermal Power Plants Have Low Emission Levels Geothermal power plants do not burn fuel to generate electricity, so their emission levels are very low. They release less than 1% of the carbon dioxide emissions of a fossil fuel plant. Geothermal plants use scrubber systems to clean the air of hydrogen sulfide that is naturally found in the steam and hot water. Geothermal plants emit 97% less acid rain-causing sulfur compounds than are emitted by fossil fuel plants. After the steam and water from a geothermal reservoir have been used, they are injected back into the Earth.
  •  
    Most quality online stores. Know whether you are a trusted online retailer in the world. Whatever we can buy very good quality. and do not hesitate. Everything is very high quality. Including clothes, accessories, bags, cups. Highly recommended. This is one of the trusted online store in the world. View now www.retrostyler.com
tuckeremi99

Is Current Wind Growth Sustainable? | Renewable Energy World Magazine Article - 0 views

  • wind farms are not only capital intensive but also have a long gestation period – could prove to be prohibitive for many potential investors.
  • terms of global policy, governments need to boost investments in onshore and offshore wind generation through the right mix of supportive policies and incentives.
  • The growth in wind power capacity has shown no signs of slowing, even in these tough economic times. For two years running there has been more new wind power capacity installed than any other power generating technology in Europe – including coal, gas and nuclear. In 2009 the European market for wind turbines experienced a 23% growth rate, the same as the average growth rate over the last 15 years.
  • ...17 more annotations...
  • Both in Europe and in the US, some 40% of all new power generating capacity installed in the past two years was wind energy. If the economic crisis continues, however, the reduction in power demand will start to impact wind energy, simply because of lower demand for new power plants. Nevertheless, the medium and long-term outlook remains very healthy, as political momentum is building towards a low carbon economy, without which humankind will not overcome three of the biggest concerns of our time – climate protection, energy security and the provision of jobs.
  • Wind power’s credentials as a rapidly deployable clean technology have put it at the forefront in the fight against climate change. Neither new nuclear capacity or carbon capture and storage (CCS) will contribute to CO2 reductions within the timeframe that the climate scientists give us. As a no-fuel, no-carbon emissions source of electricity, wind energy will play a big part in reducing carbon emissions before 2020.
  • A key element for policy makers is to dramatically improve competition in power markets, to ensure that investors, rather than consumers, are exposed to
  • wind energy will become even more attractive as it serves as an insurance against future increases in fuel and carbon prices, while reducing our dependency on fossil fuels imported from volatile regions.
  • future carbon and fuel price risk.
  • Wind power is a leader now, and will remain so in the future, attracting big investments and creating jobs. There is a boom waiting to happen in offshore wind energy. But, Europe’s ageing electricity grids must be upgraded and extended, and the EU must also pursue a drive to build an offshore grid in the North and Baltic seas that will connect offshore wind farms to the shore, piping vast amounts of CO2-free energy to consumers at affordable prices.
  • cleaner energy
  • dynamic growth rate of the
  • past several years.
  • he fact that wind is the most cost effective and scalable renewable source of energy.
  • Because of the small size of the existing installed base, the offshore wind sector will see higher growth percentages while the number of onshore turbines will continue to outpace those installed offshore.
  • Continued investment in grid infrastructure is critical for growth as well as wind turbine technology investments that improve efficiency and reliability while driving down emissions. Countries with the most efficient and flexible permitting processes will benefit by realizing the installation of the most advanced technology.
  • but renewable sources, and in large part, wind energy, have an extremely important role to play.
  • A fundamental value of wind is that it lowers risk in the overall generation mix by bringing in a fixed electricity cost. You don’t have any fuel risk, so you don’t have these big price spikes that you see when you generate electricity from gas or oil.
  • The wind power market is still intact. Demand for ‘green’ power stations remains unabated and nearly all governments have adopted policies aimed at environmental sustainability.
  • As our industry is still very young, wind power currently contributes only around 1.5% to global electricity supplies.
  • this merely serves to highlight the enormous potential for the future, especially as wind power is not only clean but also inexpensive. This is something that more and more governments and energy companies are realizing.
  •  
    "The growth in wind power capacity has shown no signs of slowing, even in these tough economic times. For two years running there has been more new wind power capacity installed than any other power generating technology in Europe - including coal, gas and nuclear. In 2009 the European market for wind turbines experienced a 23% growth rate, the same as the average growth rate over the last 15 years."Both in Europe and in the US, some 40% of all new power generating capacity installed in the past two years was wind energy. If the economic crisis continues, however, the reduction in power demand will start to impact wind energy, simply because of lower demand for new power plants. Nevertheless, the medium and long-term outlook remains very healthy, as political momentum is building towards a low carbon economy, without which humankind will not overcome three of the biggest concerns of our time - climate protection, energy security and the provision of jobs." "Wind power is a leader now, and will remain so in the future, attracting big investments and creating jobs. There is a boom waiting to happen in offshore wind energy. But, Europe's ageing electricity grids must be upgraded and extended, and the EU must also pursue a drive to build an offshore grid in the North and Baltic seas that will connect offshore wind farms to the shore, piping vast amounts of CO2-free energy to consumers at affordable prices."
pondalb98

Wind Energy Basics - 5 views

  • Wind is a form of solar energy. Winds are caused by the uneven heating of the atmosphere by the sun, the irregularities of the earth's surface, and rotation of the earth. Wind flow patterns are modified by the earth's terrain, bodies of water, and vegetative cover. This wind flow, or motion energy, when "harvested" by modern wind turbines, can be used to generate electricity.
  • The terms "wind energy" or "wind power" describe the process by which the wind is used to generate mechanical power or electricity
  • The terms "wind energy" or "wind power" describe the process by which the wind is used to generate mechanical power or electricity. Wind turbines convert the kinetic energy in the wind into mechanical power
  • ...19 more annotations...
  • Wind turbines, like aircraft propeller blades, turn in the moving air and power an electric generator that supplies an electric current
  • Modern wind turbines fall into two basic groups; the horizontal-axis variety, like the traditional farm windmills used for pumping water, and the vertical-axis design, like the eggbeater-style Darrieus model
  • wind farm, and generate bulk electrical power
  • Utility-scale turbines range in size from 50 to 750 kilowatts. Single small turbines, below 50 kilowatts
  • Wind energy is very abundant in many parts of the United States. Wind resources are characterized by wind-power density classes, ranging from class 1 (the lowest) to class 7 (the highest). Good wind resources (e.g., class 3 and above, which have an average annual wind speed of at least 13 miles per hour) are found in many locations (see United States Wind Energy Resource Map)
  • free, renewable resource, so no matter how much is used today, there will still be the same supply in the future
  • clean, non-polluting, electricity. Unlike conventional power plants, wind plants emit no air pollutants or greenhouse gases
  • higher initial investment than fossil-fueled generators. Roughly 80% of the cost is the machinery, with the balance being site preparation and installation.
  • Although wind power plants have relatively little impact on the environment compared to fossil fuel power plants, there is some concern over the noise produced by the rotor blades, aesthetic (visual) impacts, and birds and bats having been killed (avian/bat mortality) by flying into the rotors. Most of these problems have been resolved or greatly reduced through technological development or by properly siting wind plants
  • remote locations far from areas of electric power demand (such as cities)
  • alternative uses may be more highly valued than electricity generation. However, wind turbines can be located on land that is also used for grazing or even farming
  • Wind is a form of solar energy. Winds are caused by the uneven heating of the atmosphere by the sun, the irregularities of the earth's surface, and rotation of the earth. Wind flow patterns are modified by the earth's terrain, bodies of water, and vegetative cover. This wind flow, or motion energy, when "harvested" by modern wind turbines, can be used to generate electricity.
  • The terms "wind energy" or "wind power" describe the process by which the wind is used to generate mechanical power or electricity. Wind turbines convert the kinetic energy in the wind into mechanical power. This mechanical power can be used for specific tasks (such as grinding grain or pumping water) or a generator can convert this mechanical power into electricity to power homes, businesses, schools, and the like.
  • Wind turbines, like aircraft propeller blades, turn in the moving air and power an electric generator that supplies an electric current. Simply stated, a wind turbine is the opposite of a fan. Instead of using electricity to make wind, like a fan, wind turbines use wind to make electricity. The wind turns the blades, which spin a shaft, which connects to a generator and makes electricity.
  • Modern wind turbines fall into two basic groups; the horizontal-axis variety, like the traditional farm windmills used for pumping water, and the vertical-axis design, like the eggbeater-style Darrieus model, named after its French inventor. Most large modern wind turbines are horizontal-axis turbines.
  • Wind is a form of solar energy
  • The terms "wind energy" or "wind power
  • describe the process by which the wind is used to generate mechanical power or electricity.
  • Wind turbines, like aircraft propeller blades, turn in the moving air and power an electric generator that supplies an electric current. Simply stated, a wind turbine is the opposite of a fan. Instead of using electricity to make wind, like a fan, wind turbines use wind to make electricity. The wind turns the blades, which spin a shaft, which connects to a generator and makes electricity.
  •  
    "Wind is a form of solar energy. Winds are caused by the uneven heating of the atmosphere by the sun, the irregularities of the earth's surface, and rotation of the earth. Wind flow patterns are modified by the earth's terrain, bodies of water, and vegetative cover. This wind flow, or motion energy, when "harvested" by modern wind turbines, can be used to generate electricity."
  •  
    "Modern wind turbines fall into two basic groups; the horizontal-axis variety, like the traditional farm windmills used for pumping water, and the vertical-axis design, like the eggbeater-style Darrieus model, named after its French inventor. Most large modern wind turbines are horizontal-axis turbines."
westkea00

Ocean Wave Energy Power Technology - History - 0 views

  • Currently, numerous wave power plants (so called wave farms) have been implemented throughout the world. Many different organizations have designed various wave power systems that differ in size, cost, and effectiveness. A wave farm is a collection of wave power systems in order to create mass quantities of power. One example of a wave power plant is the Aguçadoura Wave Farm in Portugal from Pelamis Wave Power Ltd. It is the first wave farm ever established and produces 2.25 megawatts of power. It was completed in 2008. Other wave farms, with other companies involved, have been proposed.
  • In contrast to tidal power, ocean wave energy plants do not make use of the energy difference between high tide and low tide, but generating energy from continuous wave motion. So, wave energy generation is the conversion of the forces from the motion of waves into usable energy.
  • Wave energy is considered a form of hydropower, although it is the wind blowing over the surface of the ocean causing waves. So in many ways, wave energy is also wind energy - with all the pros and cons.
  • ...3 more annotations...
  • Wave energy is about using the energy of ocean waves for producing electrical current. It is a renewable energy resource and often confused with Tidal Power.
  • Wave power generation has been tested over the past century as an alternative energy source to fossil fuels to create electrical power, sea water desalinization, and reservoir pumping. Unfortunately, despite of all examinations and tests, the price for generating energy from ocean waves is still about twice as high as that of wind energy. Companies involved in wave energy generation hope to be able to cut 50% of the costs within the next couple of years.
  • During the 1970's gasoline crisis, wave power was pushed in order to be a good long term energy solution. Later, the energy crisis was resolved yet the leaps and bounds made in the innovation of wave power remained. Though there were not many wave power plants actually implemented, it has proven to be a benefit to modern resolutions with current power crises. Fuel prices are rising exponentially and the greenhouse effect is having potentially disastrous effects on the environment. There has never been more need for alternatives to fossil generated energy.
westkea00

Advantages and Disadvantages Of Wave Energy - 0 views

  • Wave energy is as source of power that comes from the endless march of the waves as they roll into the shore then back out again. Humans harness this power along the coastal regions of the United States, Canada, Scotland, and Australia. Energy that comes from the waves in the ocean sounds like a boundless, harmless supply.
  • Advantages of Wave Energy 1. Renewable: The best thing about wave energy is that it will never run out. There will always be waves crashing upon the shores of nations, near the populated coastal regions. The waves flow back from the shore, but they always return. Unlike fossil fuels, which are running out, in some places in the world, just as quickly as people can discover them. Unlike ethanol, a corn product, waves are not limited by a season. They require no input from man to make their power, and they can always be counted on
  • Also unlike fossil fuels, creating power from waves creates no harmful byproducts such as gas, waste, and pollution. The energy from waves can be taken directly into electricity-producing machinery and used to power generators and power plants nearby. In today’s energy-powered world, a source of clean energy is hard to come by.
  • ...7 more annotations...
  • Another benefit to using this energy is its nearness to places that can use it. Lots of big cities and harbors are next to the ocean and can harness the power of the waves for their use. Coastal cities tend to be well-populated, so lots of people can get use from wave energy plants.
  • A final benefit is that there are a variety of ways to gather it. Current gathering methods range from installed power plant with hydro turbines to seafaring vessels equipped with massive structures that are laid into the sea to gather the wave energy.
  • The biggest advantages of wave power as against most of the other alternative energy sources is that it is easily predictable and can be used to calculate the amount that it can produce. The wave energy is consistent and proves much better than other sources which are dependent on wind or sun exposure.
  • The biggest disadvantage to getting your energy from the waves is location. Only power plants and towns near the ocean will benefit directly from it. Because of its source, wave energy is not a viable power source for everyone. Landlocked nations and cities far from the sea have to find alternate sources of power, so wave energy is not the clean energy solution for everyone.
  • As clean as wave energy is, it still creates hazards for some of the creatures near it. Large machines have to be put near and in the water to gather energy from the waves. These machines disturb the seafloor, change the habitat of near-shore creatures (like crabs and starfish) and create noise that disturbs the sea life around them. There is also a danger of toxic chemicals that are used on wave energy platforms spilling and polluting the water near them.
  • Another downside is that it disturbs commercial and private vessels. Power plants that gather wave energy have to be placed by the coastline to do their job, and they have to be near cities and other populated areas to be of much use to anybody. But these are places that are major thoroughfares for cargo ships, cruise ships, recreational vehicles and beach goers. All of these people and vessels will be disrupted by the installation of a wave energy gathering source. This means that government officials and private companies that want to invest in wave energy sources have to take into account and consider the needs of those they may be disturbing.
  • Wind power is highly dependent on wavelength i.e. wave speed, wave length, wavelength and water density. They require a consistent flow of powerful waves to generate significant amount of wave power. Some areas experience unreliable wave behavior and it becomes unpredictable to forecast accurate wave power and therefore cannot be trusted as reliable energy source.
shinecal99

Cost of Geothermal Energy - 0 views

  •  
    "Certain studies have shown that a geothermal power plant that could be considered as economically competitive would cost at around $3400/kw installed. Yes, the cost of the construction of a geothermal power plant is much higher compared to a facility producing natural gas, however, the cost of electricity production of the two in the long run would be similar. Initially, the construction cost of the geothermal plant would be 2/3 of the total cost. On the other hand, with a natural gas facility, the cost of the fuel is 2/3 while construction cost is just 1/3 of the total cost.  So this is where geothermal power plant and natural gas energy come into a standoff. In the long run, production rates stabilize and the cost of production for both plants become competitive. One good thing about the pric"
sconzomic99

What is tidal energy - How tidal works? - Tidal energy - 0 views

  • tidal energy uses tidal strength of water and back and forth movement  in seas, rivers or oceans. Tidal power exploits kinetic energy of water that power water turbines with its movement between the wings which rotate the turbine to produce electricity.
  • For producing significant amount of energy out of tidal water turbines, range of tides should be high and substantial amount of water should be there for pushing water through the turbine.
  • It is significantly important to spot the appropriate place which provide suitable and sustainable conditions to produce tidal energy, there are plenty of places around the globe which provide good conditions for installing water turbines and then produce electricity use tidal power of oceans in the location.
  • ...5 more annotations...
  • Once tidal power plant is built its’ electricity is free. It does not emit greenhouse gasses, carbon emission gasses which pollute environment. It does not have any dependency of any fossil fuel including furnace oil, gasses, etc; it needs no oil what so ever to produce electricity. Tidal power technology is renewable energy, which uses tidal and waves of same water for producing electricity over and over again. Tidal power technology like all renewable energy is clean energy and does not leave much impact on environment. Tidal power plants does not require much maintenance, therefore it is maintenance cost free. Tidal energy stations have about 80 % efficiency ratio, where as fossil fuel have approximately 30 % for efficiency levels. Tides in oceans are very predictable, its easy to judge when strong tides are going to show up from water consider weather and other conditions. The better tides and wave strengths of the oceans is, improved the efficiency of the station is. Electricity does not fluctuate on large scale using tidal energy as it happens in solar power technology.
  • Electricity can only be produced when tides are high in the sea, once ocean is calm and does not flow certain level of waves, it cannot produce electricity. Therefore electricity can be produced for only 10 hrs a day in presence of tides.
  • Tidal power plants are not cost effective. Millions of dollars are utilized for developing tidal power which could provide electricity in Megawatts.
  • Once tidal power plant is built its’ electricity is free. It does not emit greenhouse gasses, carbon emission gasses which pollute environment. It does not have any dependency of any fossil fuel including furnace oil, gasses, etc; it needs no oil what so ever to produce electricity. Tidal power technology is renewable energy, which uses tidal and waves of same water for producing electricity over and over again. Tidal power technology like all renewable energy is clean energy and does not leave much impact on environment. Tidal power plants does not require much maintenance, therefore it is maintenance cost free. Tidal energy stations have about 80 % efficiency ratio, where as fossil fuel have approximately 30 % for efficiency levels. Tides in oceans are very predictable, its easy to judge when strong tides are going to show up from water consider weather and other conditions. The better tides and wave strengths of the oceans is, improved the efficiency of the station is. Electricity does not fluctuate on large scale using tidal energy as it happens in solar power technology.
  • not appropriate to risk £15 millions worth of money. This is the main reason why this project is yet start
dpurdy

Wind Energy Basics - 1 views

  • The major challenge to using wind as a source of power is that it is intermittent and does not always blow when electricity is needed. Wind cannot be stored (although wind-generated electricity can be stored, if batteries are used), and not all winds can be harnessed to meet the timing of electricity demands. Further, good wind sites are often located in remote locations far from areas of electric power demand (such as cities).
  • Although wind power plants have relatively little impact on the environment compared to fossil fuel power plants, there is some concern over the noise produced by the rotor blades, aesthetic (visual) impacts, and birds and bats having been killed (avian/bat mortality) by flying into the rotors. Most of these problems have been resolved or greatly reduced through technological development or by properly siting wind plants.
  • A Renewable Non-Polluting Resource Wind energy is a free, renewable resource, so no matter how much is used today, there will still be the same supply in the future. Wind energy is also a source of clean, non-polluting, electricity. Unlike conventional power plants, wind plants emit no air pollutants or greenhouse gases. According to the U.S. Department of Energy, in 1990, California's wind power plants offset the emission of more than 2.5 billion pounds of carbon dioxide, and 15 million pounds of other pollutants that would have otherwise been produced. It would take a forest of 90 million to 175 million trees to provide the same air quality.
  • ...7 more annotations...
  • Cost Issues Even though the cost of wind power has decreased dramatically in the past 10 years, the technology requires a higher initial investment than fossil-fueled generators. Roughly 80% of the cost is the machinery, with the balance being site preparation and installation. If wind generating systems are compared with fossil-fueled systems on a "life-cycle" cost basis (counting fuel and operating expenses for the life of the generator), however, wind costs are much more competitive with other generating technologies because there is no fuel to purchase and minimal operating expenses.
    • dpurdy
       
      Good point for how we will need to change in future! To get more wind energy.
  • Wind energy is very abundant in many parts of the United States. Wind resources are characterized by wind-power density classes, ranging from class 1 (the lowest) to class 7 (the highest). Good wind resources (e.g., class 3 and above, which have an average annual wind speed of at least 13 miles per hour) are found in many locations
  • Wind speed is a critical feature of wind resources,
  • In other words, a stronger wind means a lot more power.
  • Horizontal turbine components include: blade or rotor, which converts the energy in the wind to rotational shaft energy; a drive train, usually including a gearbox and a generator; a tower that supports the rotor and drive train; and other equipment, including controls, electrical cables, ground support equipment, and interconnection equipment. Wind turbine diagram - click for enlarged image.
  • Wind is a form of solar energy. Winds are caused by the uneven heating of the atmosphere by the sun, the irregularities of the earth's surface, and rotation of the earth. Wind flow patterns are modified by the earth's terrain, bodies of water, and vegetative cover.
  • How Wind Power Is Generated The terms "wind energy" or "wind power" describe the process by which the wind is used to generate mechanical power or electricity. Wind turbines convert the kinetic energy in the wind into mechanical power.
rascoekat00

Tidal power - Wikipedia, the free encyclopedia - 1 views

  • The first tidal power station was the Rance tidal power plant built over a period of 6 years from 1960 to 1966 at La Rance, France.[8] It has 240 MW installed capacity.
  • Historically, tide mills have been used, both in Europe and on the Atlantic coast of North America. The incoming water was contained in large storage ponds, and as the tide went out, it turned waterwheels that used the mechanical power it produced to mill grain. [1] The earliest occurrences date from the Middle Ages, or even from Roman times.[2][3] It was only in the 19th century that the process of using falling water and spinning turbines to create electricity was introduced in the U.S. and Europe.[
  • Tides are more predictable than wind energy and solar power.
  • ...3 more annotations...
  • relatively high cost and limited availability of sites with sufficiently high tidal ranges or flow velocities, thus constricting its total availability. However, many recent technological developments and improvements, both in design (e.g. dynamic tidal power, tidal lagoons) and turbine technology (e.g. new axial turbines, cross flow turbines), indicate that the total availability of tidal power may be much higher than previously assumed
  • Tidal stream generator Main article: Tidal stream generator Tidal stream generators (or TSGs) make use of the kinetic energy of moving water to power turbines, in a similar way to wind turbines that use wind to power turbines. Some tidal generators can be built into the structures of existing bridges, involving virtually no aesthetic problems. Likewise, “tidal bridging” is a relatively new advancement that is gaining recognition as a more practical and beneficial way to generate tidal power. Blue Energy Canada is a company that is focused on building bridges to match today's demands. [9]
  • The first study of large scale tidal power plants was by the US Federal Power Commission in 1924 which if built would have been located in the northern border area of the US state of Maine and the south eastern border area of the Canadian province of New Brunswick, with various dams, powerhouses and ship locks enclosing the Bay of Fundy and Passamaquoddy Bay (note: see map in reference). Nothing came of the study and it is unknown whether Canada had been approached about the study by the US Federal Power Commission.[10] There was also a report on the international commission in April 1961 entitled " Investigation of the International Passamaquoddy Tidal Power Project" produced by both the US and Canadian Federal Governments.
jack wells

My Library for wind - 0 views

  • One of the most important is that wind power is the least expensive of all other forms of alternative energy.  Wind turbines generate electricity at around 5 cents per kWh (Kilowatt Hour), which is comparable to the new coal and/or oil burning power plants.  The costs are projected to decline even more as technology improves, and this is very important because most of the cost with wind power is in manufacturing.  Once the wind turbines are in place there is little cost to maintain and wind power is free.
  •  
    "One of the most important is that wind power is the least expensive of all other forms of alternative energy.  Wind turbines generate electricity at around 5 cents per kWh (Kilowatt Hour), which is comparable to the new coal and/or oil burning power plants.  The costs are projected to decline even more as technology improves, and this is very important because most of the cost with wind power is in manufacturing.  Once the wind turbines are in place there is little cost to maintain and wind power is free."
filionmar99

Group items tagged pollution - qmstech2 | Diigo Groups - 0 views

    • filionmar99
       
      read this
  • The major challenge to using wind as a source of power is that it is intermittent and does not always blow when electricity is needed. Wind cannot be stored (although wind-generated electricity can be stored, if batteries are used), and not all winds can be harnessed to meet the timing of electricity demands. Further, good wind sites are often located in remote locations far from areas of electric power demand (such as cities).
  • Although wind power plants have relatively little impact on the environment compared to fossil fuel power plants, there is some concern over the noise produced by the rotor blades, aesthetic (visual) impacts, and birds and bats having been killed (avian/bat mortality) by flying into the rotors. Most of these problems have been resolved or greatly reduced through technological development or by properly siting wind plants.
  • ...1 more annotation...
  • A Renewable Non-Polluting Resource Wind energy is a free, renewable resource, so no matter how much is used today, there will still be the same supply in the future. Wind energy is also a source of clean, non-polluting, electricity. Unlike conventional power plants, wind plants emit no air pollutants or greenhouse gases. According to the U.S. Department of Energy, in 1990, California's wind power plants offset the emission of more than 2.5 billion pounds of carbon dioxide, and 15 million pounds of other pollutants that would have otherwise been produced. It would take a forest of 90 million to 175 million trees to provide the same air quality.
jack wells

The Benefits of Wind Power - Green Living Ideas - 0 views

  • One of the most important is that wind power is the least expensive of all other forms of alternative energy.
  • One of the most important is that wind power is the least expensive of all other forms of alternative energy. 
  • Another tremendous benefit of wind power is that it is a sustainable source of energy and a clean source of energy
  • ...2 more annotations...
  • Wind energy is also a renewable energy, meaning it does not deplete our natural resources like coal or petroleum based products.
  • One of the most important is that wind power is the least expensive of all other forms of alternative energy.  Wind turbines generate electricity at around 5 cents per kWh (Kilowatt Hour), which is comparable to the new coal and/or oil burning power plants.  The costs are projected to decline even more as technology improves, and this is very important because most of the cost with wind power is in manufacturing.  Once the wind turbines are in place there is little cost to maintain and wind power is free.
  •  
    The benefits of wind energy.
dpurdy

EIA Energy Kids - Wind - 1 views

  • Wind is simply air in motion. It is caused by the uneven heating of the Earth's surface by the sun. Because the Earth's surface is made of very different types of land and water, it absorbs the sun's heat at different rates. One example of this uneven heating can be found in the daily wind cycle.
  • The Daily Wind Cycle During the day, the air above the land heats up more quickly than the air over water. The warm air over the land expands and rises, and the heavier, cooler air rushes in to take its place, creating wind. At night, the winds are reversed because the air cools more rapidly over land than over water. In the same way, the atmospheric winds that circle the earth are created because the land near the Earth's equator is heated more by the sun than the land near the North and South Poles. Wind Energy for Electricity Generation Today, wind energy is mainly used to generate electricity. Wind is a renewable energy source because the wind will blow as long as the sun shines
  • Like old fashioned windmills, today’s wind machines (also called wind turbines) use blades to collect the wind’s kinetic energy. The wind flows over the blades creating lift, like the effect on airplane wings, which causes them to turn. The blades are connected to a drive shaft that turns an electric generator to produce electricity. With the new wind machines, there is still the problem of what to do when the wind isn't blowing. At those times, other types of power plants must be used to make electricity.
  • ...12 more annotations...
  • Wind Production In 2010, wind turbines in the United States generated about 2% of total U.S. electricity generation. Although this is a small fraction of the Nation's total electricity production, it was equal to the annual electricity use of about 8.7 million households.
  • Operating a wind power plant is not as simple as just building a windmill in a windy place. Wind plant owners must carefully plan where to locate their machines. It is important to consider how fast and how much the wind blows at the site
  • As a rule, wind speed increases with altitude and over open areas that have no windbreaks. Good sites for wind plants are the tops of smooth, rounded hills, open plains or shorelines, and mountain gaps that produce wind funneling.
  • Conditions are well suited along much of the coasts of the United States to use wind energy. However, there are people who oppose putting turbines just offshore, near the coastlines, because they think the wind turbines will spoil the view of the ocean. There is a plan to build an offshore wind plant off the coast of Cape Cod, Massachusetts.
  • Wind is a renewable energy source that does not pollute, so some people see it as a good alternative to fossil fuels.
  • Since early recorded history, people have been harnessing the energy of the wind. Wind energy propelled boats along the Nile River as early as 5000 B.C.
  • As late as the 1920s, Americans used small windmills to generate electricity in rural areas without electric service. When power lines began to transport electricity to rural areas in the 1930s, local windmills were used less and less,
  • In the early 1980s, wind energy really took off in California, partly because of State policies that encouraged renewable energy sources.
  • Wind is a clean source of energy, and overall, the use of wind for energy has fewer environmental impacts than using many other energy sources. Wind turbines (often called windmills) do not release emissions that pollute the air or water (with rare exceptions), and they do not require water for cooling. They may also reduce the amount of electricity generated from fossil fuels and therefore reduce the amount of air pollution, carbon dioxide emissions, and water use of fossil fuel power plants.
  • Modern wind turbines are very large machines, and some people do not like their visual impact on the landscape.
  • Some people do not like the sound that wind turbine blades make. Some types of wind turbines and wind projects cause bird and bat deaths. These deaths may contribute to declines in species that are also being affected by other human-related impacts.
  • Most wind power projects on land also require service roads that add to their physical impact on the environment.
  •  
    Most quality online stores. Know whether you are a trusted online retailer in the world. Whatever we can buy very good quality. and do not hesitate. Everything is very high quality. Including clothes, accessories, bags, cups. Highly recommended. This is one of the trusted online store in the world. View now www.retrostyler.com
dpurdy

Directory:Cents Per Kilowatt-Hour - PESWiki - 9 views

  • Method Cents/kW-h Limitations and Externalities WindCurrently supplies approximately 1.4% of the global electricity demand. Wind is considered to be about 30% reliable. 4.0 - 6.0 Cents/kW-h Wind is currently the only cost-effective alternative energy method, but has a number of problems. Wind farms are highly subject to lightning strikes, have high mechanical fatigue failure, are limited in size by hub stress, do not function well, if at all, under conditions of heavy rain, icing conditions or very cold climates, and are noisy and cannot be insulated for sound reduction due to their size and subsequent loss of wind velocity and power. GeothermalCurrently supplies approximately 0.23% of the global electricity demand. Geothermal is considered 90-95% reliable. 4.5 - 30 Cents/kW-h New low temperature conversion of heat to electricity is likely to make geothermal substantially more plausible (more shallow drilling possible) and less expensive. Generally, the bigger the plant, the less the cost and cost also depends upon the depth to be drilled and the temperature at the depth. The higher the temperature, the lower the cost per kwh. Cost may also be affect by where the drilling is to take place as concerns distance from the grid and another factor may be the permeability of the rock. HydroCurrently supplies around 19.9% of the global electricity demand. Hydro is considered to be 60% reliable. 5.1 - 11.3 Cents/kW-h Hydro is currently the only source of renewable energy making substantive contributions to global energy demand. Hydro plants, however, can (obviously) only be built in a limited number of places, and can significantly damage aquatic ecosystems. SolarCurrently supplies approximately 0.8% of the global electricity demand. 15 - 30 Cents/kW-h Solar power has been expensive, but soon is expected to drop to as low as 3.5 cents/kW-h. Once the silicon shortage is remedied through alternative materials, a solar energy revolution is expected.
  • Tide 2 - 5 Cents/kW-h Blue Energy's tidal fence, engineered and ready for implementation, would provide a land bridge (road) while also generating electricity. Environmental impact is low. Tides are highly predictable.
  • Method Cents/kW-h Limitations and Externalities GasCurrently supplies around 15% of the global electricity demand. 3.9 - 4.4 Cents/kW-h Gas-fired plants and generally quicker and less expensive to build than coal or nuclear, but a relatively high percentage of the cost/KWh is derived from the cost of the fuel. Due to the current (and projected future) upwards trend in gas prices, there is uncertainty around the cost / KWh over the lifetime of plants. Gas burns more cleanly than coal, but the gas itself (largely methane) is a potent greenhouse gas. Some energy conversions to calculate your cost of natural gas per kwh. 100 cubic feet (CCF)~ 1 Therm = 100,000 btu ~ 29.3 kwh. CoalCurrently supplies around 38% of the global electricity demand. 4.8 - 5.5 Cents/kW-h Increasingly difficult to build new coal plants in the developed world, due to environmental requirements governing the plants. Growing concern about coal fired plants in the developing world (China, for instance, imposes less environmental overhead, and has large supplies of high sulphur content coal). The supply of coal is plentiful, but the coal generation method is perceived to make a larger contribution to air pollution than the rest of the methods combined.
wooddan99

Geothermal Basics - Environment - 0 views

  • Unlike fossil fuel power plants, no smoke is emitted from geothermal power plants, because no burning takes place; only steam is emitted from geothermal facilities. Emissions of nitrous oxide, hydrogen sulfide, sulfur dioxide, particulate matter, and carbon dioxide are extremely low, especially when compared to fossil fuel emissions. The binary geothermal plant, which currently represents around 15% of all geothermal plant capacity, along with the flash/binary plant, produce nearly zero air emissions. Even dry steam plants, which are considered to have the highest levels of air emissions, are considered environmentally benign compared with fossil fuels. For example, Lake County, California, downwind of The Geysers, has met all federal and state ambient air quality standards for almost 25 years. There are 21 power plants at The Geysers, comprising a significant complex of electric generation facilities, yet even despite this, air quality is excellent. At The Geysers, air quality has even improved as a result of geothermal development because hydrogen sulfide, which would ordinarily be released naturally into the atmosphere by hot springs and fumaroles, instead now passes through an abatement system that reduces hydrogen sulfide emissions by 99.9%. (1) See also Myth #2.
tavarreskat99

Tidal Energy | Pros for Wave and Tidal Power - 3 views

  • Tidal energy is one of the oldest forms of energy used by humans. Indeed, tide mills, in use on the Spanish, French and British coasts, date back to 787 A.D.. Tide mills consisted of a storage pond, filled by the incoming (flood) tide through a sluice and emptied during the outgoing (ebb) tide through a water wheel. The tides turned waterwheels, producing mechanical power to mill grain. We even have one remaining in New York- which worked well into the 20th century.
  • Tidal power is non-polluting, reliable and predictable.Tidal barrages, undersea tidal turbines - like wind turbines but driven by the sea - and a variety of machines harnessing undersea currents are under development. Unlike wind and waves, tidal currents are entirely predictable.
  • A tidal range of at least 7 m is required for economical operation and for sufficient head of water for the turbines
  • ...10 more annotations...
  • Currently, although the technology required to harness tidal energy is well established, tidal power is expensive, and there is only one major tidal generating station in operation. This is a 240 megawatt (1 megawatt = 1 MW = 1 million watts) at the mouth of the La Rance river estuary on the northern coast of France
  • Tidal electricity can be used to displace electricity which would otherwise be generated by fossil fuel (coal, oil, natural gas) fired power plants, thus reducing emissions of greenhouse and acid gasses.
  • There is a high capital cost for a tidal energy project, with possibly a 10-year construction period.
  • Electricity can be generated by water flowing both into and out of a bay. As there are two high and two low tides each day, electrical generation from tidal power plants is characterized by periods of maximum generation every twelve hours, with no electricity generation at the six hour mark in between.
  • Tidal energy is a renewable source of electricity which does not result in the emission of gases responsible for global warming or acid rain associated with fossil fuel generated electricity. Use of tidal energy could also decrease the need for nuclear power, with its associated radiation risks. Changing tidal flows by damming a bay or estuary could, however, result in negative impacts on aquatic and shoreline ecosystems, as well as navigation and recreation.
  • Indeed, tide mills, in use on the Spanish, French and British coasts,
  • date back to 787 A.D..
  • Tidal power is non-polluting, reliable and predictable.Tidal barrages, undersea tidal turbines - like wind turbines but driven by the sea - and a variety of machines harnessing undersea currents are under development. Unlike wind and waves, tidal currents are entirely predictable.
  • idal energy is one of the oldest forms of energy used by humans. Indeed, tide mills, in use on the Spanish, French and British coasts, date back to 787 A.D.. Tide mills consisted of a storage pond, filled by the incoming (flood) tide through a sluice and emptied during the outgoing (ebb) tide through a water wheel. The tides turned waterwheels, producing mechanical power to mill grain. We even have one remaining in New York- which worked well into the 20th century. Tidal power is non-polluting, reliable and predictable.Tidal barrages, undersea tidal turbines - like wind turbines but driven by the sea - and a variety of machines harnessing undersea currents are under development. Unlike wind and waves, tidal currents are entirely predictable.
  • Tidal power is non-polluting, reliable and predictable.Tidal barrages, undersea tidal turbines - like wind turbines but driven by the sea - and a variety of machines harnessing undersea currents are under development. Unlike wind and waves, tidal currents are entirely predictable.
  •  
    "Tidal power is non-polluting, reliable and predictable.Tidal barrages, undersea tidal turbines - like wind turbines but driven by the sea - and a variety of machines harnessing undersea currents are under development. Unlike wind and waves, tidal currents are entirely predictable."
  •  
    when it started to be used and who it was used by.
westkea00

Wave Power - Energy from ocean surface waves - 1 views

  • Wave energy is produced when electricity generators are placed on the surface of the ocean
  • Energy output is determined by wave height, wave speed, wavelength, and water density.
  • The energy provided is most often used in desalination plants, power plants and water pumps.
  • ...4 more annotations...
  • The energy provided is most often used in desalination plants, power plants and water pumps.
  • Just like wind mills and wind turbines that generate power and electricity from the wind, scientists are now working to generate power from the sea
  • Wave energy is among the impressive list of renewable energy resources that is being developed in the United States.
  • Ocean wave energy can be captured directly from surface waves. Blowing wind and pressure fluctuations below the surface are the main reasons for causing waves.
  •  
    Controlling factor of electric power.
mcgarrdan98

Geothermal energy environmental impact | Earth's Heat - 0 views

  • First of all, harnessing geothermal energy does not have the devastating impact on climate change like burning of the fossil fuels does. It is true that fluids drawn from the earth's core include greenhouse gases such as carbon dioxide and methane, but the amount of released greenhouse gas emissions is negligible compared to those from fossil fuel fired power plants.
  • One of the reasons for this is the fact that geothermal power plants are equipped with emission-control systems that reduce the exhaust.
  • geothermal power plants are connected with minimal freshwater and land requirements. This means that geothermal energy commonly has minimal impact on nearby ecosystems.
  • ...5 more annotations...
  • Geothermal fluids contain elevated levels of certain toxic elements such as arsenic, mercury, lithium and boron, which means that geothermal plants need to be equipped with proper waste disposal units in order to ensure that the waste is disposed back into geothermal fields
    • dpurdy
       
      pollution from geothermal
  • constructing geothermal plant (which includes deep drilling) can affect land stability, and in some cases even trigger earthquakes (especially enhanced geothermal systems).
  • Geothermal power plants operate quietly meaning that they do not cause noise pollution.
  • It is often relatively easy to incorporate them into the existing environment without the obvious visual pollution because of their modest land requirements.
  • This natural source of energy provides efficient way to harness energy from with minimal impact on its surrounding environment.
1 - 20 of 107 Next › Last »
Showing 20 items per page