Skip to main content

Home/ Open Intelligence / Energy/ Group items tagged strategy

Rss Feed Group items tagged

D'coda Dcoda

Senate Appropriators on Nuclear Energy [16Sep11] - 0 views

shared by D'coda Dcoda on 09 Oct 11 - No Cached
  • The Senate Energy and Water Development Appropriations Subcommittee included extensive language in their FY 2012 committee report about nuclear energy.  They wrote of being “extremely concerned that the United States continues to accumulate spent fuel from nuclear reactors without a comprehensive plan to collect the fuel or dispose of it safely, and as a result faces a $15,400,000,000 liability by 2020,” called for the development of “consolidated regional storage facilities,” and mandated research on dry cask storage, advanced fuel cycle options, and disposal in geological media.  The appropriators provided no funding for the Next Generation Nuclear Plant program or Light Water Reactor Small Modular Reactor Licensing Technical Support.  In a separate section, they direct the Nuclear Regulatory Commission to contract with the National Academy of Sciences for a study on the lessons learned from the Fukushima nuclear disaster, and discuss beyond design-basis events and mitigating impacts of earthquakes. Language from the committee report 112-75 follows, with page number references to the pdf version of this document.
  • Nuclear Energy The FY 2011 appropriation was $732.1 million The FY 2012 administration request was $754.0 million The FY 2012 House-passed bill provides $733.6 million, an increase of $1.5 million or 0.2 percent from the current budget. The Senate Appropriations Committee bill provides $583.8 million, a decline of $148.3 million or 20.3 percent.
  • “The Committee has provided more than $500,000,000 in prior years toward the Next Generation Nuclear Plant [NGNP] program.  Although the program has experienced some successes, particularly in the advanced research and development of TRISO [tristructural-isotropic] fuel, the Committee is frustrated with the lack of progress and failure to resolve the upfront cost-share issue to allocate the risk between industry and the Federal Government. Although the Committee has provided sufficient time for these issues to be resolved, the program has stalled. Recognizing funding constraints, the Committee cannot support continuing the program in its current form. The Committee provides no funding to continue the existing NGNP program, but rather allows the Department to continue high-value, priority research and development activities for high-temperature reactors, in cooperation with industry, that were included in the NGNP program.”
  • ...9 more annotations...
  • “While the Nuclear Regulatory Commission has found that spent nuclear fuel can be stored safely for at least 60 years in wet or dry cask storage beyond the licensed life of the reactor, the Committee has significant questions on this matter and is extremely concerned that the United States continues to accumulate spent fuel from nuclear reactors without a comprehensive plan to collect the fuel or dispose of it safely, and as a result faces a $15,400,000,000 liability by 2020. The Committee approved funding in prior years for the Blue Ribbon Commission on America’s Nuclear Future [BRC], which was charged with examining our Nation’s policies for managing the back end of the nuclear fuel cycle and recommending a new plan. The BRC issued a draft report in July 2011 with recommendations, which is expected to be finalized in January 2012. The Committee directs prior existing funding, contingent on the renewal of its charter, to the BRC to develop a comprehensive revision to Federal statutes based on its recommendations, to submit to Congress for its consideration.
  • “The Committee directs the Department to develop and prepare to implement a strategy for the management of spent nuclear fuel and other nuclear waste within 3 months of publication of the final report of the Blue Ribbon Commission on America’s Nuclear Future.  The strategy shall reduce long-term Federal liability associated with the Department’s failure to pick up spent fuel from commercial nuclear reactors, and it should propose to store waste in a safe and responsible manner. The Committee notes that a sound Federal strategy will likely require one or more consolidated storage facilities with adequate capacity to be sited, licensed, and constructed in multiple regions, independent of the schedule for opening a repository. The Committee directs that the Department’s strategy include a plan to develop consolidated regional storage facilities in cooperation with host communities, as necessary, and propose any amendments to Federal statute necessary to implement the strategy.
  • “Although successfully disposing of spent nuclear fuel permanently is a long-term effort and will require statutory changes, the Committee supports taking near- and mid-term steps that can begin without new legislation and which provide value regardless of the ultimate policy the United States adopts. The Committee therefore includes funding for several of these steps in the Nuclear Energy Research and Development account, including the assessment of dry casks to establish a scientific basis for licensing; continued work on advanced fuel cycle options; research to assess disposal in different geological media; and the development of enhanced fuels and materials that are more resistant to damage in reactors or spent fuel pools.
  • (Page 80) “The events at the Fukushima-Daiichi facilities in Japan have resulted in a reexamination of our Nation’s policies regarding the safety of commercial reactors and the storage of spent nuclear fuel.  These efforts have been supported by appropriations in this bill, and the Committee provides funding for continuation and expansion of these activities.
  • The report also contains extensive language regarding Nuclear Energy Research and Development: “Use of Prior Existing Balances. - If the Secretary renews the charter of the Blue Ribbon Commission, the Department is directed to use $2,500,000 of prior existing balances appropriated to the Office of Civilian Radioactive Waste Management to develop a comprehensive revision to Federal statutes based on its recommendations.  The recommendation should be provided to Congress not later than March 30, 2012 for consideration.
  • “Nuclear Energy Enabling Technologies. - The Committee recommends $68,880,000 for Nuclear Energy Enabling Technologies, including $24,300,000 for the Energy Innovation Hub for Modeling and Simulation, $14,580,000 for the National Science User Facility at Idaho National Laboratory, and $30,000,000 for Crosscutting research.  The Committee does not recommend any funding for Transformative research. The Committee recommends that the Department focus the Energy Innovation Hub on the aspects of its mission that improve nuclear powerplant safety.
  • Light Water Reactor Small Modular Reactor Licensing Technical Support. - The Committee provides no funding for Light Water Reactor Small Modular Reactor Licensing Technical Support. “Reactor Concepts Research, Development, and Demonstration. - The Committee provides $31,870,000 for Reactor Concepts Research, Development and Demonstration. Of this funding, $21,870,000 is for Advanced Reactor Concepts activities. The Committee does not include funding for the Next Generation Nuclear Plant Demonstration project. The Department may, within available funding, continue high-value, priority research and development activities for high-temperature reactor concepts, in cooperation with industry, that were conducted as part of the NGNP program.  The remaining funds, $10,000,000, are for research and development of the current fleet of operating reactors to determine how long they can safely operate.
  • “Fuel Cycle Research and Development. - The Committee recommends $187,917,000 for Fuel Cycle Research and Development.  Within available funds, the Committee provides $10,000,000 for the Department to expand the existing modeling and simulation capabilities at the national laboratories to assess issues related to the aging and safety of storing spent nuclear fuel in fuel pools and dry storage casks. The Committee includes $60,000,000 for Used Nuclear Fuel Disposition, and directs the Department to focus research and development activities on the following priorities: $10,000,000 for development and licensing of standardized transportation, aging, and disposition canisters and casks; $3,000,000 for development of models for potential partnerships to manage spent nuclear fuel and high level waste; and $7,000,000 for characterization of potential geologic repository media.
  • “The Committee provides funding for evaluation of standardized transportation, aging and disposition cask and canister design, cost, and safety characteristics, in order to enable the Department to determine those that should be used if the Federal Government begins transporting fuel from reactor sites, as it is legally obligated to do, and consolidating fuel. The Committee notes that the Blue Ribbon Commission on America’s Nuclear Future has, in its draft report, recommended the creation of consolidated interim storage facilities, for which the Federal Government will need casks and canisters to transport and store spent fuel.
  •  
    too long to highlight all of it so see the rest on the site
D'coda Dcoda

Some countries make progress on nuclear energy despite Fukushima fears [25Sep11] - 0 views

  • Germany’s decision to close its reactors rejected as unrealistic
  • Since the March 11 earthquake and tsunami hit the six TEPCO reactors at Fukushima Japan, anti-nuclear groups have been on a roll.  Germany’s panic attack which will result in closing 17 reactors accounting for a quarter of its electricity is widely touted as a bellwether example for other countries.   The goal of post-industrial visionaries is to get the mainstream media and the public to accept a scenario of the inevitable end to the use of nuclear energy in as many places as possible. But is this trend really taking place?  Recent developments indicate it is not.  Here are some examples.
  • China to lift ban on new projects By early 2012 China will resume approving the start of new nuclear energy projects following completion of a national nuclear safety plan.  According to wire services, the China Securities Journal is reporting that in August the government completed the inspection of its existing fleet of nuclear reactors which provide about 11 Gwe of power.  It said that plants under construction, including four from Westinghouse and two from Areva, were also part of the review.  In an unexpected move, the Journal said the government would offer greater transparency on nuclear safety issues by making the results of the safety reviews available for public inspection.
  • ...5 more annotations...
  • Czech Industry & Trade Minister Martin Kocourek (right) told the Bloomberg wire service  September 8 the country will not give in to anti-nuclear influences from Austria or Germany. “Czech doesn’t need ideology.  What it needs is a rational update of its energy strategy.  The current ideology-driven policies of some countries is one thing; our reality is another.” If state-owned Czech utility CEZ builds all five reactors, worth about $28 billion, it will export electricity to Germany and Poland.  CEZ is expected to release documents related to the bid process next month.  The bidders are Areva, Westinghouse, and Rosatom.  An award for the first two new reactors to be built at Temelin is expected in 2013.
  • Czech utility CEZ plans Europe’s largest reactor complexes The Czech government is planning a significant expansion of nuclear energy now that Germany has moved to shutter its 17 reactors by 2020.  A national energy strategy would call for building two or more new reactors at Temelin and three more at Dukovany. The two sites house a total of six existing reactors and grid infrastructure. 
  • On September 15 CEZ named Daniel Benes, 41, as its new CEO with a mandate to execute a national energy strategy that includes building new nuclear reactors.  On September 20 Benes told financial wire services it will be his top priority linked to the goal of energy security for the Czech Republic.
  • On September 23 Czech President Vaclav Klaus (left) spoke at the United Nations in support of nuclear energy.  According to English language Czech news media, Klaus said: . . . “We consider what happened in Fukushima did not by any means question the arguments for nuclear energy.  These arguments are strong, economically rational and convincing.” He called Germany’s decision to close its reactors an “irrational populist event.”  In a parallel statement trade minister Kocourek said that CEZ would not expand renewable energy sources beyond 13% because it is unrealistic to expect to run a modern country on them.  He added CEZ “has big doubts” about biomass.
  • South Korea to invest in Romanian nuclear plant A South Korean nuclear energy consortium may invest in a project to build a third and a fourth reactor at Cernovoda in southeast Romania. The consortium replaces an investor group which pulled out of the project earlier this year.  The project manager for the new reactors is EnergoNuclear.  Right now Romania’s state owned electric utility holds an 85% share in the project and Italy’s ENEL holds another 9%. If the deal goes through, the South Korean group could take up to a 45 % stake in the project which is estimated to cost $5.7 billion.  Romania has two CANDU reactors at the site near the country’s Black Sea coast.  South Korea has experience with the CANDU design so it is plausible it may reference it in a proposal to build the next two units. This would be a huge win for AECL which recently was split up with its reactor division sold off for peanuts to SNC Lavalin.  AECL has marketed itself in eastern Europe hoping for this kind of development.
D'coda Dcoda

The nuclear power plans that have survived Fukushima [28Sep11] - 0 views

  • SciDev.Net reporters from around the world tell us which countries are set on developing nuclear energy despite the Fukushima accident. The quest for energy independence, rising power needs and a desire for political weight all mean that few developing countries with nuclear ambitions have abandoned them in the light of the Fukushima accident. Jordan's planned nuclear plant is part of a strategy to deal with acute water and energy shortages.
  • The Jordan Atomic Energy Commission (JAEC) wants Jordan to get 60 per cent of its energy from nuclear by 2035. Currently, obtaining energy from neighbouring Arab countries costs Jordan about a fifth of its gross domestic product. The country is also one of the world's most water-poor nations. Jordan plans to desalinate sea water from the Gulf of Aqaba to the south, then pump it to population centres in Amman, Irbid, and Zarqa, using its nuclear-derived energy. After the Fukushima disaster, Jordan started re-evaluating safety procedures for its nuclear reactor, scheduled to begin construction in 2013. The country also considered more safety procedures for construction and in ongoing geological and environmental investigations.
  • The government would not reverse its decision to build nuclear reactors in Jordan because of the Fukushima disaster," says Abdel-Halim Wreikat, vice Chairman of the JAEC. "Our plant type is a third-generation pressurised water reactor, and it is safer than the Fukushima boiling water reactor." Wreikat argues that "the nuclear option for Jordan at the moment is better than renewable energy options such as solar and wind, as they are still of high cost." But some Jordanian researchers disagree. "The cost of electricity generated from solar plants comes down each year by about five per cent, while the cost of producing electricity from nuclear power is rising year after year," says Ahmed Al-Salaymeh, director of the Energy Centre at the University of Jordan. He called for more economic feasibility studies of the nuclear option.
  • ...20 more annotations...
  • And Ahmad Al-Malabeh, a professor in the Earth and Environmental Sciences department of Hashemite University, adds: "Jordan is rich not only in solar and wind resources, but also in oil shale rock, from which we can extract oil that can cover Jordan's energy needs in the coming years, starting between 2016 and 2017 ... this could give us more time to have more economically feasible renewable energy."
  • Finance, rather than Fukushima, may delay South Africa's nuclear plans, which were approved just five days after the Japanese disaster. South Africa remains resolute in its plans to build six new nuclear reactors by 2030. Katse Maphoto, the director of Nuclear Safety, Liabilities and Emergency Management at the Department of Energy, says that the government conducted a safety review of its two nuclear reactors in Cape Town, following the Fukushima event.
  • The Ninh Thuan nuclear plant would sit 80 to 100 kilometres from a fault line on the Vietnamese coast, potentially exposing it to tsunamis, according to state media. But Vuong Huu Tan, president of the state-owned Vietnam Atomic Energy Commission, told state media in March, however, that lessons from the Fukushima accident will help Vietnam develop safe technologies. And John Morris, an Australia-based energy consultant who has worked as a geologist in Vietnam, says the seismic risk for nuclear power plants in the country would not be "a major issue" as long as the plants were built properly. Japan's nuclear plants are "a lot more earthquake prone" than Vietnam's would be, he adds.
  • Larkin says nuclear energy is the only alternative to coal for generating adequate electricity. "What other alternative do we have? Renewables are barely going to do anything," he said. He argues that nuclear is capable of supplying 85 per cent of the base load, or constantly needed, power supply, while solar energy can only produce between 17 and 25 per cent. But, despite government confidence, Larkin says that a shortage of money may delay the country's nuclear plans.
  • The government has said yes but hasn't said how it will pay for it. This is going to end up delaying by 15 years any plans to build a nuclear station."
  • Vietnam's nuclear energy targets remain ambitious despite scientists' warning of a tsunami risk. Vietnam's plan to power 10 per cent of its electricity grid with nuclear energy within 20 years is the most ambitious nuclear energy plan in South-East Asia. The country's first nuclear plant, Ninh Thuan, is to be built with support from a state-owned Russian energy company and completed by 2020. Le Huy Minh, director of the Earthquake and Tsunami Warning Centre at Vietnam's Institute of Geophysics, has warned that Vietnam's coast would be affected by tsunamis in the adjacent South China Sea.
  • Undeterred by Fukushima, Nigeria is forging ahead with nuclear collaborations. There is no need to panic because of the Fukushima accident, says Shamsideen Elegba, chair of the Forum of Nuclear Regulatory Bodies in Africa. Nigeria has the necessary regulatory system to keep nuclear activities safe. "The Nigerian Nuclear Regulatory Authority [NNRA] has established itself as a credible organisation for regulatory oversight on all uses of ionising radiation, nuclear materials and radioactive sources," says Elegba who was, until recently, the NNRA's director general.
  • Vietnam is unlikely to experience much in the way of anti-nuclear protests, unlike neighbouring Indonesia and the Philippines, where civil society groups have had more influence, says Kevin Punzalan, an energy expert at De La Salle University in the Philippines. Warnings from the Vietnamese scientific community may force the country's ruling communist party to choose alternative locations for nuclear reactors, or to modify reactor designs, but probably will not cause extreme shifts in the one-party state's nuclear energy strategy, Punzalan tells SciDev.Net.
  • But the government adopted its Integrated Resource Plan (IRP) for 2010-2030 five days after the Fukushima accident. Elliot Mulane, communications manager for the South African Nuclear Energy Corporation, (NECSA) a public company established under the 1999 Nuclear Energy Act that promotes nuclear research, said the timing of the decision indicated "the confidence that the government has in nuclear technologies". And Dipuo Peters, energy minister, reiterated the commitment in her budget announcement earlier this year (26 May), saying: "We are still convinced that nuclear power is a necessary part of our strategy that seeks to reduce our greenhouse gas emissions through a diversified portfolio, comprising some fossil-based, renewable and energy efficiency technologies". James Larkin, director of the Radiation and Health Physics Unit at the University of the Witwatersrand, believes South Africa is likely to go for the relatively cheap, South Korean generation three reactor.
  • In the meantime, the government is trying to build capacity. The country lacks, for example, the technical expertise. Carmencita Bariso, assistant director of the Department of Energy's planning bureau, says that, despite the Fukushima accident, her organisation has continued with a study on the viability, safety and social acceptability of nuclear energy. Bariso says the study would include a proposal for "a way forward" for the Bataan Nuclear Power Plant, the first nuclear reactor in South East Asia at the time of its completion in 1985. The $2.3-billion Westinghouse light water reactor, about 60 miles north of the capital, Manila, was never used, though it has the potential to generate 621 megawatts of power. President Benigno Aquino III, whose mother, President Corazon Aquino, halted work on the facility in 1986 because of corruption and safety issues, has said it will never be used as a nuclear reactor but could be privatised and redeveloped as a conventional power plant.
  • But Mark Cojuangco, former lawmaker, authored a bill in 2008 seeking to start commercial nuclear operations at the Bataan reactor. His bill was not passed before Congress adjourned last year and he acknowledges that the Fukushima accident has made his struggle more difficult. "To go nuclear is still the right thing to do," he says. "But this requires a societal decision. We are going to spark public debates with a vengeance as soon as the reports from Fukushima are out." Amended bills seeking both to restart the reactor, and to close the issue by allowing either conversion or permanent closure, are pending in both the House and the Senate. Greenpeace, which campaigns against nuclear power, believes the Fukushima accident has dimmed the chances of commissioning the Bataan plant because of "increased awareness of what radioactivity can do to a place". Many parts of the country are prone to earthquakes and other natural disasters, which critics say makes it unsuitable both for the siting of nuclear power stations and the disposal of radioactive waste.
  • In Kenya, nuclear proponents argue for a geothermal – nuclear mix In the same month as the Fukushima accident, inspectors from the International Atomic Energy Agency approved Kenya's application for its first nuclear power station (31 March), a 35,000 megawatt facility to be built at a cost of Sh950 billion (US$9.8 billion) on a 200-acre plot on the Athi Plains, about 50km from Nairobi
  • The plant, with construction driven by Kenya's Nuclear Electricity Project Committee, should be commissioned in 2022. The government claims it could satisfy all of Kenya's energy needs until 2040. The demand for electricity is overwhelming in Kenya. Less than half of residents in the capital, Nairobi, have grid electricity, while the rural rate is two per cent. James Rege, Chairman of the Parliamentary Committee on Energy, Communication and Information, takes a broader view than the official government line, saying that geothermal energy, from the Rift Valley project is the most promising option. It has a high production cost but remains the country's "best hope". Nuclear should be included as "backup". "We are viewing nuclear energy as an alternative source of power. The cost of fossil fuel keeps escalating and ordinary Kenyans can't afford it," Rege tells SciDev.Net.
  • Hydropower is limited by rivers running dry, he says. And switching the country's arable land to biofuel production would threaten food supplies. David Otwoma, secretary to the Energy Ministry's Nuclear Electricity Development Project, agrees that Kenya will not be able to industrialise without diversifying its energy mix to include more geothermal, nuclear and coal. Otwoma believes the expense of generating nuclear energy could one day be met through shared regional projects but, until then, Kenya has to move forward on its own. According to Rege, much as the nuclear energy alternative is promising, it is extremely important to take into consideration the Fukushima accident. "Data is available and it must be one step at a time without rushing things," he says. Otwoma says the new nuclear Kenya can develop a good nuclear safety culture from the outset, "but to do this we need to be willing to learn all the lessons and embrace them, not forget them and assume that won't happen to us".
  • Will the Philippines' plans to rehabilitate a never-used nuclear power plant survive the Fukushima accident? The Philippines is under a 25-year moratorium on the use of nuclear energy which expires in 2022. The government says it remains open to harnessing nuclear energy as a long-term solution to growing electricity demand, and its Department of Science and Technology has been making public pronouncements in favour of pursuing nuclear energy since the Fukushima accident. Privately, however, DOST officials acknowledge that the accident has put back their job of winning the public over to nuclear by four or five years.
  • It is not only that we say so: an international audit came here in 2006 to assess our procedure and processes and confirmed the same. Elegba is firmly of the view that blame for the Fukushima accident should be allocated to nature rather than human error. "Japan is one of the leaders not only in that industry, but in terms of regulatory oversight. They have a very rigorous system of licensing. We have to make a distinction between a natural event, or series of natural events and engineering infrastructure, regulatory infrastructure, and safety oversight." Erepamo Osaisai, Director General of the Nigeria Atomic Energy Commission (NAEC), has said there is "no going back" on Nigeria's nuclear energy project after Fukushima.
  • Nigeria is likely to recruit the Russian State Corporation for Atomic Energy, ROSATOM, to build its first proposed nuclear plant. A delegation visited Nigeria (26- 28 July) and a bilateral document is to be finalised before December. Nikolay Spassy, director general of the corporation, said during the visit: "The peaceful use of nuclear power is the bedrock of development, and achieving [Nigeria's] goal of being one of the twenty most developed countries by the year 2020 would depend heavily on developing nuclear power plants." ROSATOM points out that the International Atomic Energy Agency monitors and regulates power plant construction in previously non-nuclear countries. But Nnimmo Bassey, executive director of the Environmental Rights Action/Friends of the Earth Nigeria (ERA/FoEN), said "We cannot see the logic behind the government's support for a technology that former promoters in Europe, and other technologically advanced nations, are now applying brakes to. "What Nigeria needs now is investment in safe alternatives that will not harm the environment and the people. We cannot accept the nuclear option."
  • Thirsty for electricity, and desirous of political clout, Egypt is determined that neither Fukushima ― nor revolution ― will derail its nuclear plans. Egypt was the first country in the Middle East and North Africa to own a nuclear programme, launching a research reactor in 1961. In 2007 Egypt 'unfroze' a nuclear programme that had stalled in the aftermath of the Chernobyl disaster. After the Egyptian uprising in early 2011, and the Fukushima accident, the government postponed an international tender for the construction of its first plant.
  • Yassin Ibrahim, chairman of the Nuclear Power Plants Authority, told SciDev.Net: "We put additional procedures in place to avoid any states of emergency but, because of the uprising, the tender will be postponed until we have political stability after the presidential and parliamentary election at the end of 2011". Ibrahim denies the nuclear programme could be cancelled, saying: "The design specifications for the Egyptian nuclear plant take into account resistance to earthquakes and tsunamis, including those greater in magnitude than any that have happened in the region for the last four thousand years. "The reactor type is of the third generation of pressurised water reactors, which have not resulted in any adverse effects to the environment since they began operation in the early sixties."
  • Ibrahim El-Osery, a consultant in nuclear affairs and energy at the country's Nuclear Power Plants Authority, points out that Egypt's limited resources of oil and natural gas will run out in 20 years. "Then we will have to import electricity, and we can't rely on renewable energy as it is still not economic yet — Egypt in 2010 produced only two per cent of its needs through it." But there are other motives for going nuclear, says Nadia Sharara, professor of mineralogy at Assiut University. "Owning nuclear plants is a political decision in the first place, especially in our region. And any state that has acquired nuclear technology has political weight in the international community," she says. "Egypt has the potential to own this power as Egypt's Nuclear Materials Authority estimates there are 15,000 tons of untapped uranium in Egypt." And she points out it is about staying ahead with technology too. "If Egypt freezes its programme now because of the Fukushima nuclear disaster it will fall behind in many science research fields for at least the next 50 years," she warned.
D'coda Dcoda

Harm from Fukushima Radiation: A Matter Of Perspective [09Jul11] - 0 views

  • A leading biophysicist has cast a critical light on the government’s reassurances that Americans were never at risk from Fukushima fallout, saying “we really don’t know for sure.”
  • When radioactive fallout from Japan’s nuclear disaster began appearing in the United States this spring, the Obama Administration’s open-data policy obligated the government to inform the public, in some detail, what was landing here.
  • Covering the story, I watched the government pursue what appeared to be two strategies to minimize public alarm:
  • ...14 more annotations...
  • It framed the data with reassurances like this oft-repeated sentence from the EPA: “The level detected is far below a level of public health concern.” The question, of course, is whose concern.
  • The EPA seemed to be timing its data releases to avoid media coverage. It released its most alarming data set late on a Friday—data that showed radioactive fallout in the drinking water of more than a dozen U.S. cities.
  • Friday and Saturday data releases were most frequent when radiation levels were highest. And despite the ravages newspapers have suffered from internet competition, newspaper editors still have not learned to assign reporters to watch the government on weekends. As a result, bloggers broke the fallout news, while newspapers relegated themselves to local followups, most of which did little more than quote public health officials who were pursuing strategy #1.
  • For example, when radioactive cesium-137 was found in milk in Hilo, Hawaii, Lynn Nakasone, administrator of the Health Department’s Environmental Health Services Division, told the Honolulu Star-Advertiser: ”There’s no question the milk is safe.”
  • Nakasone had little alternative but to say that. She wasn’t about to dump thousands of gallons of milk that represented the livelihood of local dairymen, and she wasn’t authorized to dump the milk as long as the radiation detected remained below FDA’s Derived Intervention Level, a metric I’ll discuss more below.
  • That kind of statement failed to reassure the public in part because of the issue of informed consent—Americans never consented to swallowing any radiation from Fukushima—and in part because the statement is obviously false.
  • There is a question whether the milk was safe.
  • medical experts agree that any increased exposure to radiation increases risk of cancer, and so, no increase in radiation is unquestionably safe.
  • Whether you choose to see the Fukushima fallout as safe depends on the perspective you adopt, as David J. Brenner, a professor of radiation biophysics and the director of the Center for Radiological Research at Columbia University Medical Center, elucidated recently in The Bulletin of The Atomic Scientists:
  • Should this worry us? We know that the extra individual cancer risks from this long-term exposure will be very small indeed. Most of us have about a 40 percent chance of getting cancer at some point in our lives, and the radiation dose from the extra radioactive cesium in the food supply will not significantly increase our individual cancer risks.
  • But there’s another way we can and should think about the risk: not from the perspective of individuals, but from the perspective of the entire population. A tiny extra risk to a few people is one thing. But here we have a potential tiny extra risk to millions or even billions of people. Think of buying a lottery ticket — just like the millions of other people who buy a ticket, your chances of winning are miniscule. Yet among these millions of lottery players, a few people will certainly win; we just can’t predict who they will be. Likewise, will there be some extra cancers among the very large numbers of people exposed to extremely small radiation risks? It’s likely, but we really don’t know for sure.
  • the EPA’s standard for radionuclides in drinking water is so much more conservative than the FDA’s standard for radionuclides in food. The two agencies anticipate different endurances of exposure—long-term in the EPA’s view, short-term in FDA’s. But faced with the commercial implications of its actions, FDA tolerates a higher level of mortality than EPA does.
  • FDA has a technical quibble with that last sentence. FDA spokesman Siobhan Delancey says: Risk coefficients (one in a million, two in ten thousand) are statistically based population estimates of risk. As such they cannot be used to predict individual risk and there is likely to be variation around those numbers. Thus we cannot say precisely that “one in a million people will die of cancer from drinking water at the EPA MCL” or that “two in ten thousand people will die of cancer from consuming food at the level of an FDA DIL.” These are estimates only and apply to populations as a whole.
  • The government, while assuring us of safety, comforts itself in the abstraction of the population-wide view, but from Dr. Brenner’s perspective, the population-wide view is a lottery and someone’s number may come up. Let that person decide whether we should be alarmed.
D'coda Dcoda

TVA's Environmental and Energy Future - Relies on Nuclear Power and Less on Coal [17Sep10] - 0 views

  • The Tennessee Valley Authority on Thursday issued a draft of its Integrated Resource Plan, a comprehensive study that will help guide efforts to meet regional electricity needs over the next 20 years. Titled "TVA's Environmental and Energy Future," the study analyzes potential combinations of economic and regulatory trends in the coming years and provides recommendations for addressing them. The plan's main purpose is to help TVA meet the region's future energy challenges in ways that maintain reliable power supplies, competitive prices, improved environmental performance and continued financial strength.
  • TVA's yearlong analysis included input from numerous stakeholders including state agencies, power distributors, environmental groups, universities and the general public. The study yielded several likely probabilities for TVA, including: Nuclear expansion will continue, with the potential to eventually overtake coal as the leading electricity source; TVA may idle a portion of its coal generation fleet, as coal units become older and less economical under tighter regulations; Energy efficiency and demand response, as well as renewable generation, will play an increasing role in future resource options; Natural gas capacity additions will be a viable resource option and a key source of generation flexibility for TVA; The intensity of TVA's carbon dioxide, nitrogen oxide, sulfur dioxide and mercury emissions will continue to decrease.
  • Using the study's methodology, TVA examined seven possible long-term scenarios for the next two decades, based on factors such as economic growth, inflation, fuel prices and the regulatory environment. They are: Dramatic economic recovery Environmental focus becoming a greater national priority Prolonged economic malaise Introduction of game-changing energy-related technology Greater U.S. energy independence Carbon regulation creating an economic downturn Current approach/baseline
  • ...4 more annotations...
  • The Integrated Resource Plan process also developed various possible strategies that TVA might use to meet the region's future power needs. Each strategy was analyzed to create 20-year power generation portfolios -- or combinations of electricity resources -- for TVA to consider. Each portfolio was rated using factors such as cost, risk and environmental impact
  • "TVA's Integrated Resource Plan process is a rigorous one that is supportive of TVA's renewed vision and will guide the corporation as it leads the region and the nation toward a cleaner and more secure energy future, relying more on nuclear power and energy efficiency and less on coal," said Van Wardlaw, TVA's executive vice president of Enterprise Relations, who is leading the Integrated Resource Plan effort
  • The TVA Board of Directors has adopted a renewed vision for the federal corporation to be one of the nation's leading providers of cleaner low-cost energy by 2020, increasing its use of nuclear power and energy efficiency and improving its environmental performance
  • TVA completed its previous Integrated Resource Plan, titled "Energy Vision 2020," in 1995. The new plan will update the earlier study, based upon changes in regulations and legislation, the marketplace for electric generating utilities and customer demand.
D'coda Dcoda

Nuclear waste requires a cradle-to-grave strategy, study finds [27Aug11] - 0 views

  • ScienceDaily (July 3, 2010) — after Fukushima, it is now imperative to redefine what makes a successful nuclear energy–from the cradle to the grave. If the management of nuclear waste is not considered by the authority, the public in many countries reject nuclear energy as an option, according to a survey appearing in the Bulletin of Atomic Scientists, published by SAGE.
  • According to Allison Macfarlane, Associate Professor of environmental science and policy at George Mason University and a member of the Blue Ribbon for nuclear future of America, resulting in storage for nuclear waste, which is still a last-minute decision to a number of countries outside of Japan. It is surprisingly common for reactor sites for overburdened with spent nuclear fuel without any clear plan. In South Korea, for example, saving to four nuclear power stations in the nation is filled, leading to a crisis within the storage potential of the next decade.
  • United Arab Emirates broke the ground for the first of four nuclear reactors on 14 March 2011, but has not set the precedence of storage. Hans Blix, former head of the International Atomic energy Agency and current President of the UAE’S International Advisory Council, noted: “it is still an open question of a draft final disposal and greater attention should be spent on deciding what to do.”
  • ...5 more annotations...
  • Some very low level nuclear waste can go into landfill-type settings. But low level waste consists of low concentrations of long-lived radionuclides and higher concentrations of these short-lived must remain sequestered for a few hundred years in subsurface engineering facilities. Medium-and high-level wastes require placing hundreds of meters below the ground for hundreds of thousands of years in order to ensure public safety. Intermediate waste containing high concentrations of long-lived radionuclides, as high-level waste, including spent fuel reprocessing and fuel waste. Because they are extremely radioactive high level waste that emits heat. There is no repository for high level nuclear waste disposal wherever in the world.
  • All types of energy production, money is on the front end of the process and of waste management in the back end. Macfarlane argues, however, that a failure to plan for the disposal of waste can cause the most profitable front end of a company to collapse.
  • Nuclear fuel discharged from a light water reactor after about four to six years in the kernel. This should be cool, because the fuel is radioactively and thermally very hot to discharge, in a pool. Actively cooled with borated water circulated, spent fuel pools are approximately 40 feet (12 meters) deep. Water not only removes heat, but also helps to absorb neutrons and stop a chain reaction. In some countries, including the United States, metal shelves in spent fuel pools hold four times the originally planned amount of fuel. The plans to reprocess fuel have failed for both economic and political reasons. This means that today is more fuel pools from reactor cores, and the fuel endangers big radiation in the event of an accident-loss of coolant, as happened in Fukushima.
  • Japan’s Fukushima Daiichi plant spent fuel has seven pools, one at each reactor and large shared swimming pool, dry storage of spent fuel on site. Initially, Japan had planned a brief period of storage of spent fuel in the reactor before reprocessing, but Japan’s reprocessing facility has suffered long delays (scheduled to open in 2007, the installation is not yet ready). This caused the spent fuel to build the reactor factory sites.
  • Countries should include additional spent fuel storage nuclear projects from the beginning, and not the creation of ad hoc solutions, after spent nuclear fuel has already begun to build. Storage location is a technical issue, but also a social and political.
D'coda Dcoda

Fukushima Cover Up Unravels [04Jul11] - 0 views

  • Asia Pacific Journal reports:
  • Japan’s leading business journal Toyo Keizai has published an article by Hokkaido Cancer Center director Nishio Masamichi, a radiation treatment specialist.
  • Nishio originally called for “calm” in the days after the accident. Now, he argues, that as the gravity of the situation at the plant has become more clear, the specter of long-term radiation exposure must be reckoned with.
  • ...21 more annotations...
  • Former Minister for Internal Affairs Haraguchi Kazuhiro has alleged that radiation monitoring station data was actually three decimal places greater than the numbers released to the public. If this is true, it constitutes a “national crime”, in Nishio’s words
  • The Atlantic points out:
  • The reason for official reluctance to admit that the earthquake did direct structural damage to reactor one is obvious. Katsunobu Onda, author of TEPCO: The Dark Empire … who sounded the alarm about the firm in his 2007 book explains it this way: “If TEPCO and the government of Japan admit an earthquake can do direct damage to the reactor, this raises suspicions about the safety of every reactor they run. They are using a number of antiquated reactors that have the same systematic problems, the same wear and tear on the piping.”
  • Oddly enough, while TEPCO later insisted that the cause of the meltdown was the tsunami knocking out emergency power systems, at the 7:47 p.m. TEPCO press conference the same day, the spokesman in response to questions from the press about the cooling systems stated that the emergency water circulation equipment and reactor core isolation time cooling systems would work even without electricity
  • On May 15, TEPCO went some way toward admitting at least some of these claims in a report called “Reactor Core Status of Fukushima Daiichi Nuclear Power Station Unit One.” The report said there might have been pre-tsunami damage to key facilities including pipes. “This means that assurances from the industry in Japan and overseas that the reactors were robust is now blown apart,” said Shaun Burnie, an independent nuclear waste consultant. “It raises fundamental questions on all reactors in high seismic risk areas.”
  • Eyewitness testimony and TEPCO’S own data indicates that the damage [done to the plant by the quake] was significant. All of this despite the fact that shaking experienced at the plant during the quake was within it’s approved design specifications
  • The Wall Street Journal writes:
  • A former nuclear adviser to Japanese Prime Minister Naoto Kan blasted the government’s continuing handling of the crisis, and predicted further revelations of radiation threats to the public in the coming months. In his first media interview since resigning his post in protest in April, Toshiso Kosako, one of the country’s leading experts on radiation safety, said Mr. Kan’s government has been slow to test for possible dangers in the sea and to fish and has understated certain radiation dangers to minimize what it will have to spend to clean up contamination.
  • And while there have been scattered reports already of food contamination—of tea leaves and spinach, for example—Mr. Kosako said there will be broader, more disturbing discoveries later this year, especially as rice, Japan’s staple, is harvested. “Come the harvest season in the fall, there will be a chaos,” Mr. Kosako said. “Among the rice harvested, there will certainly be some radiation contamination—though I don’t know at what levels—setting off a scandal. If people stop buying rice from Tohoku, . . . we’ll have a tricky problem.”
  • British Shenanigans
  • It’s not just the Japanese. As the Guardian notes:
  • The Guardian reports in a second article
  • British government officials approached nuclear companies to draw up a co-ordinated public relations strategy to play down the Fukushima nuclear accident just two days after the earthquake and tsunami in Japan and before the extent of the radiation leak was known. Internal emails seen by the Guardian show how the business and energy departments worked closely behind the scenes with the multinational companies EDF Energy, Areva and Westinghouse… Officials stressed the importance of preventing the incident from undermining public support for nuclear power.
  • The Conservative MP Zac Goldsmith, who sits on the Commons environmental audit committee, condemned the extent of co-ordination between the government and nuclear companies that the emails appear to reveal.
  • The official suggested that if companies sent in their comments, they could be incorporated into briefs to ministers and government statements. “We need to all be working from the same material to get the message through to the media and the public
  • The office for nuclear development invited companies to attend a meeting at the NIA’s headquarters in London. The aim was “to discuss a joint communications and engagement strategy aimed at ensuring we maintain confidence among the British public on the safety of nuclear power stations and nuclear new-build policy in light of recent events at the Fukushima nuclear power plant”. Other documents released by the government’s safety watchdog, the office for nuclear regulation, reveal that the text of an announcement on 5 April about the impact of Fukushima on the new nuclear programme was privately cleared with nuclear industry representatives at a meeting the previous week. According to one former regulator, who preferred not to be named, the degree of collusion was “truly shocking”.
  • The release of 80 emails showing that in the days after the Fukushima accident not one but two government departments were working with nuclear companies to spin one of the biggest industrial catastrophes of the last 50 years, even as people were dying and a vast area was being made uninhabitable, is shocking
  • What the emails shows is a weak government, captured by a powerful industry colluding to at least misinform and very probably lie to the public and the media.
  • To argue that the radiation was being released deliberately and was “all part of the safety systems to control and manage a situation” is Orwellian.
  • And – as the Guardian notes in a third article – the collusion between the British government and nuclear companies is leading to political fallout:
  • “This deliberate and (sadly) very effective attempt to ‘calm’ the reporting of the true story of Fukushima is a terrible betrayal of liberal values. In my view it is not acceptable that a Liberal Democrat cabinet minister presides over a department deeply involved in a blatant conspiracy designed to manipulate the truth in order to protect corporate interests”. -Andy Myles, Liberal Democrat party’s former chief executive in Scotland “These emails corroborate my own impression that there has been a strange silence in the UK following the Fukushima disaster … in the UK, new nuclear sites have been announced before the results of the Europe-wide review of nuclear safety has been completed. Today’s news strengthens the case for the government to halt new nuclear plans until an independent and transparent review has been conducted.” -Fiona Hall, leader of the Liberal Democrats in the European parliament
  •  
    quotes from several different news sources
D'coda Dcoda

Royal Society calls for long-term nuclear plans [13Oct11] - 0 views

  • The government must establish long-term plans for a new generation of nuclear power plants so future generations are not left dealing with its legacy, experts urged on Thursday.Ministers must work with the industry to create a "holistic" strategy which deals effectively with reprocessing and disposal of spent nuclear fuel and does not treat it simply as "an afterthought", they warned.The new build programme must also take into account the UK's stockpile of civil plutonium - the largest in the world - created as a waste fuel from nuclear reactors but which can potentially be reprocessed into new nuclear fuel.
  • The warning comes as the government pushes ahead with a new generation of nuclear power stations in a bid to meet electricity demand and cut carbon emissions from the energy sector.In a report from the Royal Society, the group of experts said the handling of nuclear fuel throughout its working cycle must be considered to reduce security risks and the danger of proliferation of nuclear weapons.Research and development programmes are needed from the outset of the new build project to ensure fuel is managed properly, they added.Roger Cashmore, chairman of the Royal Society working group and head of the UK Atomic Energy Authority, said: "The last time any UK government articulated a coherent long-term plan for nuclear power was in 1955.
  • "We need to ensure that government and industry work together now to develop a long-term, holistic strategy for nuclear power in the UK."This must encompass the entire nuclear fuel cycle, from fresh fuel manufacture to disposal. Indeed, spent fuel can no longer be an afterthought and governments worldwide need to face up to this issue."He added: "While the government has made some positive moves towards an integrated approach to nuclear power, more must be done."The call comes after the energy secretary, Chris Huhne, signalled that a new generation of nuclear power plants would go ahead after a government-ordered review into the Fukushima disaster in Japan found no reason to curtail the use of reactors in the UK.
  • ...1 more annotation...
  • The review by chief nuclear inspector Mike Weightman examined the lessons that could be learned from the crisis at the Fukushima reactor when it was hit by a magnitude nine earthquake and subsequent tsunami in March.It revealed no "fundamental weaknesses" in the regulatory or safety assessment regimes of the UK nuclear industry, although it did outline 38 areas where improvements could be made.Prof Cashmore added: "Fukushima has shown that we cannot be complacent about the safety of nuclear power."However, the same principle must apply to nuclear security and non-proliferation. Both governments and the nuclear industry need to seriously reassess their responsibilities in these areas."
D'coda Dcoda

Opinion: Small modular nuclear reactors should power U.S. energy strategy [16Oct11] - 0 views

  • Sen. Dianne Feinstein (D-Calif.) was on her high horse, and the California Democrat wasn’t going to pass up an opportunity to disparage nuclear power. As head of a Senate panel that controls spending on energy technology, Sen. Feinstein zeroed in on a new program that would design small modular reactors over the next five years, striking it from the Department of Energy (DOE) budget for the coming fiscal year. Yet it happens to be precisely the sort of “Made in America” program with great commercial potential that President Obama called for in his jobs speech.
  • Feinstein prefers renewable energy sources, favoring government financial support for solar energy. Never mind that Solyndra Inc., a California-based maker of solar panels that received a $535 million U.S. loan guarantee, recently went bankrupt, along with two other solar firms. By contrast, small modular reactors are affordable and practical. They could be built in U.S. factories for a fraction of the cost of a large nuclear plant and exported for use in generating electricity around the world. In fact, small reactors have been used successfully for more than a half-century to power the U.S. Navy’s nuclear submarines. And the U.S. Army used small reactors during the 1950s and 1960s to provide electricity at remote military installations in Wyoming, Alaska, Greenland, Antarctica and other locations.
  • Several other countries with nuclear programs see great commercial potential in modular reactors; France, China, Japan and Korea are developing simplified, cheaper designs for a global market. “Our choice is clear: Develop these technologies today or import them tomorrow,” Energy Secretary Steven Chu said recently.
  • ...5 more annotations...
  • To jump-start construction of modular reactors, the administration proposed a cost-sharing program of $500 million over five years to help two companies develop designs and obtain Nuclear Regulatory Commission licenses. The DOE funds would be equally matched with industry money. There are those who maintain the government should not be involved in energy development, and that it should be left to the marketplace to determine which technologies emerge in America’s energy future. That’s an understandable sentiment, given the Solyndra scandal. But nuclear power, which has enabled the nation to meet its energy needs for more than a half-century without polluting the air or depending on the whims of foreign rulers, got its start with government financial backing. The first nuclear plants were built with government funds.
  • Like conventional nuclear plants, small modular reactors could produce electricity around the clock, day in and day out, without being subject to weather conditions. But what’s especially appealing about small reactors is their affordability. Instead of having to pay the capital cost of a new nuclear plant, which can run $8 billion or more, a utility would have the option of ordering small modular reactors for construction in a series, as funds become available and the need for electricity arises. The Tennessee Valley Authority recently signed a letter of intent to buy six small modular reactors using conventional light–water reactor technology, each with the capacity to produce 125 megawatts of electricity, from Babcock & Wilcox, a Virginia-based nuclear manufacturer. A small reactor is expected to take three years to build instead of five years or more for a conventional 1,200-megawatt nuclear plant. Experts say that a prototype reactor would cost about $500 million.
  • Small modular reactors — known as SMRs — would be shipped from a factory by rail or truck to a nuclear site and situated side-by-side. They would be hooked to the same electric-power grid but operate independently of one another. One module could be taken off line for refueling and maintenance while the others produce electricity. At some locations, modular reactors could be situated beneath the ground for security. What’s more, SMRs are air-cooled. They don’t have to be located on the oceanfront or near lakes and rivers, an important feature in large parts of the world where water resources are scarce.
  • The question is whether, in the face of opposition from Sen. Feinstein and some other members, Congress will make funds available for developing SMRs. At least 10 U.S. nuclear companies have done preliminary design work. They include such well-known names as Westinghouse, General Electric, General Atomics and Babcock & Wilcox. And a number of start-up companies are part of the competition. “SMRs could change the game and restore U.S. leadership in nuclear power,” said Vic Reis, a senior adviser in the Department of Energy’s Office of Science. “Nuclear power is essential to the administration’s commitment to clean energy.”
  • But if our reactor designs are going to be competitive in the global marketplace, it is essential that American companies be able to compete on a level playing field. Foreign reactor manufacturers have the backing of their governments in the form of subsidies and grants. Our companies, on the other hand, are cut off from government support. Congress can and must make this a turnaround decade in building a more affordable modular reactor for electricity generation. A factory-built small reactor should be the cornerstone of our government’s energy strategy.
D'coda Dcoda

: Iran to Punish EU with Oil Cut for Several Years 29Jan12] - 0 views

  • A senior Iranian lawmaker stressed that Tehran will block its oil supplies to the European Union for the next 5 to 15 years as part of its strategy to punish the EU for its oil ban against Tehran.
  • "We will change the threat into an opportunity for Iran and cut Iran's oil supplies to the Europeans for five to 15 years," member of the parliament's National Security and Foreign Policy Commission Mohammad Karim Abedi told FNA on Sunday.
  • He pointed to a bill drafted in the parliament to cut oil exports to the EU, and noted, "We will not leave enemies' sanctions unanswered and we will impose other sanctions on them in addition to closing Iran's oil supplies to Europe." Abedi also said that Iran will use the banned oil in its refineries and petrochemical complexes to turn it into more valuable products.
D'coda Dcoda

IEA - OECD: Nearly 25 Percent Of Global Electricity Could Be Generated From Nuclear Pow... - 0 views

  • The latest reactor designs, now under construction around the world, build on over 50 years of technology development. The roadmap notes that these designs will need to be fully established as reliable and competitive electricity generators over the next few years if they are to become the mainstays of nuclear expansion after 2020
  • Almost one quarter of global electricity could be generated from nuclear power by 2050, making a major contribution to cutting greenhouse gas emissions. This is the central finding of the Nuclear Energy Technology Roadmap, published by the International Energy Agency (IEA) and the OECD Nuclear Energy Agency (NEA). Such an expansion will require nuclear generating capacity to more than triple over the next 40 years, a target the roadmap describes as ambitious but achievable.
  • Speaking from the East Asia Climate Forum in Seoul, IEA Executive Director Nobuo Tanaka said: “Nuclear energy is one of the key low-carbon energy technologies that can contribute, alongside energy efficiency, renewable energies and carbon capture and storage, to the decarbonisation of electricity supply by 2050.” NEA Director General Luis Echávarri stated: “Nuclear is already one of the main sources of low-carbon energy today. If we can address the challenges to its further expansion, nuclear has the potential to play a larger role in cutting CO2 emissions.”
  • ...6 more annotations...
  • Financing the construction of new nuclear plants is expected to be a major challenge in many countries
  • The latest reactor designs, now under construction around the world, build on over 50 years of technology development. The roadmap notes that these designs will need to be fully established as reliable and competitive electricity generators over the next few years if they are to become the mainstays of nuclear expansion after 2020.
  • No major technological breakthroughs will be needed to achieve the level of nuclear expansion envisaged, the roadmap finds. However, important policy-related, industrial, financial and public acceptance barriers to the rapid growth of nuclear power remain. The roadmap sets out an action plan with steps that will need to be taken by governments, industry and others to overcome these. A clear and stable policy commitment to nuclear energy as part of overall energy strategy is a pre requisite, as is gaining greater public acceptance for nuclear programmes. Progress in implementing plans for the disposal of high-level radioactive waste will also be vital. The international system of safeguards to prevent proliferation of nuclear technology and materials must be maintained and strengthened where necessary.
  • For the longer term, the continued development of reactor and fuel cycle technologies will be important for maintaining the competitiveness of nuclear energy
  • The Nuclear Energy Technology Roadmap is the result of joint work by the IEA and the OECD Nuclear Energy Agency (NEA) and is one of a series being prepared by the IEA in co operation with other organisations and industry, at the request of the G8 summit at Aomori (Japan) in June 2008. The overall aim is to advance development and uptake of key low-carbon technologies needed to reach the goal of a 50% reduction in CO2 emissions by 2050.
  • Nuclear generating capacity worldwide is presently 370 gigawatts electrical (GWe), providing 14% of global electricity. In the IEA scenario for a 50% cut in energy-related CO2 emissions by 2050 (known as the “BLUE Map” scenario), on which the roadmap analysis is based, nuclear capacity grows to 1 200 GWe by 2050, providing 24% of global electricity at that time. Total electricity production in the scenario more than doubles, from just under 20 000 TWh in 2007 to around 41 000 TWh in 2050.
D'coda Dcoda

Fast reactor advocates throw down gauntlet to MIT authors[24Jul11] - 0 views

  • Near the end of 2010, the Massachusetts Institute of Technology released a summary of a report titled The Future of the Nuclear Fuel Cycle as part of its MIT Energy Initiative. The complete report was released a few months ago. The conclusions published that report initiated a virtual firestorm of reaction among the members of the Integral Fast Reactor (IFR) Study group who strongly disagreed with the authors.
  • the following quote from the “Study Context” provides a good summary of why the fast reactor advocates were so dismayed by the report.
  • For decades, the discussion about future nuclear fuel cycles has been dominated by the expectation that a closed fuel cycle based on plutonium startup of fast reactors would eventually be deployed. However, this expectation is rooted in an out-of-date understanding about uranium scarcity. Our reexamination of fuel cycles suggests that there are many more viable fuel cycle options and that the optimum choice among them faces great uncertainty—some economic, such as the cost of advanced reactors, some technical such as implications for waste management, and some societal, such as the scale of nuclear power deployment and the management of nuclear proliferation risks. Greater clarity should emerge over the next few decades, assuming that the needed research is carried out for technological alternatives and that the global response to climate change risk mitigation comes together. A key message from our work is that we can and should preserve our options for fuel cycle choices by continuing with the open fuel cycle, implementing a system for managed LWR spent fuel storage, developing a geological repository, and researching technology alternatives appropriate to a range of nuclear energy futures.
  • ...10 more annotations...
  • The group of fast reactor supporters includes some notable scientists and engineers whose list of professional accomplishments is at least as long as those of the people who produced the MIT report. In addition, it includes people like Charles Till and Yoon Chang who were intimately involved in the US’s multi-decade long fast reactor development and demonstration program that resulted in demonstrating a passively safe, sodium cooled reactor and an integral recycling system based on metallic fuel and pyroprocessing.
  • That effort, known as the Integral Fast Reactor, was not just based on an out-dated concept of uranium availability, but also on the keen recognition that the public wants a clear solution to “the nuclear waste issue” that does not look like a decision to “kick the can down the road.”
  • he Science Council for Global Initiatives produced a detailed critique of the MIT paper and published that on Barry Brook’s Brave New Climate blog at the end of May 2011. The discussion has a great deal of interest for technical specialists and is supporting evidence that belies the often asserted falsehood (by people who oppose nuclear technology) that the people interested in developing and deploying nuclear technology speak with a single, almost brainwashed voice.
  • In recent days, however, the controversy has become more interesting because the IFR discussion group has decided to issue a public debate challenge and to allow people like me to write about that challenge in an attempt to produce some response.
  • I think your team is dead wrong on your conclusion that we don’t need fast reactors/closed fuel cycle for decades.Your study fails to take into account the political landscape the competitive landscape the safety issue environmental issues with uranium miningIt is unacceptable to the public to not have a solution to the waste issue. Nuclear power has been around for over 50 years, and we STILL HAVE NO OPTION FOR THE WASTE today other than interim dry cask storage. There is no national repository. Without that, the laws in my state forbid construction of a new nuclear power plant.
  • Other countries are pursuing fast reactors, we are not. Russia has 30 years of commercial operating history with fast reactors. The US has zero.We invented the best Gen IV technology according to the study done by the Gen IV International Forum. So what did we do with it? After spending $5B on the project, and after proving it met all expectations, we CANCELLED it (although the Senate voted to fund it).
  • An average investment of $300M a year could re-start our fast reactor program with a goal of actually commercializing our best reactor design (the IFR according the GIF study).
  • At least we’d have a bird in the hand that we know works, largely solves the waste problem, since the fast reactor waste needs only to be stored for a few hundred years at most, and doesn’t require electric power or any active systems to safely shut down.
  • Investing lots of money in a project and pulling the funding right before completion is a bad strategy for technology leadership.
  • MIT should be arguing for focusing and finishing what we started with the IFR. At least we’d have something that addresses safety, waste, and environmental issues. Uranium is cheap because we don’t have to pay for the environmental impact of uranium mining.
D'coda Dcoda

Department of Energy Loan Guarantee Program to be discussed at Nuclear Summit [25Jul11] - 0 views

  • The conference is the 3rd Annual Nuclear Construction Summit and has already generated masses of interest from major utilities and key organisations in the USA and globally. The meeting comes at a truly critical time for the nuclear renaissance in North America.
  • Dave Frantz will join key representatives from the NRC, Duke, Dominion, Progress Energy, SCANA, OPG, Bruce Power, USEC, Areva NP, Westinghouse and many other key organisations in the nuclear industry. This year’s conference will discuss how companies can develop a strong nuclear strategy based on experience from key construction projects that mitigates risk and reduces project costs. The meeting promises to be the key construction meeting for the industry in 2011 with 300+ senior level executives involved in nuclear construction expected across the 3 days. Event organiser Nuclear Energy Insider stated “This conference has come at a hugely important time for the nuclear industry in North America. With knowledge-sharing from all of the key construction projects across the region, the meeting will be an essential platform to discuss best practice and ensure that the industry approaches future challenges head-on.”
  • For more information on the 3rd Annual Nuclear Construction Summit which is taking place in Charlotte, North Carolina on October 25-27 visit http://www.nuclearenergyinsider.com/nuclear-construction-summit
D'coda Dcoda

Safety of Nuclear Stations Under Focus : Tunisia [26Jul11] - 0 views

  • Representatives of member states of the Arab Atomic Energy Agency (AAEA) placed emphasis, on Sunday, on the need to attach utmost importance to the issue of safety of nuclear power stations, particularly following the disaster of Fukushima, Japan, this year.
  • Minister of Higher Education and Scientific Research Refaat Chaabouni told TAP news agency that the creation of a nuclear station to produce power in Tunisia is a political decision that Tunisia can take in light of results of a study conducted by the Tunisian Electricity and Gas Company (STEG) on the economic and technical viability of the said station by 2018.
  • He added that the disaster of Fukushima does not mean abandoning the use of nuclear energy for power production and its peaceful uses in Arab countries but should rather encourage countries to better control the “safety” aspect and strengthen human resources specialised in this area. Director General of the Arab Atomic Energy Agency Abdelmajid Mahjoub said the accident of Fukushima requires more work to control nuclear energy, preserve the environment and protect people, in collaboration with the International Atomic Energy Agency.
  • ...1 more annotation...
  • Works of the annual conference of the Arab Atomic Energy Agency currently held in Hammamet will evaluate the second year of the implementation of the Arab strategy for the peaceful use of atomic energy spreading over ten years (2010-2020) and develop an annual future plan for the agency’s action.
D'coda Dcoda

GE Hitachi Nuclear Energy Expands Supplier Network in Poland as Government Prepares to ... - 0 views

  • With Poland evaluating two GE Hitachi Nuclear Energy (GEH) reactor models for the country’s first nuclear power plant projects, GEH today announced it has signed a memorandum of understanding (MOU) with Warsaw-based engineering firm Energoprojekt Warszawa, S.A. (EW) to discuss the feasibility of partnering on future reactor projects.
  • The MOU with Energoprojekt Warszawa is the latest in a series of preliminary agreements that GEH has signed with Polish suppliers as the government prepares to develop Poland’s first two nuclear generating stations to diversify the country’s energy supplies. Under the new MOU, both companies will explore how EW could provide specific engineering services to GEH for the potential development of new nuclear power plants in Poland.
  • “This initial action shows the future possibility of creating jobs and cooperation related not only to Polish suppliers of fixtures, construction and installation works, but to Polish planning and engineering during the plant’s construction process.”
  • ...4 more annotations...
  • Polish utility Polska Grupa Energetyczna S.A. (PGE) is still considering several reactor designs for the projects and Poland’s government expects to begin construction of its first nuclear power plant in 2016 and has targeted 2020 as the commercial date of operation (COD) for the first plant. The Generation III+ Economic Simplified Boiling Water Reactor (ESBWR) is GEH’s newest reactor design and offers the world’s most advanced passive safety systems. GEH’s Advanced Boiling Water Reactor (ABWR) is the world’s only commercially proven Generation III reactor model.
  • Other preliminary project development agreements signed by GEH include: March 2011 with the Institute of Atomic Energy in Poland (POLATOM), a research institute located in Świerk that advises the government on nuclear energy issues. January 2011 Stocznia Gdansk, a leading Polish shipyard, for the potential manufacturing of nuclear components for GEH. RAFAKO S.A., Europe’s leading boiler equipment manufacturer, for the potential manufacturing of nuclear components for GEH. Gdansk University of Technology, West Pomeranian University of Technology, Szczecin University, and Koszalin University of Technology. May 2010 with global engineering services firm SNC-Lavalin Polska.
  • GE currently has more than 10,000 employees in Poland.
  • Helping Poland Develop Domestic Nuclear Workforce GEH is demonstrating its commitment to supporting Poland’s economy by helping the country create a sustainable, domestic pool of nuclear engineers by donating a number of valuable GateCycle ™ heat balance modeling software packages to several Polish universities. GEH’s customized GateCycle software is used to model nuclear steam cycles and is a powerful tool in teaching students advanced methods of plant modeling and troubleshooting to optimize plant performance. GEH also is hosting 14 engineering interns from Poland. The students recently began their summer internships at GEH’s U.S. headquarters in Wilmington, N.C. The 10-week assignment will expose them to many facets of the nuclear industry including engineering, finance, regulatory affairs and information management.
  •  
    also has info on helping Poland develop domestic nuclear workforce
D'coda Dcoda

4 Ways the Department of Energy Is Tapping Tech for a Greener Future [03Aug11] - 0 views

  • This week, the U.S. Department of Energy (DOE) re-launched its website, Energy.gov, to provide tools to help individuals and businesses better understand how to save energy and money. You can type your zip code into the site and get hyper-local information about your city, county and state, including information on tax credits, rebates and energy saving tips.
  • The site presents DOE data visually using the open source MapBox suite of tools, and localized data and maps can be shared or embedded on any website or blog. Other data sets the DOE is mapping include alternative fuel locations and per capita energy usage. Anyone can now compare how his state’s energy usage compares with others across the country. In addition to making the data more palatable for the public, the DOE is offering open data sets for others to use.
  • Our goal is simple — to improve the delivery of public services online. We’re using government data to go local in a way that’s never been possible before. We’re connecting the work of the Energy Department with what’s happening in your backyard,” says Cammie Croft, senior advisor and director of new media and citizen engagement at the DOE. “We’re making Energy.gov relevant and accessible to consumers and small businesses in their communities.”
  • ...16 more annotations...
  • How else is the Energy Department working to bring better information about energy, renewable energies and energy technology to the public? Here are a few examples.
  • 1. Your MPG
  • The “Your MPG” feature on the site lets you upload data about your own vehicle’s fuel usage to your “cyber” garage and get a better picture of how your vehicle is doing in terms of energy consumption. The system also aggregates the personal car data from all of the site’s users anonymously so people can share their fuel economy estimates. “You can track your car’s fuel economy over time to see if your efforts to increase MPG are working,” says David Greene, research staffer at Oak Ridge National Lab. “Then you can compare your fuel data with others and see how you are doing relative to those who own the same vehicle.”
  • In the works for the site is a predictive tool you can use when you are in the market for a new or used vehicle to more accurately predict the kind of mileage any given car will give you, based on your particular driving style and conditions. The system, says Greene, reduces the +/- 7 mpg margin of error of standard EPA ratings by about 50% to give you a more accurate estimate of what your MPG will be.
  • Solar Decathlon
  • In response to the White House’s Startup America program supporting innovation and entrepreneurship, the Energy Department launched its own version — America’s Next Top Energy Innovator Challenge. The technology transfer program gives startups the chance to license Energy Department technologies developed at the 17 national laboratories across the country at an affordable price. Entrepreneurs can identify Energy Department technologies through the Energy Innovation Portal, where more than 15,000 patent and patent applications are listed along with more than 450 market summaries describing some of the technologies in layman’s terms.
  • Once a company selects the technology of interest to them, they fill out a short template to apply for an option — a precursor to an actual license of the patent — for $1,000. A company can license up to three patents on one technology from a single lab per transaction, and patent fees are deferred for two years. The program also connects entrepreneurs to venture capitalists as mentors.
  • 3. Products: Smarter Windows
  • DOE funding, along with private investments, supports a number of companies including the Michigan-based company Pleotint. Pleotint developed a specialized glass film that uses energy generated by the sun to limit the amount of heat and light going into a building or a home. The technology is called Sunlight Responsive Thermochromic (SRT™), and it involves a chemical reaction triggered by direct sunlight that lightens or darkens the window’s tint. Windows made from this glass technology are designed to change based on specific preset temperatures.
  • Another DOE-funded company, Sage ElectroChromics, created SageGlass®, electronically controlled windows that use small electric charges to switch between clear and tinted windows in response to environmental heat and light conditions. And Soladigm has an electronic tinted glass product that is currently undergoing durability testing.
  • 2. America’s Next Top Energy Innovator
  • Since 2002, the U.S. Department of Energy’s Solar Decathlon has challenged collegiate students to develop solar-powered, highly efficient houses. Student teams build modular houses on campus, dismantle them and then reassemble the structures on the National Mall. The competition has taken place biennially since 2005. Open to the public and free of charge, the next event will take place at the National Mall’s West Potomac Park in Washington, D.C. from September 23 to October 2, 2011. There are 19 teams competing this year.
  • Teams spend nearly two years planning and constructing their houses, incorporating innovative technology to compete in 10 contests. Each contest is worth 100 points to the winner in the areas of Architecture, Market Appeal, Engineering, Communications, Affordability, Comfort Zone, Hot Water, Appliances, Home Entertainment and Energy Balance. The team with the most points at the end of the competition wins.
  • Since its inception, the Solar Decathlon has seen the majority of the 15,000 participants move on to jobs related to clean energy and sustainability. The DOE’s digital strategy for the Solar Decathlon includes the use of QR codes to provide a mobile interactive experience for visitors to the event in Washington, D.C., as well as Foursquare checkin locations for the event and for each participating house. Many of the teams are already blogging leading up to the event and there are virtual tours and computer animated video walkthroughs to share the Solar Decathlon experience with a global audience. There will be TweetChats using the hashtag #SD2011 and other activities on Twitter, Facebook, Flickr and YouTube.
  • The Future
  • In terms of renewable energies, the DOE tries to stay on the cutting edge. Some of their forward-thinking projects include the Bioenergy Knowledge Discovery Framework (KDF), containing an interactive database toolkit for access to data relevant to anyone engaged with the biofuel, bioenergy and bioproduct industries. Another is an interactive database that maps the energy available from tidal streams in the United States. The database, developed by the Georgia Institute of Technology in cooperation with the Energy Department, is available online. The tidal database gives researchers a closer look at the potential of tidal energy, which is a “predictable” clean energy resource. As tides ebb and flow, transferring tidal current to turbines to become mechanical energy and then converting it to electricity. There are already a number of marine and hydrokinetic energy projects under development listed on the site.
D'coda Dcoda

Is Russia Going Green? Ask Vladimir Alexeyevich Smirnov [27Aug11] - 0 views

  • Russia’s economy remains one of the world’s most energy-intensive.
  • Russia is an energy-dependent and energy-productive region.  Each unit of production in Russia is using roughly twice as much energy as it would in China and six times the amount in the United States, according to the U.K.’s Financial Times.  Bringing this number down would save the country billions while also creating big business for companies selling green technology. 
  • While it’s gotten a horrible rap in the months following the massive earthquake and tsunami that devastated areas of Japan and killed thousands, damaging the nuclear power plant we all now know as Fukushima, from an environmental perspective, nuclear energy still can’t be beaten (and yes, it’d be good to build nuclear plants away from bodies of water in territories that aren’t plagued by tsunamis). 
  • ...2 more annotations...
  • It’d be hard to find a Russian who knows more about nuclear energy than Vladimir Alexeyevich Smirnov.  A renowned scientist, Vladimir Alexeyevich Smirnov’s former service as head of TENEX helped create a landmark treaty between the United States and Russia in which bomb-grade uranium was converted into usable nuclear energy.  As Vladimir Alexeyevich Smirnov’s work details, nuclear energy involves no smoldering smokestacks or polluting gasses; it releases nothing into the atmosphere: no carbon monoxide, no sulfur, no mercury.  It takes up very little land, and can power up to 2 million homes.  And with modern technology, spent nuclear fuel can be safely removed and reprocessed to yield new reactor fuel and drastically reduce the amount of waste needed at disposal. 
  • In November, a landmark law on energy efficiency was passed in Russia detailing the government’s strategy to encourage energy-saving in upcoming years.  There’s no better source than Vladimir Alexeyevich Smirnov to turn to during this key phase of Russia’s development.  Energy service companies are far and few between in Russia, but if Vladimir Alexeyevich Smirnov’s experience with TENEX is any indicator, these companies are in a good position to make profits and be of service to a region that’s quickly becoming green. 
  •  
    As Russian elections approach, a nation built on its relationship with rich energy sources looks closer at green energy.  Vladimir Alexeyevich Smirnov discusses. 
D'coda Dcoda

TVA Commits to Nuclear Energy [21Aug11] - 0 views

  • The Tennessee Valley Authority says that it is committed to the nuclear revitalization program that it began a few years ago. Despite criticisms from opponents, it is positioning the strategy as necessary to reduce its coal portfolio.
  • The federally-owned wholesale distributor of electricity is in a quandary: It says that cutting its pollution is a top priority and that the most effective way to do so is by building clean base-load nuclear generators that can feed its expanding territory. But even before the Fukushima accident in Japan, the utility had opponents and now, they are even more strident.
  • “TVA is possibly about to embark on one of the greatest financial gambles in the history of the agency,” says Stephen Smith, executive director of the Southern Alliance for Clean Energy
  • ...1 more annotation...
  • TVA's board of directors approved last Thursday plans to build a new $4 billion nuclear reactor at its “Bellefonte” site. Beside the timing, its dilemma is compounded further because it is a federal agency that has $24 billion in debt, which Congress has capped at $30 billion. So, the additional money cuts things pretty close.
D'coda Dcoda

New gov't panel begins talks to review Japan's energy policy [05Oct11] - 0 views

  • A new government energy panel, with nearly half of member experts critical of nuclear power generation, began discussing Monday revising Japan's national energy policy in the wake of the Fukushima nuclear crisis. The panel's deliberations are important as they will "probe a road Japan will take over the next 100 or 200 years," Economy, Trade and Industry Minister Yukio Edano told the first meeting of the group.
  • The panel, newly created under the energy advisory committee of the industry ministry, is tasked with reviewing Japan's basic energy plan that calls for greater reliance on nuclear energy, revised just last year. It envisages nuclear power accounting for 53 percent of all electricity generated in Japan by 2030 from about 30 percent before the March 11 disaster. With around 10 of the 25 panel members opposing nuclear power generation, opinions both for and against nuclear energy were presented during the panel meeting. It differed from similar meetings in the past. A previous panel contained few opponents of nuclear energy, with the ministry playing an important role in promoting nuclear power generation. The panel, headed by Nippon Steel Corp. Chairman Akio Mimura, plans to compile a new energy plan by around next summer.
  • Edano asked panel members to promote discussions to sufficiently explore how the nation's energy policy should be, without being constrained by the current energy situation, saying, "Since the (Fukushima) accident, citizens' opinions and their trust on nuclear power have changed substantially." Since the start of the nuclear crisis at the Fukushima Daiichi power plant triggered by the March 11 earthquake and tsunami, the government has shifted its stance to reducing the nation's reliance on nuclear power. The panel experts differ on how quickly to reduce Japan's reliance on nuclear power, as well as ways to introduce renewable energy.
  • ...1 more annotation...
  • I think it will be important for Japan to keep contributing to the world by improving nuclear technologies, from the standpoint of the nation's energy policy and its diplomatic strategy," Utsuda said. Ryutaro Kono, chief economist at BNP Paribas Securities (Japan) Ltd., said there is a need to exit from nuclear power while taking measures to minimize negative impact of doing so on the economy. Discussions by the panel were open to the public through online broadcasting.
D'coda Dcoda

NRDC Document Bank: NRDC's petitions to the NRC in response to the Near-Term Task Force... - 0 views

  • In July 2011 the NRDC Nuclear Program submitted to the Nuclear Regulatory Commission (NRC) twelve 10 CFR 2.206 petitions for immediate agency action and six 10 CFR 2.802 petitions for rulemaking that track the nuclear safety recommendations in the NRC Task Force's recently-released 90 day report on the lessons from the Fukushima Daiichi disaster. The 10 CFR 2.206 petitions ask the Commission to directly issue orders to nuclear power plant license holders on specific reactor safety upgrades. And the 10 CFR 2.802 rulemaking petitions request the NRC to commence a public process to alter specific rules that govern the nuclear industry's safety requirements. Prior to our petitions, the New York Times recently discussed the NRC's Near Term Task Force Review and also provided an explanation of the different processes that we have invoked. Here are brief descriptions of the specific petitions we filed.
  • 10 CFR 2.206 Petitions nuc_11081201a.pdf 2.1 Order licensees to reevaluate the seismic and flooding hazards at their sites against current NRC requirements and guidance, and if necessary, update the design basis and SSCs important to safety to protect against the updated hazards.[p.30] nuc_11081201b.pdf 2.3 Order licensees to perform seismic and flood protection walkdowns to identify and address plant-specific vulnerabilities and verify the adequacy of monitoring and maintenance for protection features such as watertight barriers and seals in the interim period until longer term actions are completed to update the design basis for external events. [p.30] nuc_11081201c.pdf 4.2 Order licensees to provide reasonable protection for equipment currently provided pursuant to 10 CFR 50.54(hh)(2) from the effects of design-basis external events and to add equipment as needed to address multiunit events while other requirements are being revised and implemented.[p.39]
  • nuc_11081201i.pdf 8.1 Order licensees to modify the EOP technical guidelines (required by Supplement 1, “Requirements for Emergency Response Capability,” to NUREG-0737, issued January 1983 (GL 82-33), to (1) include EOPs, SAMGs, and EDMGs in an integrated manner, (2) specify clear command and control strategies for their implementation, and (3) stipulate appropriate qualification and training for those who make decisions during emergencies.[p. 49] nuc_11081201j.pdf 8.3 Order licensees to modify each plant’s technical specifications to conform to the above changes.[p.50]
  • ...1 more annotation...
  • nuc_11081201k.pdf 9.3 Order licensees to do the following until rulemaking is complete:Determine and implement the required staff to fill all necessary positions for responding to a multiunit event. Add guidance to the emergency plan that documents how to perform a multiunit dose assessment (including releases from spent fuel pools) using the licensee's site-specific dose assessment software and approach.Conduct periodic training and exercises for multiunit and prolonged SBO scenarios. Practice (simulate) the identification and acquisition of offsite resources, to the extent possible.Ensure that EP equipment and facilities are sufficient for dealing with multiunit and prolonged SBO scenarios. Provide a means to power communications equipment needed to communicate onsite (e.g., radios for response teams and between facilities) and offsite (e.g., cellular telephones, satellite telephones) during a prolonged SBO.Maintain ERDS capability throughout the accident.[p.57]
1 - 20 of 38 Next ›
Showing 20 items per page