Skip to main content

Home/ Open Intelligence / Energy/ Group items matching "lack" in title, tags, annotations or url

Group items matching
in title, tags, annotations or url

Sort By: Relevance | Date Filter: All | Bookmarks | Topics Simple Middle
D'coda Dcoda

Occupy Tokyo: Mass demonstrations go unreported by Japanese media [16Nov11] - 1 views

  • did you know that huge demonstrations have been taking place in Tokyo as well? We certainly didn't until a SOTT forum member posted a report on our forum. The general lack of awareness of the protests in Japan is probably due to the fact that there has been zero coverage of 'Occupy Tokyo' - which has grown out of the country's large (and growing) grassroots anti-nuclear movement - in Japan's mainstream media.
  • Several large demonstrations have taken place all over Japan in recent months, especially in Tokyo. The general mood is the same as elsewhere: ordinary people in Japan are fed up with their leaders' lies, particularly the lies told by TEPCO, the Tokyo Electric Power Company, and how the government has handled the Fukushima disaster. Or rather, how it has avoided handling it. This should all be eerily familiar to Americans of course; BP's lies and the US government's enabling role from the moment the Deepwater Horizon rig exploded in April 2010 has continued to this day, with the tragedy continuing to unfold in deathly silence. What is happening in Japan is almost a carbon copy; denial, smear campaigns, heavy-handed tactics and, of course, total media blackout. Up to one million people may have died as a result of Chernobyl, although we'll never really know the true death toll. Fukushima is many orders of magnitude worse...
  • People in Japan are very angry. Even though the Fukushima disaster is nowhere near ending (in fact, it is getting worse), Japanese media are simply not covering the fallout of the worst nuclear accident in history. Aftershocks from the Magnitude 9 earthquake which struck off the coast of Japan on March 11th are hardly mentioned in the Japanese media, but the fact is they are still ongoing and people are constantly stressed out by them. The economic aftershock is also beginning to take hold in a big way. The good news, says the SOTT forum member in Japan, is that people are now starting to wake up the fact that the Japanese government, TEPCO, and the media have been lying all this time and that more people are starting to take action to actually deal with the situation rather than wishfully think it will just blow away out into the Pacific Ocean.
D'coda Dcoda

US LLC Rules Allow Nuclear Power Companies To Take Profits, Dump Risk On Taxpayers [09Nov11] - 0 views

  • US nuclear power plants mostly exist in a legal “get out of jail free” land of LLC (Legal Liability Corporation) ownership. While big energy conglomerates like Entergy own the bulk of the commercial nuclear power plants in the US, these plants are owned by individual LLC companies that have one asset, the power plant. Through a network of LLC companies and holding companies these energy giants are able to suck all the profits out of these nuclear power plants but shoulder none of the risk if something goes bad.
  • The US has a nuclear accident liability law, Price-Anderson. This law sets up a limited fund that all licensed nuclear plant owners would pay into in the event of an accident. They only pay premiums into this fund after an accident happens. Under this law each plant is required to have $300 million in liability insurance that would pay before Price-Anderson would kick in. Proving any other sort of cash reserves, ability to pay for an extended outage or an accident (including Price-Anderson premiums) has been largely voluntary by the power companies. Even when proof of financial assets is asked for by the NRC it is calculated based on projected income estimates done by the power company. The NRC admits they are out of their expertise when it comes to finance and also does no investigation to assure these estimates have any basis in fact. The NRC has also complained repeatedly that deregulation of the energy industry is causing a lack of safety and maintenance to become a large problem as companies try to extract as much profit as possible up and out of these LLC companies to the parent company, leaving insufficient money to safely operate these nuclear plants. Many of these plants in LLC situations are among the aging reactor fleet from the 1960′s & 1970′s. As these plants ask for operating license extensions from the NRC, financial soundness is not part of the review.
  • If a nuclear power plant has a major accident, is found to have an expensive damage situation or is facing decommissioning the LLC that owns it can file for bankruptcy and walk away. The parent company has no financial risk or liability. The NRC has expressed doubt about being able to “pierce the corporate veil” in court and has diverted into settlements every time it has run into this issue with an aging plant facing a financial crisis. The NRC also has no special standing in a bankruptcy case where they can compel Price-Anderson premium payments or for the nuclear power company to pay funds towards decommissioning. It is not totally clear where the decommissioning trust fund lies as these funds are “sold” along with the plant when a new company takes over a nuclear power plant.
  • ...1 more annotation...
  • If Fukushima happened in the US? The people would pay the bill.
D'coda Dcoda

U.S. nuke regulators weaken safety rules [20Jun11] - 0 views

  • Federal regulators have been working closely with the nuclear power industry to keep the nation's aging reactors operating within safety standards by repeatedly weakening standards or simply failing to enforce them, an investigation by The Associated Press has found.Officials at the U.S. Nuclear Regulatory Commission regularly have decided original regulations were too strict, arguing that safety margins could be eased without peril, according to records and interviews.The result? Rising fears that these accommodations are undermining safety -- and inching the reactors closer to an accident that could harm the public and jeopardize nuclear power's future.
  • Examples abound. When valves leaked, more leakage was allowed -- up to 20 times the original limit. When cracking caused radioactive leaks in steam generator tubing, an easier test was devised so plants could meet standards.Failed cables. Busted seals. Broken nozzles, clogged screens, cracked concrete, dented containers, corroded metals and rusty underground pipes and thousands of other problems linked to aging were uncovered in AP's yearlong investigation. And many of them could escalate dangers during an accident.
  • Despite the problems, not a single official body in government or industry has studied the overall frequency and potential impact on safety of such breakdowns in recent years, even as the NRC has extended dozens of reactor licenses.Industry and government officials defend their actions and insist no chances are being taken. But the AP investigation found that with billions of dollars and 19 percent of America's electricity supply at stake, a cozy relationship prevails between industry and the NRC.Records show a recurring pattern: Reactor parts or systems fall out of compliance. Studies are conducted by industry and government, and all agree existing standards are "unnecessarily conservative."
  • ...14 more annotations...
  • Regulations are loosened, and reactors are back in compliance."That's what they say for everything ...," said Demetrios Basdekas, a retired NRC engineer. "Every time you turn around, they say, 'We have all this built-in conservatism.' "The crisis at the decades-old Fukushima Dai-ichi nuclear facility in Japan has focused attention on nuclear safety and prompted the NRC to look at U.S. reactors. A report is due in July.But the factor of aging goes far beyond issues posed by Fukushima.
  • Commercial nuclear reactors in the United States were designed and licensed for 40 years. When the first were built in the 1960s and 1970s, it was expected that they would be replaced with improved models long before their licenses expired.That never happened. The 1979 accident at Three Mile Island, massive cost overruns, crushing debt and high interest rates halted new construction in the 1980s.Instead, 66 of the 104 operating units have been relicensed for 20 more years. Renewal applications are under review for 16 other reactors.As of today, 82 reactors are more than 25 years old.The AP found proof that aging reactors have been allowed to run less safely to prolong operations.
  • Last year, the NRC weakened the safety margin for acceptable radiation damage to reactor vessels -- for a second time. The standard is based on a reactor vessel's "reference temperature," which predicts when it will become dangerously brittle and vulnerable to failure. Through the years, many plants have violated or come close to violating the standard.As a result, the minimum standard was relaxed first by raising the reference temperature 50 percent, and then 78 percent above the original -- even though a broken vessel could spill radioactive contents."We've seen the pattern," said nuclear safety scientist Dana Powers, who works for Sandia National Laboratories and also sits on an NRC advisory committee. "They're ... trying to get more and more out of these plants."
  • Sharpening the pencilThe AP study collected and analyzed government and industry documents -- some never-before released -- of both reactor types: pressurized water units that keep radioactivity confined to the reactor building and the less common boiling water types like those at Fukushima, which send radioactive water away from the reactor to drive electricity-generating turbines.The Energy Northwest Columbia Generating Station north of Richland is a boiling water design that's a newer generation than the Fukushima plants.Tens of thousands of pages of studies, test results, inspection reports and policy statements filed during four decades were reviewed. Interviews were conducted with scores of managers, regulators, engineers, scientists, whistleblowers, activists and residents living near the reactors at 65 sites, mostly in the East and Midwest.
  • AP reporters toured some of the oldest reactors -- Oyster Creek, N.J., near the Atlantic coast 50 miles east of Philadelphia and two at Indian Point, 25 miles north of New York City on the Hudson River.Called "Oyster Creak" by some critics, this boiling water reactor began running in 1969 and is the country's oldest operating commercial nuclear power plant. Its license was extended in 2009 until 2029, though utility officials announced in December they will shut the reactor 10 years earlier rather than build state-ordered cooling towers. Applications to extend the lives of pressurized water units 2 and 3 at Indian Point, each more than 36 years old, are under NRC review.Unprompted, several nuclear engineers and former regulators used nearly identical terminology to describe how industry and government research has frequently justified loosening safety standards. They call it "sharpening the pencil" or "pencil engineering" -- fudging calculations and assumptions to keep aging plants in compliance.
  • "Many utilities are doing that sort of thing," said engineer Richard T. Lahey Jr., who used to design nuclear safety systems for General Electric Co., which makes boiling water reactors. "I think we need nuclear power, but we can't compromise on safety. I think the vulnerability is on these older plants."Added Paul Blanch, an engineer who left the industry over safety issues, but later returned to work on solving them: "It's a philosophical position that (federal regulators) take that's driven by the industry and by the economics: What do we need to do to let those plants continue to operate?"Publicly, industry and government say that aging is well under control. "I see an effort on the part of this agency to always make sure that we're doing the right things for safety. I'm not sure that I see a pattern of staff simply doing things because there's an interest to reduce requirements -- that's certainly not the case," NRC chairman Gregory Jaczko said in an interview.
  • Neil Wilmshurst, director of plant technology for the industry's Electric Power Research Institute, acknowledged the industry and NRC often collaborate on research that supports rule changes. But he maintained there's "no kind of misplaced alliance ... to get the right answer."Yet agency staff, plant operators and consultants paint a different picture:* The AP reviewed 226 preliminary notifications -- alerts on emerging safety problems -- NRC has issued since 2005. Wear and tear in the form of clogged lines, cracked parts, leaky seals, rust and other deterioration contributed to at least 26 of the alerts. Other notifications lack detail, but aging was a probable factor in 113 more, or 62 percent in all. For example, the 39-year-old Palisades reactor in Michigan shut Jan. 22 when an electrical cable failed, a fuse blew and a valve stuck shut, expelling steam with low levels of radioactive tritium into the outside air. And a 1-inch crack in a valve weld aborted a restart in February at the LaSalle site west of Chicago.
  • * A 2008 NRC report blamed 70 percent of potentially serious safety problems on "degraded conditions" such as cracked nozzles, loose paint, electrical problems or offline cooling components.* Confronted with worn parts, the industry has repeatedly requested -- and regulators often have allowed -- inspections and repairs to be delayed for months until scheduled refueling outages. Again and again, problems worsened before being fixed. Postponed inspections inside a steam generator at Indian Point allowed tubing to burst, leading to a radioactive release in 2000. Two years later, cracking grew so bad in nozzles on the reactor vessel at the Davis-Besse plant near Toledo, Ohio, that it came within two months of a possible breach, an NRC report said, which could release radiation. Yet inspections failed to catch the same problem on the replacement vessel head until more nozzles were found to be cracked last year.
  • Time crumbles thingsNuclear plants are fundamentally no more immune to aging than our cars or homes: Metals grow weak and rusty, concrete crumbles, paint peels, crud accumulates. Big components like 17-story-tall concrete containment buildings or 800-ton reactor vessels are all but impossible to replace. Smaller parts and systems can be swapped but still pose risks as a result of weak maintenance and lax regulation or hard-to-predict failures.Even mundane deterioration can carry harsh consequences.For example, peeling paint and debris can be swept toward pumps that circulate cooling water in a reactor accident. A properly functioning containment building is needed to create air pressure that helps clear those pumps. But a containment building could fail in a severe accident. Yet the NRC has allowed safety calculations that assume the buildings will hold.
  • In a 2009 letter, Mario V. Bonaca, then-chairman of the NRC's Advisory Committee on Reactor Safeguards, warned that this approach represents "a decrease in the safety margin" and makes a fuel-melting accident more likely.Many photos in NRC archives -- some released in response to AP requests under the federal Freedom of Information Act -- show rust accumulated in a thick crust or paint peeling in long sheets on untended equipment.Four areas stand out:
  • Brittle vessels: For years, operators have rearranged fuel rods to limit gradual radiation damage to the steel vessels protecting the core and keep them strong enough to meet safety standards.But even with last year's weakening of the safety margins, engineers and metal scientists say some plants may be forced to close over these concerns before their licenses run out -- unless, of course, new regulatory compromises are made.
  • Leaky valves: Operators have repeatedly violated leakage standards for valves designed to bottle up radioactive steam in an earthquake or other accident at boiling water reactors.Many plants have found they could not adhere to the general standard allowing main steam isolation valves to leak at a rate of no more than 11.5 cubic feet per hour. In 1999, the NRC decided to allow individual plants to seek amendments of up to 200 cubic feet per hour for all four steam valves combined.But plants have violated even those higher limits. For example, in 2007, Hatch Unit 2, in Baxley, Ga., reported combined leakage of 574 cubic feet per hour.
  • Cracked tubing: The industry has long known of cracking in steel alloy tubing used in the steam generators of pressurized water reactors. Ruptures have been common in these tubes containing radioactive coolant; in 1993 alone, there were seven. As many as 18 reactors still run on old generators.Problems can arise even in a newer metal alloy, according to a report of a 2008 industry-government workshop.
  • Corroded piping: Nuclear operators have failed to stop an epidemic of leaks in pipes and other underground equipment in damp settings. Nuclear sites have suffered more than 400 accidental radioactive leaks, the activist Union of Concerned Scientists reported in September.Plant operators have been drilling monitoring wells and patching buried piping and other equipment for several years to control an escalating outbreak.But there have been failures. Between 2000 and 2009, the annual number of leaks from underground piping shot up fivefold, according to an internal industry document.
D'coda Dcoda

NRC Delays New Reactors, Old Units Struggle To Stay Viable [15Oct11] - 0 views

  • The NRC had declared delays in the new reactor approval process for AP1000 and ESBWR reactor designs. They NRC wants to complete their analysis on information from Fukushima Daiichi before moving ahead with the process to possibly approve either new design. Meanwhile Nuclear power companies are forging ahead with preparing sites for the reactors they hope to build. An interesting twist in that power companies can start a project before getting approval for the reactor they intend to build. This is then frequently used to pressure the NRC because work and spending is already underway. It was a key circumstance during the initial approval process at North Anna.
  • The Oyster Creek reactor in New Jersey, one of the oldest in the US has announced they will shut down for good in 2019. In 2010 Excelon threatened to close Oyster Creek unless a mandate requiring them to build cooling towers was removed. It appears that the cooling tower issues may have been a major factor in the decision to cease operations.  Containment corrosion and lawsuits over the lack of metals testing on the reactor were mounting against Oyster Creek. The people in the region and the state authorities were all working various angles to shut down the plant due to its many problems. They have succeeded. Now to just hope nothing bad happens at Oyster Creek before 2019.
  • At Davis Besse in Ohio, as they are replacing the reactor cap that has a pineapple sized hole in it, they discovered a long crack in the containment concrete. They had already sliced a hole in the containment dome to put the replacement reactor cap in. FirstEnergy claims none of this will degrade safety…..
D'coda Dcoda

A Peek Inside the IAEA [09Oct11] - 0 views

  • This rather mundane looking letter from 2000 talks about a number of concerns going on with the IAEA at that time. One concern was the Bushehr nuclear plant in Iran. “Indications that Russia’s efforts to complete the Bushehr reactor in Iran are plagued with severe safety considerations as witnessed by periodic visits by IAEA experts. ” Recently a whistleblower told that the Bushehr plant was a safety disaster and that it was hobbled together with disparate parts by second string engineers. The US had concerns about the lack of safety assistance at the Mayak nuclear site in Russia. This is similar to the Hanford nuclear site in the US and houses large amounts of volatile nuclear waste. Mayak was the site of an INES level 6 disaster in 1957 that sent a plume of highly radioactive cesium 137 and stronium 90 over a populated area nearby.  This disaster happened due to loss of cooling on a waste tank.
  • The letter also talked about the financial constraint of needing to spend $3 million dollars to do mandated oversight at the Rokkasho Mura nuclear waste facility in Japan. It also spoke of a severe budget crisis by 2001 as countries were not putting more funding into the IAEA as the demands on the agency were increasing. The 2009 accounting of the IAEA’s budget.
D'coda Dcoda

Japan radiation specialists accuses TEPCO of total cover-up regarding radiation exposure of nuclear plant workers [17Jul11] - 0 views

  • One specialist, Nishio Masamichi, director of the Hakkaido Cancer Center, who initially called for "calm" in the early days following the disaster, wrote recently in a top Japanese business journal that the crisis has caused Japan's "myth of nuclear safety" to fall apart.
  • Nishio, according to this independent report, says it's time to confront the very real prospect of long-term radiation exposure, and has accused TEPCO executives of hiding the truth about the real damage caused by the disaster at the expense of saving the company. He also laid some blame for the way the aftermath of the disaster was handled on the country's leadership, saying Prime Minister Naoto Kan and his Cabinet lacked urgency and direction.
  • Regarding TEPCO, Nishio said the company gave broken dosimeters to temporary workers and only giving monitors when they are working, despite high levels of radiation throughout the entire site. He also accused the company of putting its workers in a gymnasium-type structure to sleep in order to keep them from running away.
  • ...3 more annotations...
  • Nishio also believes that company executives, lawmakers and other officials simply do not grasp the severity of the accident. For instance, he says one treatment - Peripheral Blood Stem Cell Harvest - has been recommended by doctors as a way to reduce the chances of bone marrow deterioration caused by excessive doses of radiation. But, he said, that treatment was disregarded by the Nuclear Safety Commission of Japan.
  • In addition, he says workers are only being given iodine - used to block the absorption of radiation into the thyroid especially, because it's one of the most radiation-sensitive parts of the body - instead of other treatments as well like Radiogardase (Prussian blue insoluble capsules). He asserts that the best preventative medical expertise is not being brought in to help treat those who are being exposed, an injustice he has deemed "graveyard governance."
  • He also believes the Japanese people - not just those living near Fukushima - are not being told the truth about the level of radiation to which they are being exposed."Giving us the truth once is much more important than saying 'hang in there Japan' a million times," he wrote, in response to reports that former Minister for Internal Affairs Haraguchi Kazuhiro has alleged that radiation monitoring station data were three decimal places higher than the figures released to the public. If true, Nishio writes, that constitutes a "national crime" against the Japanese people.
D'coda Dcoda

Nuclear Waste Piles Up As Repository Plan Falters [28Jul11] - 0 views

  • Diablo Canyon nuclear power plant on California's central coast has more than 1,300 tons of nuclear waste sitting on its back porch, waiting for pickup. The problem is, there's no one to pick it up
  • The 103 other reactors in the country are in the same bind — it has now been more than 50 years since the first nuclear plant was switched on in the United States, and the federal government still hasn't found a permanent home for the nation's nuclear waste
  • The two nuclear reactors at the plant generate steam that drives giant turbines, which in turn generate electricity that powers about 3 million households. Once the uranium rods that fuel the reactors are used up, they're removed and cooled down underwater, in temporary storage pools.
  • ...11 more annotations...
  • The trouble is, those "temporary" pools have become pretty permanent and crowded, as utilities load them up with more fuel rods, squeezing them closer together
  • Since 1982, utility customers on the nuclear grid have paid $34 billion into a federal fund for moving the waste to some kind of permanent disposal site — something the federal government still hasn't done
  • 65,000 tons of nuclear waste have piled up at power plants — waste that produces more radioactivity than the reactors themselves
  • "It is clear that we lack a comprehensive national policy to address the nuclear fuel cycle, including management of nuclear waste
  • Yucca Mountain in Nevada was the leading contender, until Nevada's residents said "not in our backyard."
  • In the meantime, utility companies like PG&E are stuck with the waste. During a visit three years ago, engineers at Diablo Canyon were preparing to move older waste from storage in pools to containers called dry casks. "The spent fuel pools were not built large enough to hold all the fuel from the original 40-year license life, so we had to find alternatives for safe storage," said Pete Resler, head of PG&E's nuclear communications at the time. The company is now using some dry casks — huge concrete and steel canisters to store older, less radioactive waste. Each is anchored to its own concrete pad.
  • "Each one of those pads is 7-foot-thick concrete with steel rebar reinforcement in it," Resler says. Those pads are there as an extra measure because Diablo is situated near two significant seismic faults. There are now 16 of these canisters sitting on the plant grounds, with plans to fill 12 more in the next couple of years
  • Though most agree that dry-casking is safer than leaving the fuel rods in pools of water, nobody's proposing it as a permanent solution. The head of the Nuclear Regulatory Commission, Gregory Jaczko, told Sen. Feinstein's committee that it's the best we can do for now.
  • "Right now we believe that for at least 100 years, that fuel can be stored with very little impacts to health and safety, or to the environment," Jaczko said.
  • In the meantime, the Blue Ribbon Commission appointed by President Obama to find that way forward will issue another round of recommendations Friday
  • They're likely to include more stop-gap measures, while the holy grail of a permanent home for spent fuel remains decades away
  •  
    There's a detailed chart on the page showing how much waste is stored at sites, state by state
D'coda Dcoda

Nuclear safety: A dangerous veil of secrecy [11Aug11] - 0 views

  • There are battles being fought on two fronts in the five months since a massive earthquake and tsunami damaged the Daiichi nuclear power plant in Fukushima, Japan. On one front, there is the fight to repair the plant, operated by the Tokyo Electric Power Company (TEPCO) and to contain the extent of contamination caused by the damage. On the other is the public’s fight to extract information from the Japanese government, TEPCO and nuclear experts worldwide.
  • The latter battle has yielded serious official humiliation, resulting high-profile resignations, scandals, and promises of reform in Japan’s energy industry whereas the latter has so far resulted in a storm of anger and mistrust. Even most academic nuclear experts, seen by many as the middle ground between the anti-nuclear activists and nuclear lobby itself, were reluctant to say what was happening: That in Fukushima, a community of farms, schools and fishing ports, was experiencing a full-tilt meltdown, and that, as Al Jazeera reported in June, that the accident had most likely caused more radioactive contamination than Chernobyl
  • As recently as early August, those seeking information on the real extent of the damage at the Daiichi plant and on the extent of radioactive contamination have mostly been reassured by the nuclear community that there’s no need to worry.
  • ...29 more annotations...
  • The money trail can be tough to follow - Westinghouse, Duke Energy and the Nuclear Energy Institute (a "policy organisation" for the nuclear industry with 350 companies, including TEPCO, on its roster) did not respond to requests for information on funding research and chairs at universities. But most of the funding for nuclear research does not come directly from the nuclear lobby, said M.V. Ramana, a researcher at Princeton University specialising in the nuclear industry and climate change. Most research is funded by governments, who get donations - from the lobby (via candidates, political parties or otherwise).
  • “There's a lot of secrecy that can surround nuclear power because some of the same processes can be involved in generating electricity that can also be involved in developing a weapon, so there's a kind of a veil of secrecy that gets dropped over this stuff, that can also obscure the truth” said Biello. "So, for example in Fukushima, it was pretty apparent that a total meltdown had occurred just based on what they were experiencing there ... but nobody in a position of authority was willing to say that."
  • This is worrying because while both anti-nuclear activists and the nuclear lobby both have openly stated biases, academics and researchers are seen as the middle ground - a place to get accurate, unbiased information. David Biello, the energy and climate editor at Scientific American Online, said that trying to get clear information on a scenario such as the Daiichi disaster is tough.
  • The Center for Responsive Politics - a non-partisan, non-profit elections watchdog group – noted that even as many lobbying groups slowed their spending the first quarter of the year, the Nuclear industry "appears to be ratcheting up its lobbying" increasing its multi-million dollar spending.
  • "In the United States, a lot of the money doesn’t come directly from the nuclear industry, but actually comes from the Department of Energy (DOE). And the DOE has a very close relationship with the industry, and they sort of try to advance the industry’s interest," said Ramana. Indeed, nuclear engineering falls under the "Major Areas of Research" with the DOE, which also has nuclear weapons under its rubric. The DOE's 2012 fiscal year budge request to the US Congress for nuclear energy programmes was $755m.
  • "So those people who get funding from that….it’s not like they (researchers) want to lie, but there’s a certain amount of, shall we say, ideological commitment to nuclear power, as well as a certain amount of self-censorship."  It comes down to worrying how their next application for funding might be viewed, he said. Kathleen Sullivan, an anti-nuclear specialist and disarmament education consultant with the United Nations Office of Disarmament Affairs, said it's not surprising that research critical of the nuclear energy and weapons isn't coming out of universities and departments that participate in nuclear research and development.
  • "It (the influence) of the nuclear lobby could vary from institution to institution," said Sullivan. "If you look at the history of nuclear weapons manufacturing in the United States, you can see that a lot of research was influenced perverted, construed in a certain direction."
  • Sullivan points to the DOE-managed Lawrence Berkeley National Laboratory at the University of California in Berkley (where some of the research for the first atomic bomb was done) as an example of how intertwined academia and government-funded nuclear science are.
  • "For nuclear physics to proceed, the only people interested in funding it are pro-nuclear folks, whether that be industry or government," said Biello. "So if you're involved in that area you've already got a bias in favour of that technology … if you study hammers, suddenly hammers seem to be the solution to everything."
  • And should they find results unfavourable to the industry, Ramana said they would "dress it up in various ways by saying 'Oh, there’s a very slim chance of this, and here are some safety measure we recommend,' and then the industry will say, 'Yeah,yeah, we’re incorporating all of that.'" Ramana, for the record, said that while he's against nuclear weapons, he doesn't have a moral position on nuclear power except to say that as a cost-benefit issue, the costs outweigh the benefits, and that "in that sense, expanding nuclear power isn't a good idea." 
  • "'How is this going to affect the future of nuclear power?'That’s the first thought that came into their heads," said Ramana, adding, "They basically want to ensure that people will keep constructing nuclear power plants." For instance, a May report by MIT’s Center For Advanced Nuclear Energy Systems (where TEPCO funds a chair) points out that while the Daiichi disaster has resulted in "calls for cancellation of nuclear construction projects and reassessments of plant license extensions" which might "lead to a global slow-down of the nuclear enterprise," that  "the lessons to be drawn from the Fukushima accident are different."
  • Among the report's closing thoughts are concerns that "Decision-making in the  immediate aftermath of a major crisis is often influenced by emotion," and whether"an accident like Fukushima, which is so far beyond design basis, really warrant a major overhaul of current nuclear safety regulations and practises?" "If so," wonder the authors, "When is safe safe enough? Where do we draw the line?"
  • The Japanese public, it seems, would like some answers to those very questions, albeit from a different perspective.  Kazuo Hizumi, a Tokyo-based human rights lawyer, is among those pushing for openness. He is also an editor at News for the People in Japan, a news site advocating for transparency from the government and from TEPCO. With contradicting information and lack of clear coverage on safety and contamination issues, many have taken to measuring radiation levels with their own Geiger counters.
  • "They do not know how to do it," he said of some of the community groups and individuals who have taken to measure contamination levels in the air, soil and food
  • A report released in July by Human Rights Now highlights the need for immediately accessible information on health and safety in areas where people have been affected by the disaster, including Fukushima, especially on the issues of contaminated food and evacuation plans.
  • A 'nuclear priesthood' Biello describes the nuclear industry is a relatively small, exclusive club.
  • The interplay between academia and also the military and industry is very tight. It's a small community...they have their little club and they can go about their business without anyone looking over their shoulder. " This might explain how, as the Associated Press reported in June, that the U.S. Nuclear Regulatory Commission was "working closely with the nuclear power industry to keep the nationalise ageing reactors operating within standards or simply failing to enforce them."
  • However, with this exclusivity comes a culture of secrecy – "a nuclear priesthood," said Biello, which makes it very difficult to parse out a straightforward answer in the very technical and highly politicised field.  "You have the proponents, who believe that it is the technological salvation for our problems, whether that's energy, poverty, climate change or whatever else. And then you have opponents who think that it's literally the worst thing that ever happened and should be immediately shut back up in a box and buried somewhere," said Biello, who includes "professors of nuclear engineering and Greenpeace activists" as passionate opponents on the nuclear subject.
  • In fact, one is hard pressed to find a media report quoting a nuclear scientist at any major university sounding the alarms on the risks of contamination in Fukushima. Doing so has largely been the work of anti-nuclear activists (who have an admitted bias against the technology) and independent scientists employed by think tanks, few of whom responded to requests for interviews.
  • So, one's best bet, said Biello, is to try and "triangulate the truth" - to take "a dose" from anti-nuclear activists, another from pro-nuclear lobbyists and throw that in with a little bit of engineering and that'll get you closer to the truth. "Take what everybody is saying with a grain of salt."
  • Since World War II, the process of secrecy – the readiness to invoke "national security" - has been a pillar of the nuclear establishment…that establishment, acting on the false assumption that "secrets" can be hidden from the curious and knowledgeable, has successfully insisted that there are answers which cannot be given and even questions which cannot be asked. The net effect is to stifle debate about the fundamental of nuclear policy. Concerned citizens dare not ask certain questions, and many begin to feel that these matters which only a few initiated experts are entitled to discuss.  If the above sounds like a post-Fukushima statement, it is not. It was written by Howard Morland for the November 1979 issue of The Progressive magazine focusing on the hydrogen bomb as well as the risks of nuclear energy.
  • The US government - citing national security concerns - took the magazine to court in order to prevent the issue from being published, but ultimately relented during the appeals process when it became clear that the information The Progressive wanted to publish was already public knowledge and that pursuing the ban might put the court in the position of deeming the Atomic Energy Act as counter to First Amendment rights (freedom of speech) and therefore unconstitutional in its use of prior restraint to censor the press.
  • But, of course, that's in the US, although a similar mechanism is at work in Japan, where a recently created task force aims to "cleanse" the media of reportage that casts an unfavourable light on the nuclear industry (they refer to this information as "inaccurate" or a result of "mischief." The government has even go so far as to accept bids from companies that specialise in scouring the Internet to monitor the Internet for reports, Tweets and blogs that are critical of its handling of the Daiichi disaster, which has presented a unique challenge to the lobby there.
  • "The public fully trusted the Japanese Government," said Hizumi. But the absence of "true information" has massively diminished that trust, as, he said, has the public's faith that TEPCO would be open about the potential dangers of a nuclear accident.
  •  Japan's government has a history of slow response to TEPCO's cover-ups. In 1989, that Kei Sugaoka, a nuclear energy at General Electric who inspected and repaired plants in Japan and elsewhere, said he spotted cracks in steam dryers and a "misplacement" or 180 degrees in one dryer unit. He noticed that the position of the dryer was later omitted from the inspection record's data sheet. Sugaoka told a Japanese networkthat TEPCO had instructed him to "erase" the flaws, but he ultimately wrote a whistleblowing letter to METI, which resulted in the temporary 17 TEPCO reactors, including ones at the plant in Fukushima.
  • the Japanese nuclear lobby has been quite active in shaping how people see nuclear energy. The country's Ministry of Education, together with the Natural Resources Ministry (of of two agencies under Japan's Ministry of Economy, Trade and Industry - METI - overseeing nuclear policies) even provides schools with a nuclear energy information curriculum. These worksheets - or education supplements - are used to inform children about the benefits of nuclear energy over fossil fuels.
  • There’s reason to believe that at least in one respect, Fukushima can’t and won’t be another Chernobyl, at least due to the fact that the former has occurred in the age of the Internet whereas the latter took place in the considerably quaint 80s, when a car phone the size of a brick was considered the height of communications technology to most. "It (a successful cover up) is definitely a danger in terms of Fukushima, and we'll see what happens. All you have to do is look at the first couple of weeks after Chernobyl to see the kind of cover up," said Biello. "I mean the Soviet Union didn't even admit that anything was happening for a while, even though everybody was noticing these radiation spikes and all these other problems. The Soviet Union was not admitting that they were experiencing this catastrophic nuclear failure... in Japan, there's a consistent desire, or kind of a habit, of downplaying these accidents, when they happen. It's not as bad as it may seem, we haven't had a full meltdown."
  • Fast forward to 2011, when video clips of each puff of smoke out of the Daiichi plant make it around the world in seconds, news updates are available around the clock, activists post radiation readings on maps in multiple languages and Google Translate picks up the slack in translating every last Tweet on the subject coming out of Japan.
  • it will be a heck of a lot harder to keep a lid on things than it was 25 years ago. 
D'coda Dcoda

Would-be builders build resources - 0 views

  • GE and Hitachi nuclear alliance companies are taking steps to strengthen their positions in emerging nuclear energy countries, with Hitachi-GE inaugurating a human resource training program for Southeast Asia and GE-Hitachi expanding its supplier network in Poland.   Japan-based Hitachi-GE has announced the establishment of a course at the Electric Power University (EPU) in Vietnam under a joint human resource training program with the Tokyo Institute of Technology (Titech).
  • A lack of human resources trained in nuclear power, energy and the environment, including within the academic sector, is a pressing issue for southeast Asian countries planning to introduce nuclear power. Indeed, when Japan was identified as the preferred partner for the construction of Vietnam's second nuclear power plant in 2010, a primary condition was cooperation in nuclear energy human resources development.
  • Against this backdrop, Hitachi-GE launched a joint international training program with Titech. As well as initiatives within Titech's Department of Nuclear Engineering (DNE), Hitachi-GE and Titech's efforts to promote human resource activities in Vietnam and other southeast Asian countries include establishing courses at local universities, Hitachi-GE scholarships for southeast Asian students at Titech's DNE, and offering student internships at the International Atomic Energy Agency (IAEA). The course at EPU will be taught by Hitachi-GE engineers and Titech professors, and will be attended by around 40 EPU undergraduates. Hitachi-GE and Titech plan to implement similar initiatives in cooperation with other Southeast Asian universities.
  • ...1 more annotation...
  • Vietnamese power development plans recently approved by prime minister Nguyen Tan Dung envisage nuclear power providing 2.1% of the nation's energy by 2020. Russia's AtomStroyExport is due to begin work on Vietnam's first nuclear power plant in Nin Thuan province in 2014 under an agreement signed in October 2010. At around the same time, the Vietnamese government selected Japan as the preferred partner to build its second nuclear power station, also in Nin Thuan province
  •  
    about training more nuke workers
D'coda Dcoda

Smoking Gun - Jan Lundberg antinuclear activist & heir to petroleum wealth [18Jul11] - 0 views

  • A ‘smoking gun’ article is one that reveals a direct connection between a fossil fuel or alternative energy system promoter and a strongly antinuclear attitude. One of my guiding theories about energy is that a great deal of the discussion about safety, cost, and waste disposal is really a cover for a normal business activity of competing for market share.
  • This weekend, I came across a site called Culture Change that provides some strong support for my theory about the real source of strength for the antinuclear industry. According to the information at the bottom of the home page, Culture Change was founded by Sustainable Energy Institute (formerly Fossil Fuels Policy Action), a nonprofit organization.Jan Lundberg, who has led the organization and its predecessor organizations since 1988, grew up in a wealthy family with a father who was a popular and respected petroleum industry analyst.
  • Lundberg tells an interesting story about his initial fundraising activities for his new non-profit group.Setting out to become a clearinghouse for energy data and policy, we had a tendency to go along with the buzzword “natural gas as a bridge fuel” — especially when my previous clients serving the petroleum industry until 1988 included natural gas utilities. They were and are represented by the American Gas Association, where I knew a few friendly executives. Upon starting a nonprofit group for the environment with an energy focus, I met with the AGA right away. I was anticipating one of their generous grants they were giving large environmental groups who were trumpeting the “natural gas is a bridge fuel” mantra.
  • ...5 more annotations...
  • Before entering into the non-profit world, he entered into the family business of oil industry analysis and claims to have achieved a fair amount of financial success. As Lundberg tells the tale, he stopped “punching the corporate time clock” in 1988 to found Fossil Fuels Policy Action.I had just learned about peak oil. Upon my press conference announcing the formation of Fossil Fuels Policy Action, USA Today’s headline was “Lundberg Lines up with Nature.” My picture with the story looked like I was a corporate fascist, not an acid-tripping hippie. The USA Today story led to an invitation to review Beyond Oil: The Threat to Food and Fuel in the Coming Decades, for the quarterly Population and Environment journal. In learning for the first time about peak oil (although I had questioned long-term growth in petroleum supplies), I was awakened to the bigger picture as never before. Natural gas was no answer. And I already knew that the supply crisis to come — I had helped predict the 1970s oil shocks — was to be a liquid fuels crisis.
  • As Oil Guru, Dan [Lundberg, my father] earned a regular Nightly Business Report commentary spot on the Public Broadcasting System television network in the early and mid-1980s. I helped edit or proof-read just about every one of those commentaries, and we delighted in the occasional opportunity to attack gasohol and ethanol for causing “agricultural strip mining” (as we did in the Lundberg Letter).
  • I slept on it and decided that I would not participate in this corrupt conspiracy. Instead, I had fun writing one of Fossil Fuels Policy Action’s first newsletters about this “bridge” argument and the background story that the gas industry was really competing with fuel oil for heating. I brought up the AGA’s funding for enviros and said I was rejecting it. I was crazy, I admit, for I was starting a new career with almost no savings and no guarantees. So I was not surprised when my main contact at AGA called me up and snarled, “Jan, are you on acid?!
  • Here is a quote from his July 10, 2011 post titled Nuclear Roulette: new book puts a nail in coffin of nukesCulture Change went beyond studying the problem soon after its founding in 1988: action and advocacy must get to the root of the crises to assure a livable future. Also, information overload and a diet of bad news kills much activism. So it’s hard to find reading material to strongly recommend. But the new book Nuclear Roulette: The Case Against the “Nuclear Renaissance” is must-have if one is fighting nukes today.
  • He goes to say the following:The uneconomic nature of nuclear power, and the lack of energy gain compared to cheap oil, are two huge reasons for society to quit flirting with more nuclear power, never mind the catastrophic record and certainty of more to come. Somehow the evidence and true track record of dozens of accidents and perhaps 300,000 to nearly 1,000,000 deaths from just Chernobyl, are brushed aside by corporate media and most governments. So, imaginative means of helping to end nuclear proliferation are crucial, the most careful and reasonable-sounding ones being included in summary form in Nuclear Roulette.
Jan Wyllie

BP struggles to recruit engineers [14Aug11] - 0 views

  • A shortage of skilled engineers is threatening to hamper efforts by BP to boost production in the North Sea, a senior executive has said. The oil giant is expected to recruit between 150 and 300 jobs a year but admits that one of its biggest problems is finding the right people with the right skills. The comments, reported in the Sunday Telegraph, come a month after BP and its partners announced plans to invest £3 billion in redeveloping two oil fields off the Shetland Islands. The move should create hundreds of new jobs but Trevor Garlick, head of the company's North Sea operations, said BP would struggle to attract enough engineers for the available roles. He said
  • "Getting hold of the right people is a real issue for us. We are hiring a lot of people, but we are also an exporter of a couple of hundred people to other regions. We are a centre for recruiting elsewhere.
D'coda Dcoda

A Visit to J-Village: Fukushima Workers Risk Radiation to Feed Families Pt2 [22Sep11] - 0 views

  • Part 2: Workers Pushed to Their Limits TEPCO is preparing to spend decades in J-Village. Workers have spread gravel around the large soccer stadium and in a number of adjacent areas. Here they have placed row after row of gray trailers. There are 40 per row and they sit two stories high, extending right up to the blue plastic seats in the stands. The stadium's large scoreboard still hangs behind this makeshift community. The stadium clock has stopped at 2:46 p.m., which was the moment when the earthquake cut off the electricity here and at the power plant 20 kilometers (12 miles) away. Now, the power is on again and white neon lights illuminate the rows of trailers. In one room the workers can pick up bento boxes. Next door TEPCO has built a laundromat with more than a hundred washing machines. Behind the main building in J-Village, buses are parked on the former soccer fields and debris is stored in large plastic bags on the tartan track.
  • Stacks of Contaminated Suits In the courtyard of the main building, TEPCO has had a small store built, where workers can purchase cigarettes and tea. Some of them, still wearing their work overalls, have gathered around a number of ashtrays and are smoking in silence. There is an Adidas advertisement glued to one of the doors and an obsolete warning sign: "No SPIKES!" An exhausted worker is asleep on the floor in the hallway.
  • In the window of the atrium hang huge banners for TEPCO Mareeze, the soccer team that belongs to the energy company. In the center of the building stands a panel with a large white and green map of J-Village. There was a time when this was there to help athletes find their way around. Now, a man in a TEPCO uniform stands here and uses a red felt pen to post the current radiation levels for over a dozen different places on the premises. Three TEPCO employees are sitting nearby with their laptops. The workers hand them their daily dosimeters. In return, they are given a receipt that resembles a cash register sales slip and shows the dose of radiation that they have received that day.
  • ...14 more annotations...
  • At the entrance someone has used pink tape to attach a sign to the bare concrete: "Caution! Contaminated material." Behind this sign, used protective suits and masks are stacked in piles that are 4 to 5 meters high. Three Shifts Around the Clock
  • A stooped-over man in a white and blue uniform leads the way to the far corner, where radioactive dirt is lying in a kind of rubber pool. The man says the dirt was washed off cars that had been close to the reactor. Nearby, someone has taped markers to the artificial turf, much like the ones that runners use to gauge their run-ups. Here, however, workers have written radiation levels on the tape. With every meter that you approach the pool, the radiation levels increase: 4.5 microsievert, 7.0 and then, finally, one meter away: 20 microsievert. The men from the radiation detection team bring new bags full of refuse from the gym out onto this field every few minutes. The work here at J-Village is less dangerous than at the reactor.
  • By mid-August, 17,561 men had been registered at the Health Ministry as radiation workers. There are plans to monitor their health in a future study. Six of them have been exposed to radiation levels exceeding the high limit of 250 millisievert. More than 400 people have been exposed to levels exceeding the normally allowed 50 millisievert. And TEPCO simply does not know about some of its workers. Despite months of searching, the company can no longer locate 88 workers who were employed in the power plant from March to June. The company had merely handed out badges to contractors without meeting the workers in person. Worker IDs with barcodes and photos have only recently been introduced.
  • The members of the radiation detection team are now working in three shifts around the clock. He has often seen workers "at their limit -- not only physically, but also mentally." Most jobs are simply dirty work, he says. According to Akimoto, many of his co-workers who work for subcontractors had no choice but to come here. "If they refuse, where will they get another job?" he asks. "I don't know anyone who is doing this for Japan. Most of them need the money." Whenever possible, highly qualified workers like Akimoto are only exposed to comparatively low levels of radiation. After all, they will be needed later.
  • A Move to Raise Radiation Thresholds In an internal paper, Japan's nuclear safety agency NISA warns that there will soon be a lack of technicians because too many have exceeded their radiation limits. As early as next year, NISA anticipates that there will be a shortage of 1,000 to 1,200 qualified workers, "which will severely affect the work at Fukushima Daiichi and at nuclear power plants throughout the country."
  • "There are two types of jobs," says Sakuro Akimoto. "Either you work in J-Village for many hours with less radiation or in Daiichi for fewer hours, but at radiation levels that are 10 to 100 times higher." Akimoto is tall and wiry. He wears his hair short and loves casual jeans. He started working 30 years ago, right after leaving school, for a company that does maintenance work for TEPCO. There are hardly any other jobs in the village where he comes from, which is located near the power plant. On March 11, he was working at the plant and was able to flee in time to escape the tsunami. His village was evacuated. A few weeks later, he says, he received the order to come to J-Village, "whether I wanted to or not." But he says he also felt a sense of responsibility because the plant had brought so many jobs to the region.
  • he nuclear safety agency's solution is simple: create higher thresholds. It recommends raising the limits to allow workers to be exposed within a few years to significantly greater amounts of radiation than before.
  • Earning €100 Per Day
  • Hiroyuki Watanabe is a city council member from Iwaki, the city that lies to the south of J-Village. For the past two years, he has been trying to determine where TEPCO recruits its workers. "The structure is dodgy," says Watanabe. "It is amazing that one of Japan's largest companies pursues such business practices." In fact, TEPCO has been using shadowy practices to acquire its workers for a number of years. In 2008, Toshiro Kitamura from the Japan Atomic Industrial Forum criticized the Japanese power company for "outsourcing most of its maintenance work of nuclear power plants to multi-layered contractors." The industry expert's main concern, however, was the safety risk, since these workers are not as familiar with the reactors as permanent employees.
  • According to Watanabe, TEPCO has budgeted up to €1,000 per person per day to pay the workers. But unskilled workers, he says, often receive only about €100 of that money. "These are men who are poor or old, with no steady job and limited employment opportunities," he says. Some of them don't even have a written employment contract, he contends. When they reach their radiation exposure limit, he adds, they lose their jobs and the employment agency finds a replacement.
  • Watanabe wants to ensure that all workers are paid appropriately. Even the lowest ranking workers should have a trade union, he says. "If we have a problem, we have nobody to turn to," says a young worker who is eating dinner along with seven co-workers at the Hazu restaurant in Iwaki-Yumoto.
  • he presence of so many workers has fundamentally changed Iwaki-Yumoto. This small town on the southern edge of the exclusion zone was known for its hot springs, which attracted large numbers of tourists. Now, there are no more tourists, and many residents have also fled. The hot springs are still very popular, though now it is with the workers. Between 1,000 and 2,000 of them live here now, says a hotel owner in the city. There are plans to move many of them soon to new trailers on the playing fields of J-Village. One of the workers in Iwaki-Yumoto comes from the now-abandoned village of Tomioka in the restricted area. He smokes Marlboro menthols, and his arms and legs are covered with tattoos. During the day, he works in front of reactor 4, assembling plastic tubes for the decontamination system.
  • The hardest thing for him, he says, is the daily trip to work. The bus drives past his house twice a day, passing directly in front of the bar where he used to play pachinko, a Japanese game similar to pinball.
  • Translated from the German by Paul Cohen
D'coda Dcoda

Announcing India Nuclear Energy 2011 - The Road Ahead! [27Sep11] - 0 views

  • Economies around the world continue to grow, and the need for electricity, near-carbon-free, reliable, and low-cost energy is growing tremendously. In order to reap the benefits of nuclear energy, to effectively bridge the demand supply gap for India and to also necessitate the need to bring the industry at one platform, UBM India is pleased to bring the 3rd edition of ‘India Nuclear Energy 2011’ – International Exhibition and Conference. India Nuclear Energy 2011 will be held from 29th September – 1st October, 2011 at the Bombay Exhibition Centre, Goregaon (East), Mu
  • India Nuclear Energy 2011 is co-partnered by Department of Atomic Energy (DAE), the nodal Government body in the Indian Nuclear Energy sector and Supported by Indian Nuclear Society (INS). The topic of discussion at the press conference revolved around India’s use of nuclear energy to meet growing electricity demand and to endorse programs to expand the peaceful use of nuclear energy while minimizing the risks of proliferation. The Conference provides a platform for luminaries from the power sector and the government to share their views on India’s Nuclear Power future. Mr. S.K. Malhotra, Department of Atomic Energy (Government of India), Mr. M.V. Kotwal, Senior Executive Vice-President and Director, L&T, Mr. Eric P. Loewen, President, American Nuclear Society, and Mr. Sanjeev Khaira, MD, UBM India, addressed the media.
  • Mr. Sanjeev Khaira, MD–UBM India said: “India’s effort has been to achieve continuous improvement and innovation in nuclear safety.  The basic principle being, for all projects the Government gives priority to people’s safety as generation of power. This is important at a time when we are in the process of expanding nuclear capacity at an incredible pace.” In tandem with the Asian peers India is recording a high growth rate and the demand for energy is always on the upper curve. India is facing an acute shortage of fuel, like the coal and gas. Primarily, India has coal-fired (thermal) stations; however the shortage is forcing the power producers to resort to importing coal, which is more expensive. This in turn has caused prices of power to increase and the shortage has also resulted in certain regions facing power failures.
  • ...2 more annotations...
  • Considering the capital involved in solar, wind and other power generation options, the viable option for the developing nations is nuclear energy which provides a feasible source of energy. The conference supports the establishment and implementation of national and international safety standards in the design, construction, operation, and decommissioning of nuclear facilities. The Conference enumerated various pro’s & con’s that could be brought about by Nuclear energy, for India, Nuclear power is foreseeable as there is no other viable option. Due to the lack of indigenous uranium, India has uniquely been developing and utilizing a nuclear fuel cycle to exploit its reserves of thorium. And now with foreign technology and funding, it is expected that India’s Nuclear Power programme will receive a considerable boost. Through the upcoming three day event from 29th September, 2011, the Indian Power & Energy Sector will be linked to global players providing efficient and innovative solutions to make India a world leader in nuclear technology in the future.
  • Dr. Srikumar Banerjee – Chairman, Atomic Energy Commision will deliver the Key Note Address at “India Nuclear Energy Summit 2011” on 29th September 2011. Mr. Pierre Lellouche, French Minister of State for Foreign Trade has confirmed to be Guest of Honor for India Nuclear Energy Summit 2011. “The event will see participation from leading companies like DAE, L&T, GMR, Areva, GE, Westinghouse, Alstom, HCC, JSL, REC, Power Grid Corporation of India, Nuvia India, Nuscale Power, Schiess, American Nuclear Society, UBI France, Rosatom, Infotech, Lisega, United to name a few. The event will highlight the participation from various countries like USA, France, Russia and individual companies from UK, Germany & Canada. The event will also host symposium of Indo-US Nuclear Energy safety summit on 30th September 2011 and Indo- French Seminar, organized by French Trade Commission on 1st October 2011. The event will also witness the presence of French Ambassador, Jean-Raphael PEYTREGNET-Consul General of France in Mumbai, US Ambassador, US Consul General in Mumbai. It will also open doors of opportunities for domestic & international companies to tap the unexploited market of the nuclear sector in India. The format of the event has been designed to offer an opportunity for best networking and business opportunities and provide an interactive platform for equipment, technology suppliers and end users.
D'coda Dcoda

Actual workers talk about Fukushima [26Sep11] - 0 views

  • At the moment the conditions at Unit 1 of Fukushima nuclear power plant continues to be chaos, so Tadaharu Murakami (pseudonym), 30 years, an employee of a company that works as a subcontractor for Tokyo Electric Power. “The workers are not enough, TEPCO has recently committed even many people without experience who have never worked in a nuclear plant. As for the places of work, everything is really chaotic. It educates the people by giving them the ABCs teaches fundamental things such as wearing protective clothing like you.”
  • On The Pointy Guy) As a symbol of the discontent that elicits such a situation, there was an “incident” on 28 August has a live camera from TEPCO, which is mounted inside the block 1, sent pictures of a “mysterious” staff, who has placed himself in front of the lens and has said anything, while he pointed his finger at the camera. Murakami explains that after the conference on 30th August, during which expressed Yasuhiro Sonoda, responsible parliamentarians of the Cabinet, the wish that he would like to share the thoughts of “this person”, what he thinks, the guy who pretends to be that person and the real conditions on the website the bulletin board system of “2channel” has been disclosed. He has hit the nail on the head when he said that “for the people who work there, the working conditions are unfair and illegal. We have no insurance, we are poorly paid and we even have a contract. ”
  • Murakami confirmed, “that what he wrote on the Internet, the truth. Even when I worked before the accident in March as a temporary worker in Fukushima Daiichi have, you have promised me 15,000 yen a day and I’ve got nothing. “He continues,” when I asked at the sitting of the subcontractor, why do not they pay me what they owe me, they said, ‘You work for a subcontractor? So they have no right to make such a request.” I turned also to workers of TEPCO, which have responded harshly to me, I consider myself strictly to the rules of the line and that’s all. “I wait one more month and if they do not pay me, I’ll sue the subcontractor. “Murakami is confirmed by the descriptions, which are made on the internet about the poor accommodation,” even when it has cooled a bit in early September, break every day at least 10 workers due to fatigue together. I want them to rapidly improve the living conditions.”
  • ...4 more annotations...
  • Osamu Sato (pseudonym), an approximately forty years old, is also working for a subcontractor of TEPCO. He has the explanations that have been recently released by TEPCO denied and replied that “there is no reason to mention that the situation had stabilized, etc., that’s not true.” “TEPCO announced that the situation is fine, although on the grounds of the things that are very much behind schedule, much more numerous than those that run well. This is the extreme main obstacle drive more radioactivity in the key zones.
  • On 1 August, measurements show in addition to an exhaust pipe between reactor 1 and 2 incredibly high readings, which can hardly believe it: 10,000 millisievert/hour! (Such a dose to take once meant certain death). From there it always escape greatly increased radiation doses. It has begun, and from there to discover little by little other zones, where the values are higher than 100 millisievert, zones which are provided with a cone that bears “forbidden access” the inscription, in the vicinity of such zones can not be work.
  • Even many experienced workers from the nuclear industry have refused to work in Fukushima, she said, “This is suicide,” because they know the effects of elevated radioactivity. To compensate for this, we hired more and more people without experience, instead of being useful to increase the chaos.” Whether you begin the process of establishing a decontamination system or whether the reactor buildings with a lack of protection surrounds, at the end are nothing more than the emergency measures.
  • You will not find a real solution that allows to separate the molten fuel rods, which are the cause of the diffusion of radioactive material when the technician can not approach the fast reactor core. In any case, it is an operation “almost impossible”, said the analysis by Masashi Goto, Toshiba developed for the nuclear reactor cores. “In the blocks 1, 2 and 3, there is a strong possibility that has emerged during the melting of nuclear fuel not only from the pressure vessel, but also from the protective sheath. At the moment nobody is able to determine, is melted in the extent and to what extent the core. I can not imagine how people can work there or at another location, where the danger has reached a point that nobody has ever experienced. “
D'coda Dcoda

Tweets from Fukushima worker: "It's so scary" - Normal air contains enough oxygen to cause hydrogen explosion, even without fire [27Sep11] - 0 views

  • Breaking News: High level of radiation is making hydrogen from H2O, Fukushima Diary by Mochizuki, September 26, 2011:
  • These are the tonight’s tweets of actual Fukushima worker called Happy20790 I managed to come back safely today. We couldn’t work at reactor 1 today, again. Last week, they said they detected 4% of hydrogen but it turned out to be over 100%. The current measurement tool is to detected only flammable gas, but Tepco says probably it is all hydrogen. [...] We would have been all dead if we cut of the pipe [reportedly using blow torches]. Unbelievable story, but as our original schedule, we didn’t plan to check the presence of flammable gas. The process was added the day before the day. It’s so scary. [...] [T]hen we are going to inject nitrogen to cut out to pipes. but normal air contains 18% of oxygen, which is enough to cause a hydrogen explosion even without fire. It’s so scary. Injecting nitrogen may also cause lack of oxygen. [...] It’s probably that high radiation is producing hydrogen out of H2O. [...] From his valuable statements, we can tell the hydrogen is still being produced by the very high radiation hitting H2O in the reactor. Nobody has seen it by their own eyes, but the melted fuel rods must be very active still. TEPCO: It May Be 100% Hydrogen Gas Inside the Pipe Connecting to Reactor I Containment Vessel, EX-SKF, September 24, 2011:
D'coda Dcoda

The Environmental Case for Nuclear Energy - Korea [26Sep11] - 0 views

  • Six months after the Fukushima disaster, the repercussions of history’s second-largest nuclear meltdown are still being felt, not only in Japan but around the world. Predictably, people are rethinking the wisdom of relying on nuclear power. The German and Swiss governments have pledged to phase out the use of nuclear power, and Italy has shelved plans to build new reactors. Public debate on future nuclear energy use continues in the United Kingdom, Japan, Finland, and other countries.So far, it is unclear what the reaction of the Korean government will be. Certainly, the public backlash to nuclear energy that has occurred elsewhere in the world is also evident in Korea; according to one study, opposition to nuclear energy in Korea has tripled since the Fukushima disaster. However, there are countervailing considerations here as well, which have caused policy-makers to move cautiously. Korea’s economy is often seen as particularly reliant on the use of nuclear power due to its lack of fossil fuel resources, while Korean companies are some of the world’s most important builders (and exporters) of nuclear power stations.
  • There are three primary reasons why nuclear power is safer and greener than power generated using conventional fossil fuels. First ― and most importantly ― nuclear power does not directly result in the emission of greenhouse gases. Even when you take a life-cycle approach and factor in the greenhouse gas emissions from the construction of the plant, there is no contest. Fossil fuels ― whether coal, oil, or natural gas ― create far more global warming.
  • The negative effects of climate change will vastly outweigh the human and environmental consequences of even a thousand Fukushimas. This is not the place to survey all the dire warnings that have been coming out of the scientific community; suffice it to quote U.N. Secretary General Ban Ki-moon’s concise statement that climate change is the world’s “only one truly existential threat … the great moral imperative of our era.” A warming earth will not only lead to death and displacement in far-off locales, either. Typhoons are already hitting the peninsula with greater intensity due to the warming air, and a recent study warns that global warming will cause Korea to see greatly increased rates of contagious diseases such as cholera and bacillary dysentery.
  • ...5 more annotations...
  • As the world’s ninth largest emitter of greenhouse gases, it should be (and is) a major priority for Korea to reduce emissions, and realistically that can only be accomplished by increasing the use of nuclear power. As Barack Obama noted with regard to the United States’ energy consumption, “Nuclear energy remains our largest source of fuel that produces no carbon emissions. It’s that simple. (One plant) will cut carbon pollution by 16 million tons each year when compared to a similar coal plant. That’s like taking 3.5 million cars off the road.” Environmentalists have traditionally disdained nuclear power, but even green activists cannot argue with that logic, and increasing numbers of them ― Patrick Moore, James Lovelock, Stewart Brand and the late Bishop Hugh Montefiore being prominent examples ― have become supporters of the smart use of nuclear power.
  • Second, the immediate dangers to human health of conventional air pollution outweigh the dangers of nuclear radiation. In 2009, the Seoul Metropolitan Government measured an average PM10 (particulate) concentration in the city of 53.8 g/m3, a figure that is roughly twice the level in other developed nations. According to the Gyeonggi Research Institute, PM10 pollution leads to 10,000 premature deaths per year in and around Seoul, while the Korea Economic Institute has estimated its social cost at 10 trillion won. While sulfur dioxide levels in the region have decreased significantly since the 1980s, the concentration of nitrogen dioxide in the air has not decreased, and ground-level ozone levels remain high. Unlike fossil fuels, nuclear power does not result in the release of any of these dangerous pollutants that fill the skies around Seoul, creating health hazards that are no less serious for often going unnoticed.
  • And third, the environmental and safety consequences of extracting and transporting fossil fuels are far greater than those involved with the production of nuclear power. Korea is one of the largest importers of Indonesian coal for use in power plants, for example. This coal is not always mined with a high level of environmental and safety protections, with a predictable result of air, water, and land pollution in one of Asia’s most biologically sensitive ecosystems. Coal mining is also one of the world’s more dangerous occupations, as evidenced by the many tragic disasters involving poorly managed Chinese mines. While natural gas is certainly a better option than coal, its distribution too can be problematic, whether by ship or through the recently proposed pipeline that would slice down through Siberia and North Korea to provide direct access to Russian gas.
  • What about truly green renewable energy, some might ask ― solar, wind, geothermal, hydroelectric, and tidal energy? Of course, Korea would be a safer and more sustainable place if these clean renewable resources were able to cover the country’s energy needs. However, the country is not particularly well suited for hydroelectric projects, while the other forms of renewable energy production are expensive, and are unfortunately likely to remain so for the foreseeable future. The fact is that most Koreans will not want to pay the significantly higher energy prices that would result from the widespread use of clean renewables, and in a democratic society, the government is unlikely to force them to do so. Thus, we are left with two realistic options: fossil fuels or nuclear. From an environmental perspective, it would truly be a disaster to abandon the latter.
  • By Andrew Wolman Andrew Wolman is an assistant professor at the Hankuk University of Foreign Studies Graduate School of International and Area Studies, where he teaches international law and human rights.
D'coda Dcoda

NRC Has Authority to Deal With Seismic Risks, Lochbaum Says [29Sep11] - 0 views

  • Nuclear regulators already have “sufficient information and knowledge” to deal with earthquake risks at existing U.S. reactors and don’t need to wait for a broader review, a safety advocate said. The Nuclear Regulatory Commission developed seismic rules for new plants in 1996 and has since approved preliminary construction for proposed nuclear units at a Southern Co. plant in Georgia and certified an early reactor design by Toshiba Corp.’s Westinghouse Electric unit, according to comments filed with the agency today by David Lochbaum, director of the Nuclear Safety Project at the Cambridge, Massachusetts-based Union of Concerned Scientists.
  • “If the NRC truly lacks sufficient information about seismic hazards and how safety at nuclear power reactors is affected, then the agency cannot responsibly have issued early site permits and certified new reactor designs,” he said. The NRC is in the process of evaluating seismic hazards in the central and eastern U.S. in response to updated geologic information. By the end of this year, the agency plans to develop an earthquake probability model for reactor owners to use and may require all U.S. plants to review their seismic risks within the next two years.
  • The NRC has said “repeatedly” the broad seismic review “deals with an issue that fails to present an immediate safety concern,” Scott Burnell, an agency spokesman, said in an e- mail. Existing plants are built to “safely withstand the earthquakes at their sites,” he said. Earthquake Protections The NRC is weighing requirements to bolster plant protections against earthquakes and floods in the wake of the nuclear disaster in Japan caused by a March temblor and tsunami that led to radiation leaks and meltdowns at Tokyo Electric Power Co.’s Fukushima Dai-Ichi plant.
  • ...1 more annotation...
  • An 5.8-magnitude earthquake in Virginia on Aug. 23 shut down reactors at Dominion Resources Inc.’s North Anna nuclear plant, about 11 miles (18 kilometers) from the epicenter. The Virginia earthquake caused no significant damage at North Anna, even though ground shaking exceeded the plant’s design limits, Dominion has said. “The recent experience at North Anna supports the agency’s conclusion” that existing plants are built to withstand earthquakes at their sites, Burnell said.
D'coda Dcoda

The nuclear power plans that have survived Fukushima [28Sep11] - 0 views

  • SciDev.Net reporters from around the world tell us which countries are set on developing nuclear energy despite the Fukushima accident. The quest for energy independence, rising power needs and a desire for political weight all mean that few developing countries with nuclear ambitions have abandoned them in the light of the Fukushima accident. Jordan's planned nuclear plant is part of a strategy to deal with acute water and energy shortages.
  • The Jordan Atomic Energy Commission (JAEC) wants Jordan to get 60 per cent of its energy from nuclear by 2035. Currently, obtaining energy from neighbouring Arab countries costs Jordan about a fifth of its gross domestic product. The country is also one of the world's most water-poor nations. Jordan plans to desalinate sea water from the Gulf of Aqaba to the south, then pump it to population centres in Amman, Irbid, and Zarqa, using its nuclear-derived energy. After the Fukushima disaster, Jordan started re-evaluating safety procedures for its nuclear reactor, scheduled to begin construction in 2013. The country also considered more safety procedures for construction and in ongoing geological and environmental investigations.
  • The government would not reverse its decision to build nuclear reactors in Jordan because of the Fukushima disaster," says Abdel-Halim Wreikat, vice Chairman of the JAEC. "Our plant type is a third-generation pressurised water reactor, and it is safer than the Fukushima boiling water reactor." Wreikat argues that "the nuclear option for Jordan at the moment is better than renewable energy options such as solar and wind, as they are still of high cost." But some Jordanian researchers disagree. "The cost of electricity generated from solar plants comes down each year by about five per cent, while the cost of producing electricity from nuclear power is rising year after year," says Ahmed Al-Salaymeh, director of the Energy Centre at the University of Jordan. He called for more economic feasibility studies of the nuclear option.
  • ...20 more annotations...
  • And Ahmad Al-Malabeh, a professor in the Earth and Environmental Sciences department of Hashemite University, adds: "Jordan is rich not only in solar and wind resources, but also in oil shale rock, from which we can extract oil that can cover Jordan's energy needs in the coming years, starting between 2016 and 2017 ... this could give us more time to have more economically feasible renewable energy."
  • Finance, rather than Fukushima, may delay South Africa's nuclear plans, which were approved just five days after the Japanese disaster. South Africa remains resolute in its plans to build six new nuclear reactors by 2030. Katse Maphoto, the director of Nuclear Safety, Liabilities and Emergency Management at the Department of Energy, says that the government conducted a safety review of its two nuclear reactors in Cape Town, following the Fukushima event.
  • Vietnam's nuclear energy targets remain ambitious despite scientists' warning of a tsunami risk. Vietnam's plan to power 10 per cent of its electricity grid with nuclear energy within 20 years is the most ambitious nuclear energy plan in South-East Asia. The country's first nuclear plant, Ninh Thuan, is to be built with support from a state-owned Russian energy company and completed by 2020. Le Huy Minh, director of the Earthquake and Tsunami Warning Centre at Vietnam's Institute of Geophysics, has warned that Vietnam's coast would be affected by tsunamis in the adjacent South China Sea.
  • Larkin says nuclear energy is the only alternative to coal for generating adequate electricity. "What other alternative do we have? Renewables are barely going to do anything," he said. He argues that nuclear is capable of supplying 85 per cent of the base load, or constantly needed, power supply, while solar energy can only produce between 17 and 25 per cent. But, despite government confidence, Larkin says that a shortage of money may delay the country's nuclear plans.
  • The government has said yes but hasn't said how it will pay for it. This is going to end up delaying by 15 years any plans to build a nuclear station."
  • The Ninh Thuan nuclear plant would sit 80 to 100 kilometres from a fault line on the Vietnamese coast, potentially exposing it to tsunamis, according to state media. But Vuong Huu Tan, president of the state-owned Vietnam Atomic Energy Commission, told state media in March, however, that lessons from the Fukushima accident will help Vietnam develop safe technologies. And John Morris, an Australia-based energy consultant who has worked as a geologist in Vietnam, says the seismic risk for nuclear power plants in the country would not be "a major issue" as long as the plants were built properly. Japan's nuclear plants are "a lot more earthquake prone" than Vietnam's would be, he adds.
  • Undeterred by Fukushima, Nigeria is forging ahead with nuclear collaborations. There is no need to panic because of the Fukushima accident, says Shamsideen Elegba, chair of the Forum of Nuclear Regulatory Bodies in Africa. Nigeria has the necessary regulatory system to keep nuclear activities safe. "The Nigerian Nuclear Regulatory Authority [NNRA] has established itself as a credible organisation for regulatory oversight on all uses of ionising radiation, nuclear materials and radioactive sources," says Elegba who was, until recently, the NNRA's director general.
  • Vietnam is unlikely to experience much in the way of anti-nuclear protests, unlike neighbouring Indonesia and the Philippines, where civil society groups have had more influence, says Kevin Punzalan, an energy expert at De La Salle University in the Philippines. Warnings from the Vietnamese scientific community may force the country's ruling communist party to choose alternative locations for nuclear reactors, or to modify reactor designs, but probably will not cause extreme shifts in the one-party state's nuclear energy strategy, Punzalan tells SciDev.Net.
  • Will the Philippines' plans to rehabilitate a never-used nuclear power plant survive the Fukushima accident? The Philippines is under a 25-year moratorium on the use of nuclear energy which expires in 2022. The government says it remains open to harnessing nuclear energy as a long-term solution to growing electricity demand, and its Department of Science and Technology has been making public pronouncements in favour of pursuing nuclear energy since the Fukushima accident. Privately, however, DOST officials acknowledge that the accident has put back their job of winning the public over to nuclear by four or five years.
  • In the meantime, the government is trying to build capacity. The country lacks, for example, the technical expertise. Carmencita Bariso, assistant director of the Department of Energy's planning bureau, says that, despite the Fukushima accident, her organisation has continued with a study on the viability, safety and social acceptability of nuclear energy. Bariso says the study would include a proposal for "a way forward" for the Bataan Nuclear Power Plant, the first nuclear reactor in South East Asia at the time of its completion in 1985. The $2.3-billion Westinghouse light water reactor, about 60 miles north of the capital, Manila, was never used, though it has the potential to generate 621 megawatts of power. President Benigno Aquino III, whose mother, President Corazon Aquino, halted work on the facility in 1986 because of corruption and safety issues, has said it will never be used as a nuclear reactor but could be privatised and redeveloped as a conventional power plant.
  • But Mark Cojuangco, former lawmaker, authored a bill in 2008 seeking to start commercial nuclear operations at the Bataan reactor. His bill was not passed before Congress adjourned last year and he acknowledges that the Fukushima accident has made his struggle more difficult. "To go nuclear is still the right thing to do," he says. "But this requires a societal decision. We are going to spark public debates with a vengeance as soon as the reports from Fukushima are out." Amended bills seeking both to restart the reactor, and to close the issue by allowing either conversion or permanent closure, are pending in both the House and the Senate. Greenpeace, which campaigns against nuclear power, believes the Fukushima accident has dimmed the chances of commissioning the Bataan plant because of "increased awareness of what radioactivity can do to a place". Many parts of the country are prone to earthquakes and other natural disasters, which critics say makes it unsuitable both for the siting of nuclear power stations and the disposal of radioactive waste.
  • In Kenya, nuclear proponents argue for a geothermal – nuclear mix In the same month as the Fukushima accident, inspectors from the International Atomic Energy Agency approved Kenya's application for its first nuclear power station (31 March), a 35,000 megawatt facility to be built at a cost of Sh950 billion (US$9.8 billion) on a 200-acre plot on the Athi Plains, about 50km from Nairobi
  • The plant, with construction driven by Kenya's Nuclear Electricity Project Committee, should be commissioned in 2022. The government claims it could satisfy all of Kenya's energy needs until 2040. The demand for electricity is overwhelming in Kenya. Less than half of residents in the capital, Nairobi, have grid electricity, while the rural rate is two per cent. James Rege, Chairman of the Parliamentary Committee on Energy, Communication and Information, takes a broader view than the official government line, saying that geothermal energy, from the Rift Valley project is the most promising option. It has a high production cost but remains the country's "best hope". Nuclear should be included as "backup". "We are viewing nuclear energy as an alternative source of power. The cost of fossil fuel keeps escalating and ordinary Kenyans can't afford it," Rege tells SciDev.Net.
  • Hydropower is limited by rivers running dry, he says. And switching the country's arable land to biofuel production would threaten food supplies. David Otwoma, secretary to the Energy Ministry's Nuclear Electricity Development Project, agrees that Kenya will not be able to industrialise without diversifying its energy mix to include more geothermal, nuclear and coal. Otwoma believes the expense of generating nuclear energy could one day be met through shared regional projects but, until then, Kenya has to move forward on its own. According to Rege, much as the nuclear energy alternative is promising, it is extremely important to take into consideration the Fukushima accident. "Data is available and it must be one step at a time without rushing things," he says. Otwoma says the new nuclear Kenya can develop a good nuclear safety culture from the outset, "but to do this we need to be willing to learn all the lessons and embrace them, not forget them and assume that won't happen to us".
  • But the government adopted its Integrated Resource Plan (IRP) for 2010-2030 five days after the Fukushima accident. Elliot Mulane, communications manager for the South African Nuclear Energy Corporation, (NECSA) a public company established under the 1999 Nuclear Energy Act that promotes nuclear research, said the timing of the decision indicated "the confidence that the government has in nuclear technologies". And Dipuo Peters, energy minister, reiterated the commitment in her budget announcement earlier this year (26 May), saying: "We are still convinced that nuclear power is a necessary part of our strategy that seeks to reduce our greenhouse gas emissions through a diversified portfolio, comprising some fossil-based, renewable and energy efficiency technologies". James Larkin, director of the Radiation and Health Physics Unit at the University of the Witwatersrand, believes South Africa is likely to go for the relatively cheap, South Korean generation three reactor.
  • It is not only that we say so: an international audit came here in 2006 to assess our procedure and processes and confirmed the same. Elegba is firmly of the view that blame for the Fukushima accident should be allocated to nature rather than human error. "Japan is one of the leaders not only in that industry, but in terms of regulatory oversight. They have a very rigorous system of licensing. We have to make a distinction between a natural event, or series of natural events and engineering infrastructure, regulatory infrastructure, and safety oversight." Erepamo Osaisai, Director General of the Nigeria Atomic Energy Commission (NAEC), has said there is "no going back" on Nigeria's nuclear energy project after Fukushima.
  • Nigeria is likely to recruit the Russian State Corporation for Atomic Energy, ROSATOM, to build its first proposed nuclear plant. A delegation visited Nigeria (26- 28 July) and a bilateral document is to be finalised before December. Nikolay Spassy, director general of the corporation, said during the visit: "The peaceful use of nuclear power is the bedrock of development, and achieving [Nigeria's] goal of being one of the twenty most developed countries by the year 2020 would depend heavily on developing nuclear power plants." ROSATOM points out that the International Atomic Energy Agency monitors and regulates power plant construction in previously non-nuclear countries. But Nnimmo Bassey, executive director of the Environmental Rights Action/Friends of the Earth Nigeria (ERA/FoEN), said "We cannot see the logic behind the government's support for a technology that former promoters in Europe, and other technologically advanced nations, are now applying brakes to. "What Nigeria needs now is investment in safe alternatives that will not harm the environment and the people. We cannot accept the nuclear option."
  • Thirsty for electricity, and desirous of political clout, Egypt is determined that neither Fukushima ― nor revolution ― will derail its nuclear plans. Egypt was the first country in the Middle East and North Africa to own a nuclear programme, launching a research reactor in 1961. In 2007 Egypt 'unfroze' a nuclear programme that had stalled in the aftermath of the Chernobyl disaster. After the Egyptian uprising in early 2011, and the Fukushima accident, the government postponed an international tender for the construction of its first plant.
  • Yassin Ibrahim, chairman of the Nuclear Power Plants Authority, told SciDev.Net: "We put additional procedures in place to avoid any states of emergency but, because of the uprising, the tender will be postponed until we have political stability after the presidential and parliamentary election at the end of 2011". Ibrahim denies the nuclear programme could be cancelled, saying: "The design specifications for the Egyptian nuclear plant take into account resistance to earthquakes and tsunamis, including those greater in magnitude than any that have happened in the region for the last four thousand years. "The reactor type is of the third generation of pressurised water reactors, which have not resulted in any adverse effects to the environment since they began operation in the early sixties."
  • Ibrahim El-Osery, a consultant in nuclear affairs and energy at the country's Nuclear Power Plants Authority, points out that Egypt's limited resources of oil and natural gas will run out in 20 years. "Then we will have to import electricity, and we can't rely on renewable energy as it is still not economic yet — Egypt in 2010 produced only two per cent of its needs through it." But there are other motives for going nuclear, says Nadia Sharara, professor of mineralogy at Assiut University. "Owning nuclear plants is a political decision in the first place, especially in our region. And any state that has acquired nuclear technology has political weight in the international community," she says. "Egypt has the potential to own this power as Egypt's Nuclear Materials Authority estimates there are 15,000 tons of untapped uranium in Egypt." And she points out it is about staying ahead with technology too. "If Egypt freezes its programme now because of the Fukushima nuclear disaster it will fall behind in many science research fields for at least the next 50 years," she warned.
D'coda Dcoda

Nuclear electricity: a fallen dream? [28Sep11] - 0 views

  • Nuclear power is no magic solution, argues Pervez Hoodbhoy — it's not safe, or cheap, and it leads to weapons programmes. A string of energy-starved developing countries have looked at nuclear power as the magic solution. No oil, no gas, no coal needed – it's a fuel with zero air pollution or carbon dioxide emissions. High-tech and prestigious, it was seen as relatively safe. But then Fukushima came along. The disaster's global psychological impact exceeded Chernobyl's, and left a world that's now unsure if nuclear electricity is the answe
  • Core concerns The fire that followed the failure of emergency generators at the Daiichi nuclear complex raised the terrifying prospect of radiation leaking and spreading. The core of the Unit 1 reactor melted, and spent nuclear fuel, stored under pools of water, sprang to life as cooling pumps stopped. Fukushima's nuclear reactors had been built to withstand the worst, including earthquakes and tsunamis. Sensors successfully shut down the reactors, but when a wall of water 30 feet high crashed over the 20-foot protective concrete walls, electrical power, essential for cooling, was lost. The plume of radiation reached as far as Canada. Closer, it was far worse. Japan knows that swathes of its territory will be contaminated, perhaps uninhabitable, for the rest of the century. In July, for example, beef, vegetables, and ocean fish sold in supermarkets were found to have radioactive caesium in doses several times the safe level. [1]
  • The Japanese have been careful. In the country of the hibakusha (surviving victims of Hiroshima and Nagasaki), all reactors go through closer scrutiny than anywhere else. But this clearly wasn't enough. Other highly developed countries — Canada, Russia, UK, and US — have also seen serious reactor accidents. What does this mean for a typical developing country? There, radiation dangers and reactor safety have yet to enter public debate. Regulatory mechanisms are strictly controlled by the authorities, citing national security reasons. And individuals or nongovernmental organisations are forbidden from monitoring radiation levels near any nuclear facility. Poor and powerless village communities in India and Pakistan, that have suffered health effects from uranium and thorium mining, have been forced to withdraw their court cases.
  • ...6 more annotations...
  • The aftermath of a Fukushima-type incident might look very different in many developing countries. With volatile populations and little disaster management capability, the social response would probably be quite different. In Japan, tsunami survivors helped each other, relief teams operated unobstructed, and rescuers had full radiation protection gear. No panic, and no anti-government demonstrations followed the reactor explosions. Questions about cost
  • Is nuclear energy cost efficient? A 2009 Massachusetts Institute of Technology study, which strongly recommended enhancing the role of nuclear power to offset climate change [2], found that nuclear electricity costs more per kilowatt-hour (kWh): 8.4 cents versus 6.2/6.5 cents for coal/gas. It suggested that as fossil fuel depletes, the nuclear-fossil price ratio will turn around. But it hasn't yet. The World Bank has labelled nuclear plants "large white elephants". [3] Its Environmental Assessment Source Book says: "Nuclear plants are thus uneconomic because at present and projected costs they are unlikely to be the least-cost alternative.
  • There is also evidence that the cost figures usually cited by suppliers are substantially underestimated and often fail to take adequately into account waste disposal, decommissioning, and other environmental costs." [4] According to the US Nuclear Regulatory Commission, the cost of permanently shutting down a reactor ranges from US$300 million to US$400 million. [5] This is a hefty fraction of the reactor's original cost (20–30 per cent). While countries like France or South Korea do find nuclear energy profitable, they may be exceptions to a general rule. Countries that lack engineering capacity to make their own reactors will pay more to import and operate the technology.
  • Poor track record, military ambitions The track record of nuclear power in developing countries scarcely inspires confidence. Take the case of Pakistan, which still experiences long, daily electricity blackouts. Forty years ago, the Pakistan Atomic Energy Commission had promised that the country's entire electricity demand would be met from nuclear reactors. Although the commission helped produce 100 nuclear bombs, and employs over 30,000 people, it has come nowhere close to meeting the electricity target. Two reactors combine to produce about 0.7 GW, which meets around 2 per cent of Pakistan's electricity consumption.
  • India's record is also less than stellar. In 1962, it announced that installed nuclear capacity would be 18–20 GW by 1987; but it could reach only 1.48 GW by that year. Today, only 2.7 per cent of India's electricity comes from nuclear fuels. In 1994, an accident during the construction of two reactors at the Kaiga Generating Station pushed up their cost to four times the initial estimate. Cost overruns and delays are frequent, not just in India. And some developing countries' interest in nuclear technology for energy could mask another purpose. India and Pakistan built their weapon-making capacity around their civilian nuclear infrastructure. They were not the first, and will not be the last.
  • Warning bells ring loud and clear when big oil-producing countries start looking to build nuclear plants. Iran, with the second largest petroleum reserves in the world, now stands at the threshold of making a bomb using low enriched uranium fuel prepared for its reactors. Saudi Arabia, a rival which will seek its bomb if Iran makes one, has plans to spend over US$300 billion to build 16 nuclear reactors over the next 20 years. Climate change gives urgency to finding non-fossil fuel energy alternatives. But making a convincing case for nuclear power is getting harder. Neither cheap nor safe, it faces an uphill battle. Unless there is a radical technical breakthrough — such as a workable reactor fuelled by nuclear fusion rather than nuclear fission — its prospects for growth look bleak. Pervez Hoodbhoy received his PhD in nuclear physics from the Massachusetts Institute of Technology, USA. He teaches at the School of Science and Engineering at LUMS (Lahore) and at Quaid-e-Azam University, Islamabad, Pakistan.
‹ Previous 21 - 40 of 68 Next › Last »
Showing 20 items per page