Skip to main content

Home/ Open Intelligence / Energy/ Group items tagged reactors

Rss Feed Group items tagged

D'coda Dcoda

TEPCO doesn't know where melted fuel is at in reactors or actual level of radioactive p... - 0 views

  • Fukushima Reactors Status of Reactors Reactor No. 1 Reactor No. 2 Reactor No. 3 Spent Fuel Pools Spent Fuel Pool No. 1 Spent Fuel Pool No. 2 Spent Fuel Pool No. 3 Spent Fuel Pool No. 4 Common Spent Fuel Pool Radiation Releases Plutonium Uranium Chernobyl Comparisons Criticality Japan Tokyo Area Outside Tokyo U.S. & Canada West Coast California Los Angeles San Francisco Bay Area Hawaii Seattle Canada Midwest East Coast Florida US Nuclear Facilities Pacific Radiation Facts Internal Emitters Health Children Testing Food Water Air Rain Soil Milk Longterm Strange Coverups? Video Home Terms About Contact     Cooling system for reactors and spent fuel pools stopped working three times over 16-day period at Alabama nuke plant » NHK: TEPCO doesn’t know where melted fuel is at in reactors or actual level of radioactive particles still being released — About to start checking July 29th, 2011 at 06:43 AM POSITION: relative; BORDER-BOTTOM-STYLE: none; PADDING-BOTTOM: 0px; BORDER-RIGHT-STYLE: none; MARGIN: 0px; PADDING-LEFT: 0px; WIDTH: 336px; PADDING-RIGHT: 0px; DISPLAY: inline-table; BORDER-TOP-STYLE: none; HEIGHT: 280px; VISIBILITY: visible; BORDER
  • The operator of the Fukushima Daiichi nuclear power plant says it will extract air from troubled reactors at the plant to measure the amount of radioactive substances. [...] The operation is intended to obtain accurate data on what kind of radioactive substances are being released and in what quantity. The air extraction is expected to begin later on Friday for the No.1 reactor and in early August for the No.2 unit. No plans have been decided for the No.3 reactor due to high radiation levels in part of its building.
  • that TEPCO doesn’t know where the melted fuel is or the actual level of radioactive particles still being released: TEPCO hopes the findings may also help the company grasp the extent of leakage of nuclear fuels into the containment vessels. Up to around one billion becquerels of radioactive substances arebelieved to be released every hour from reactors No.1, 2 and 3. It isnot known how accurate this figure is because it was worked out bytaking readings of the air on the plant’s premises.
D'coda Dcoda

Nuclear Expert Discusses 'Melt-Through' at NRC Meeting: I believe melted nuclear core l... - 0 views

  • Fukushima & Japan Tokyo Area Outside Tokyo Fukushima Reactors Status of Reactors Reactor No. 1 Reactor No. 2 Reactor No. 3 Spent Fuel Pools Spent Fuel Pool No. 1 Spent Fuel Pool No. 2 Spent Fuel Pool No. 3 Spent Fuel Pool No. 4 Common Spent Fuel Pool Radiation Releases Plutonium Uranium Longterm Chernobyl Comparisons Criticality US & Canada West Coast California Los Angeles San Francisco Bay Area Hawaii Seattle Canada Midwest East Coast Florida US Nuclear Facilities North Anna (VA) Calvert Cliffs (MD) World Europe France UK Germany Chernobyl Rest of Europe South America Russia Asia China South Korea Taiwan Rest of Asia Pacific Maps & Forecasts Radiation Maps Radiation Forecasts Rad. Facts Internal Emitters Health Testing Food Water Air Rain Soil Milk Strange Coverups? Children Video Home page_
D'coda Dcoda

Clear spike in radiation measured across Japan on September 21 (CHARTS) [27Sep11] - 0 views

  • Fukushima & Japan Tokyo Area Outside Tokyo Fukushima Reactors Status of Reactors Reactor No. 1 Reactor No. 2 Reactor No. 3 Spent Fuel Pools Spent Fuel Pool No. 1 Spent Fuel Pool No. 2 Spent Fuel Pool No. 3 Spent Fuel Pool No. 4 Common Spent Fuel Pool Radiation Releases Plutonium Uranium Longterm Chernobyl Comparisons Criticality US & Canada West Coast California Los Angeles San Francisco Bay Area Hawaii Seattle Canada Midwest East Coast Florida US Nuclear Facilities North Anna (VA) Calvert Cliffs (MD) World Europe France UK Germany Chernobyl Rest of Europe South America Russia Asia China South Korea Taiwan Rest of Asia Pacific Rad. Maps & Forecasts Radiation Maps Radiation Forecasts Rad. Facts Internal Emitters Health Testing Food Water Air Rain Soil Milk Strange Coverups? Children Video Home Log In Discussion Forum page_item
  • See all charts here.
D'coda Dcoda

U.S. nuke regulators weaken safety rules [20Jun11] - 0 views

  • Federal regulators have been working closely with the nuclear power industry to keep the nation's aging reactors operating within safety standards by repeatedly weakening standards or simply failing to enforce them, an investigation by The Associated Press has found.Officials at the U.S. Nuclear Regulatory Commission regularly have decided original regulations were too strict, arguing that safety margins could be eased without peril, according to records and interviews.The result? Rising fears that these accommodations are undermining safety -- and inching the reactors closer to an accident that could harm the public and jeopardize nuclear power's future.
  • Examples abound. When valves leaked, more leakage was allowed -- up to 20 times the original limit. When cracking caused radioactive leaks in steam generator tubing, an easier test was devised so plants could meet standards.Failed cables. Busted seals. Broken nozzles, clogged screens, cracked concrete, dented containers, corroded metals and rusty underground pipes and thousands of other problems linked to aging were uncovered in AP's yearlong investigation. And many of them could escalate dangers during an accident.
  • Despite the problems, not a single official body in government or industry has studied the overall frequency and potential impact on safety of such breakdowns in recent years, even as the NRC has extended dozens of reactor licenses.Industry and government officials defend their actions and insist no chances are being taken. But the AP investigation found that with billions of dollars and 19 percent of America's electricity supply at stake, a cozy relationship prevails between industry and the NRC.Records show a recurring pattern: Reactor parts or systems fall out of compliance. Studies are conducted by industry and government, and all agree existing standards are "unnecessarily conservative."
  • ...14 more annotations...
  • Regulations are loosened, and reactors are back in compliance."That's what they say for everything ...," said Demetrios Basdekas, a retired NRC engineer. "Every time you turn around, they say, 'We have all this built-in conservatism.' "The crisis at the decades-old Fukushima Dai-ichi nuclear facility in Japan has focused attention on nuclear safety and prompted the NRC to look at U.S. reactors. A report is due in July.But the factor of aging goes far beyond issues posed by Fukushima.
  • Commercial nuclear reactors in the United States were designed and licensed for 40 years. When the first were built in the 1960s and 1970s, it was expected that they would be replaced with improved models long before their licenses expired.That never happened. The 1979 accident at Three Mile Island, massive cost overruns, crushing debt and high interest rates halted new construction in the 1980s.Instead, 66 of the 104 operating units have been relicensed for 20 more years. Renewal applications are under review for 16 other reactors.As of today, 82 reactors are more than 25 years old.The AP found proof that aging reactors have been allowed to run less safely to prolong operations.
  • Last year, the NRC weakened the safety margin for acceptable radiation damage to reactor vessels -- for a second time. The standard is based on a reactor vessel's "reference temperature," which predicts when it will become dangerously brittle and vulnerable to failure. Through the years, many plants have violated or come close to violating the standard.As a result, the minimum standard was relaxed first by raising the reference temperature 50 percent, and then 78 percent above the original -- even though a broken vessel could spill radioactive contents."We've seen the pattern," said nuclear safety scientist Dana Powers, who works for Sandia National Laboratories and also sits on an NRC advisory committee. "They're ... trying to get more and more out of these plants."
  • Sharpening the pencilThe AP study collected and analyzed government and industry documents -- some never-before released -- of both reactor types: pressurized water units that keep radioactivity confined to the reactor building and the less common boiling water types like those at Fukushima, which send radioactive water away from the reactor to drive electricity-generating turbines.The Energy Northwest Columbia Generating Station north of Richland is a boiling water design that's a newer generation than the Fukushima plants.Tens of thousands of pages of studies, test results, inspection reports and policy statements filed during four decades were reviewed. Interviews were conducted with scores of managers, regulators, engineers, scientists, whistleblowers, activists and residents living near the reactors at 65 sites, mostly in the East and Midwest.
  • AP reporters toured some of the oldest reactors -- Oyster Creek, N.J., near the Atlantic coast 50 miles east of Philadelphia and two at Indian Point, 25 miles north of New York City on the Hudson River.Called "Oyster Creak" by some critics, this boiling water reactor began running in 1969 and is the country's oldest operating commercial nuclear power plant. Its license was extended in 2009 until 2029, though utility officials announced in December they will shut the reactor 10 years earlier rather than build state-ordered cooling towers. Applications to extend the lives of pressurized water units 2 and 3 at Indian Point, each more than 36 years old, are under NRC review.Unprompted, several nuclear engineers and former regulators used nearly identical terminology to describe how industry and government research has frequently justified loosening safety standards. They call it "sharpening the pencil" or "pencil engineering" -- fudging calculations and assumptions to keep aging plants in compliance.
  • Cracked tubing: The industry has long known of cracking in steel alloy tubing used in the steam generators of pressurized water reactors. Ruptures have been common in these tubes containing radioactive coolant; in 1993 alone, there were seven. As many as 18 reactors still run on old generators.Problems can arise even in a newer metal alloy, according to a report of a 2008 industry-government workshop.
  • Neil Wilmshurst, director of plant technology for the industry's Electric Power Research Institute, acknowledged the industry and NRC often collaborate on research that supports rule changes. But he maintained there's "no kind of misplaced alliance ... to get the right answer."Yet agency staff, plant operators and consultants paint a different picture:* The AP reviewed 226 preliminary notifications -- alerts on emerging safety problems -- NRC has issued since 2005. Wear and tear in the form of clogged lines, cracked parts, leaky seals, rust and other deterioration contributed to at least 26 of the alerts. Other notifications lack detail, but aging was a probable factor in 113 more, or 62 percent in all. For example, the 39-year-old Palisades reactor in Michigan shut Jan. 22 when an electrical cable failed, a fuse blew and a valve stuck shut, expelling steam with low levels of radioactive tritium into the outside air. And a 1-inch crack in a valve weld aborted a restart in February at the LaSalle site west of Chicago.
  • * A 2008 NRC report blamed 70 percent of potentially serious safety problems on "degraded conditions" such as cracked nozzles, loose paint, electrical problems or offline cooling components.* Confronted with worn parts, the industry has repeatedly requested -- and regulators often have allowed -- inspections and repairs to be delayed for months until scheduled refueling outages. Again and again, problems worsened before being fixed. Postponed inspections inside a steam generator at Indian Point allowed tubing to burst, leading to a radioactive release in 2000. Two years later, cracking grew so bad in nozzles on the reactor vessel at the Davis-Besse plant near Toledo, Ohio, that it came within two months of a possible breach, an NRC report said, which could release radiation. Yet inspections failed to catch the same problem on the replacement vessel head until more nozzles were found to be cracked last year.
  • Time crumbles thingsNuclear plants are fundamentally no more immune to aging than our cars or homes: Metals grow weak and rusty, concrete crumbles, paint peels, crud accumulates. Big components like 17-story-tall concrete containment buildings or 800-ton reactor vessels are all but impossible to replace. Smaller parts and systems can be swapped but still pose risks as a result of weak maintenance and lax regulation or hard-to-predict failures.Even mundane deterioration can carry harsh consequences.For example, peeling paint and debris can be swept toward pumps that circulate cooling water in a reactor accident. A properly functioning containment building is needed to create air pressure that helps clear those pumps. But a containment building could fail in a severe accident. Yet the NRC has allowed safety calculations that assume the buildings will hold.
  • In a 2009 letter, Mario V. Bonaca, then-chairman of the NRC's Advisory Committee on Reactor Safeguards, warned that this approach represents "a decrease in the safety margin" and makes a fuel-melting accident more likely.Many photos in NRC archives -- some released in response to AP requests under the federal Freedom of Information Act -- show rust accumulated in a thick crust or paint peeling in long sheets on untended equipment.Four areas stand out:
  • Brittle vessels: For years, operators have rearranged fuel rods to limit gradual radiation damage to the steel vessels protecting the core and keep them strong enough to meet safety standards.But even with last year's weakening of the safety margins, engineers and metal scientists say some plants may be forced to close over these concerns before their licenses run out -- unless, of course, new regulatory compromises are made.
  • Leaky valves: Operators have repeatedly violated leakage standards for valves designed to bottle up radioactive steam in an earthquake or other accident at boiling water reactors.Many plants have found they could not adhere to the general standard allowing main steam isolation valves to leak at a rate of no more than 11.5 cubic feet per hour. In 1999, the NRC decided to allow individual plants to seek amendments of up to 200 cubic feet per hour for all four steam valves combined.But plants have violated even those higher limits. For example, in 2007, Hatch Unit 2, in Baxley, Ga., reported combined leakage of 574 cubic feet per hour.
  • "Many utilities are doing that sort of thing," said engineer Richard T. Lahey Jr., who used to design nuclear safety systems for General Electric Co., which makes boiling water reactors. "I think we need nuclear power, but we can't compromise on safety. I think the vulnerability is on these older plants."Added Paul Blanch, an engineer who left the industry over safety issues, but later returned to work on solving them: "It's a philosophical position that (federal regulators) take that's driven by the industry and by the economics: What do we need to do to let those plants continue to operate?"Publicly, industry and government say that aging is well under control. "I see an effort on the part of this agency to always make sure that we're doing the right things for safety. I'm not sure that I see a pattern of staff simply doing things because there's an interest to reduce requirements -- that's certainly not the case," NRC chairman Gregory Jaczko said in an interview.
  • Corroded piping: Nuclear operators have failed to stop an epidemic of leaks in pipes and other underground equipment in damp settings. Nuclear sites have suffered more than 400 accidental radioactive leaks, the activist Union of Concerned Scientists reported in September.Plant operators have been drilling monitoring wells and patching buried piping and other equipment for several years to control an escalating outbreak.But there have been failures. Between 2000 and 2009, the annual number of leaks from underground piping shot up fivefold, according to an internal industry document.
D'coda Dcoda

Experts split on how to decommission Fukushima nuclear plant [29Aug11] - 0 views

  • What is actually going to take place at the Fukushima No. 1 Nuclear Power Plant, where word is that the four reactors that were crippled in the Great East Japan Earthquake and tsunami will eventually be decommissioned? The Ministry of Economy, Trade and Industry's Nuclear and Industrial Safety Agency (NISA) defines "decommissioning" as the process of removing spent fuel from reactors and dismantling all facilities. Ultimately, the site of a decommissioned reactor is meant to be reverted into a vacant lot.
  • In 1996, the then Japan Atomic Energy Research Institute (JAERI) -- now the Japan Atomic Energy Agency (JAEA) -- finished decommissioning its Japan Power Demonstration Reactor. The decommissioning process of the Tokai Nuclear Power Plant in the Ibaraki Prefecture village of Tokai began in 1998 and is set to end in fiscal 2020, while the No. 1 and No. 2 nuclear reactors at the Hamaoka Nuclear Power Plant in the Shizuoka Prefecture city of Omaezaki are slated for decommissioning by fiscal 2036. Around the world, only around 15 nuclear reactors have thus far been dismantled.
  • The standard decommissioning process entails six major steps: 1. Remove spent fuel rods, 2. Remove radioactive materials that have become affixed to reactor pipes and containers, 3. Wait for radiation levels to go down with time, 4. Dismantle reactors and other internal vessels and pipes, 5. Dismantle the reactor buildings, and 6. Make the site into a vacant lot.
  • ...17 more annotations...
  • "Cleaning," "waiting," and "dismantling" are the three key actions in this process. Needless to say, this all needs to be done while simultaneously containing radioactive materials.
  • In the case of the Tokai Nuclear Power Plant, the first commercial plant to undergo decommissioning, spent fuel was removed over a span of three years beginning in 1998, and was transported to Britain for reprocessing. Dismantling of the facilities began in 2001, with current efforts being made toward the dismantling of heat exchangers; workers have not yet begun to take the reactor itself apart. The entire process is expected to be an 88.5-billion-yen project involving 563,000 people.
  • Hitachi Ltd., which manufactures nuclear reactors, says that it "generally takes about 30 years" to decommission a reactor. The Hamaoka Nuclear Power Plant's No. 1 and No. 2 reactors operated by Chubu Electric Power Co. are also expected to take about 30 years before they are decommissioned.
  • In the case of the Fukushima No. 1 Nuclear Power Plant, meanwhile, the biggest challenge lies in how to remove the fuel, says Tadashi Inoue, a research advisor at the Central Research Institute of Electric Power Industry (CRIEPI), a foundation that conducts research on energy and environmental issues in relation to the electrical power industry.
  • "we must deal with rubble contaminated with radioactive materials that were scattered in the hydrogen blasts and treat the radiation-tainted water being used to cool nuclear fuel before we can go on to fuel removal."
  • Currently, the Fukushima plant's operator, Tokyo Electric Power Co. (TEPCO), is desperately trying to treat the contaminated water. Huge challenges remain with regards to the contaminated rubble, as radiation levels of over 10 sieverts per hour were found near outdoor pipes on the plant grounds just the other day. Exposure to such high levels would mean death for most people.
  • Each step in the process toward decommissioning is complicated and requires great numbers of people. It's a race against time because the maximum amount of radiation that workers can be exposed to is 250 millisieverts.
  • The breached reactor core is a bigger problem. It is believed that raising water levels inside the reactor has been difficult because of a hole in the bottom of the vessel. It will be necessary to plug the hole, and continue filling the vessel with water while extracting the melted fuel. How to fill the vessel with water is still being debated. If the reactor can be filled with water, steps taken after the 1979 Three Mile Island nuclear accident can serve as a guide because in that case, in which approximately 50 percent of the core had melted, workers were able to fill the reactor with water and remove the fuel within.
  • Two types of fuel removal must take place. One is to take out the spent fuel in the containment pools, and the other is to remove the melted fuel from the reactor cores. Because the radiation levels of the water in the spent fuel pools have not shown any significant changes from before the crisis, it is believed that the spent fuel has not suffered much damage. However, removing it will require repairing and reinstalling cranes to hoist the fuel rods out.
  • Prefacing the following as "a personal opinion," Inoue says: "Building a car that can protect the people inside as much as possible from radioactive materials, and attaching an industrial robotic arm to the car that can be manipulated by those people could be one way to go about it."
  • Inoue predicts that removal of spent fuel from the containment pools will begin about five years after the crisis, and about 10 years in the case of melted fuel from the reactor core. Work on the four reactors at the Fukushima plant will probably take several years.
  • "Unless we look at the actual reactors and take and analyze fuel samples, we can't know for sure," Inoue adds. Plus, even if workers succeed in removing the fuel, reprocessing it is an even more difficult task. A review of processing methods and storage sites, moreover, has yet to take place.
  • Meanwhile, at least one expert says he doesn't believe that workers will be able to remove the melted fuel from the crippled plant.
  • "If there's 10 sieverts per hour of radiation outside, then the levels must be much higher closer to the reactor core," says Tadahiro Katsuta, an associate professor at Meiji University and an expert in reactor engineering and reactor policy who was once a member of an anti-nuclear non-profit organization called Citizens' Nuclear Information Center (CNIC). "The fuel has melted, and we haven't been able to cool it consistently. If work is begun five or 10 years from now when radiation levels have not yet sufficiently gone down, workers' health could be at serious risk."
  • Katsuta predicts that it will probably take at least 10 years just to determine whether it is possible to remove the fuel. He adds that it could very well take 50 years before the task of dismantling the reactor and other facilities is completed.
  • What Katsuta has in mind is a Chernobyl-style concrete sarcophagus, which would entail cloaking the melted tomb with massive amounts of concrete. "How could we simultaneously dismantle four reactors that have been contaminated to the extent that they have by radioactive materials?" asks Katsuta. "Japan has little experience in decommissioning reactors, and this case is quite different from standard decommissioning processes. It's not realistic to think we can revert the site back to a vacant lot. I think we should be considering options such as entombing the site with concrete or setting up a protective dome over the damaged reactor buildings
  • what we face is a great unknown to all of mankind.
D'coda Dcoda

Opinion: Small modular nuclear reactors should power U.S. energy strategy [16Oct11] - 0 views

  • Sen. Dianne Feinstein (D-Calif.) was on her high horse, and the California Democrat wasn’t going to pass up an opportunity to disparage nuclear power. As head of a Senate panel that controls spending on energy technology, Sen. Feinstein zeroed in on a new program that would design small modular reactors over the next five years, striking it from the Department of Energy (DOE) budget for the coming fiscal year. Yet it happens to be precisely the sort of “Made in America” program with great commercial potential that President Obama called for in his jobs speech.
  • Feinstein prefers renewable energy sources, favoring government financial support for solar energy. Never mind that Solyndra Inc., a California-based maker of solar panels that received a $535 million U.S. loan guarantee, recently went bankrupt, along with two other solar firms. By contrast, small modular reactors are affordable and practical. They could be built in U.S. factories for a fraction of the cost of a large nuclear plant and exported for use in generating electricity around the world. In fact, small reactors have been used successfully for more than a half-century to power the U.S. Navy’s nuclear submarines. And the U.S. Army used small reactors during the 1950s and 1960s to provide electricity at remote military installations in Wyoming, Alaska, Greenland, Antarctica and other locations.
  • Several other countries with nuclear programs see great commercial potential in modular reactors; France, China, Japan and Korea are developing simplified, cheaper designs for a global market. “Our choice is clear: Develop these technologies today or import them tomorrow,” Energy Secretary Steven Chu said recently.
  • ...5 more annotations...
  • To jump-start construction of modular reactors, the administration proposed a cost-sharing program of $500 million over five years to help two companies develop designs and obtain Nuclear Regulatory Commission licenses. The DOE funds would be equally matched with industry money. There are those who maintain the government should not be involved in energy development, and that it should be left to the marketplace to determine which technologies emerge in America’s energy future. That’s an understandable sentiment, given the Solyndra scandal. But nuclear power, which has enabled the nation to meet its energy needs for more than a half-century without polluting the air or depending on the whims of foreign rulers, got its start with government financial backing. The first nuclear plants were built with government funds.
  • Like conventional nuclear plants, small modular reactors could produce electricity around the clock, day in and day out, without being subject to weather conditions. But what’s especially appealing about small reactors is their affordability. Instead of having to pay the capital cost of a new nuclear plant, which can run $8 billion or more, a utility would have the option of ordering small modular reactors for construction in a series, as funds become available and the need for electricity arises. The Tennessee Valley Authority recently signed a letter of intent to buy six small modular reactors using conventional light–water reactor technology, each with the capacity to produce 125 megawatts of electricity, from Babcock & Wilcox, a Virginia-based nuclear manufacturer. A small reactor is expected to take three years to build instead of five years or more for a conventional 1,200-megawatt nuclear plant. Experts say that a prototype reactor would cost about $500 million.
  • Small modular reactors — known as SMRs — would be shipped from a factory by rail or truck to a nuclear site and situated side-by-side. They would be hooked to the same electric-power grid but operate independently of one another. One module could be taken off line for refueling and maintenance while the others produce electricity. At some locations, modular reactors could be situated beneath the ground for security. What’s more, SMRs are air-cooled. They don’t have to be located on the oceanfront or near lakes and rivers, an important feature in large parts of the world where water resources are scarce.
  • The question is whether, in the face of opposition from Sen. Feinstein and some other members, Congress will make funds available for developing SMRs. At least 10 U.S. nuclear companies have done preliminary design work. They include such well-known names as Westinghouse, General Electric, General Atomics and Babcock & Wilcox. And a number of start-up companies are part of the competition. “SMRs could change the game and restore U.S. leadership in nuclear power,” said Vic Reis, a senior adviser in the Department of Energy’s Office of Science. “Nuclear power is essential to the administration’s commitment to clean energy.”
  • But if our reactor designs are going to be competitive in the global marketplace, it is essential that American companies be able to compete on a level playing field. Foreign reactor manufacturers have the backing of their governments in the form of subsidies and grants. Our companies, on the other hand, are cut off from government support. Congress can and must make this a turnaround decade in building a more affordable modular reactor for electricity generation. A factory-built small reactor should be the cornerstone of our government’s energy strategy.
D'coda Dcoda

Senate Appropriators on Nuclear Energy [16Sep11] - 0 views

shared by D'coda Dcoda on 09 Oct 11 - No Cached
  • The Senate Energy and Water Development Appropriations Subcommittee included extensive language in their FY 2012 committee report about nuclear energy.  They wrote of being “extremely concerned that the United States continues to accumulate spent fuel from nuclear reactors without a comprehensive plan to collect the fuel or dispose of it safely, and as a result faces a $15,400,000,000 liability by 2020,” called for the development of “consolidated regional storage facilities,” and mandated research on dry cask storage, advanced fuel cycle options, and disposal in geological media.  The appropriators provided no funding for the Next Generation Nuclear Plant program or Light Water Reactor Small Modular Reactor Licensing Technical Support.  In a separate section, they direct the Nuclear Regulatory Commission to contract with the National Academy of Sciences for a study on the lessons learned from the Fukushima nuclear disaster, and discuss beyond design-basis events and mitigating impacts of earthquakes. Language from the committee report 112-75 follows, with page number references to the pdf version of this document.
  • Nuclear Energy The FY 2011 appropriation was $732.1 million The FY 2012 administration request was $754.0 million The FY 2012 House-passed bill provides $733.6 million, an increase of $1.5 million or 0.2 percent from the current budget. The Senate Appropriations Committee bill provides $583.8 million, a decline of $148.3 million or 20.3 percent.
  • (Page 80) “The events at the Fukushima-Daiichi facilities in Japan have resulted in a reexamination of our Nation’s policies regarding the safety of commercial reactors and the storage of spent nuclear fuel.  These efforts have been supported by appropriations in this bill, and the Committee provides funding for continuation and expansion of these activities.
  • ...9 more annotations...
  • “While the Nuclear Regulatory Commission has found that spent nuclear fuel can be stored safely for at least 60 years in wet or dry cask storage beyond the licensed life of the reactor, the Committee has significant questions on this matter and is extremely concerned that the United States continues to accumulate spent fuel from nuclear reactors without a comprehensive plan to collect the fuel or dispose of it safely, and as a result faces a $15,400,000,000 liability by 2020. The Committee approved funding in prior years for the Blue Ribbon Commission on America’s Nuclear Future [BRC], which was charged with examining our Nation’s policies for managing the back end of the nuclear fuel cycle and recommending a new plan. The BRC issued a draft report in July 2011 with recommendations, which is expected to be finalized in January 2012. The Committee directs prior existing funding, contingent on the renewal of its charter, to the BRC to develop a comprehensive revision to Federal statutes based on its recommendations, to submit to Congress for its consideration.
  • “The Committee directs the Department to develop and prepare to implement a strategy for the management of spent nuclear fuel and other nuclear waste within 3 months of publication of the final report of the Blue Ribbon Commission on America’s Nuclear Future.  The strategy shall reduce long-term Federal liability associated with the Department’s failure to pick up spent fuel from commercial nuclear reactors, and it should propose to store waste in a safe and responsible manner. The Committee notes that a sound Federal strategy will likely require one or more consolidated storage facilities with adequate capacity to be sited, licensed, and constructed in multiple regions, independent of the schedule for opening a repository. The Committee directs that the Department’s strategy include a plan to develop consolidated regional storage facilities in cooperation with host communities, as necessary, and propose any amendments to Federal statute necessary to implement the strategy.
  • “Although successfully disposing of spent nuclear fuel permanently is a long-term effort and will require statutory changes, the Committee supports taking near- and mid-term steps that can begin without new legislation and which provide value regardless of the ultimate policy the United States adopts. The Committee therefore includes funding for several of these steps in the Nuclear Energy Research and Development account, including the assessment of dry casks to establish a scientific basis for licensing; continued work on advanced fuel cycle options; research to assess disposal in different geological media; and the development of enhanced fuels and materials that are more resistant to damage in reactors or spent fuel pools.
  • “The Committee has provided more than $500,000,000 in prior years toward the Next Generation Nuclear Plant [NGNP] program.  Although the program has experienced some successes, particularly in the advanced research and development of TRISO [tristructural-isotropic] fuel, the Committee is frustrated with the lack of progress and failure to resolve the upfront cost-share issue to allocate the risk between industry and the Federal Government. Although the Committee has provided sufficient time for these issues to be resolved, the program has stalled. Recognizing funding constraints, the Committee cannot support continuing the program in its current form. The Committee provides no funding to continue the existing NGNP program, but rather allows the Department to continue high-value, priority research and development activities for high-temperature reactors, in cooperation with industry, that were included in the NGNP program.”
  • The report also contains extensive language regarding Nuclear Energy Research and Development: “Use of Prior Existing Balances. - If the Secretary renews the charter of the Blue Ribbon Commission, the Department is directed to use $2,500,000 of prior existing balances appropriated to the Office of Civilian Radioactive Waste Management to develop a comprehensive revision to Federal statutes based on its recommendations.  The recommendation should be provided to Congress not later than March 30, 2012 for consideration.
  • “Nuclear Energy Enabling Technologies. - The Committee recommends $68,880,000 for Nuclear Energy Enabling Technologies, including $24,300,000 for the Energy Innovation Hub for Modeling and Simulation, $14,580,000 for the National Science User Facility at Idaho National Laboratory, and $30,000,000 for Crosscutting research.  The Committee does not recommend any funding for Transformative research. The Committee recommends that the Department focus the Energy Innovation Hub on the aspects of its mission that improve nuclear powerplant safety.
  • Light Water Reactor Small Modular Reactor Licensing Technical Support. - The Committee provides no funding for Light Water Reactor Small Modular Reactor Licensing Technical Support. “Reactor Concepts Research, Development, and Demonstration. - The Committee provides $31,870,000 for Reactor Concepts Research, Development and Demonstration. Of this funding, $21,870,000 is for Advanced Reactor Concepts activities. The Committee does not include funding for the Next Generation Nuclear Plant Demonstration project. The Department may, within available funding, continue high-value, priority research and development activities for high-temperature reactor concepts, in cooperation with industry, that were conducted as part of the NGNP program.  The remaining funds, $10,000,000, are for research and development of the current fleet of operating reactors to determine how long they can safely operate.
  • “Fuel Cycle Research and Development. - The Committee recommends $187,917,000 for Fuel Cycle Research and Development.  Within available funds, the Committee provides $10,000,000 for the Department to expand the existing modeling and simulation capabilities at the national laboratories to assess issues related to the aging and safety of storing spent nuclear fuel in fuel pools and dry storage casks. The Committee includes $60,000,000 for Used Nuclear Fuel Disposition, and directs the Department to focus research and development activities on the following priorities: $10,000,000 for development and licensing of standardized transportation, aging, and disposition canisters and casks; $3,000,000 for development of models for potential partnerships to manage spent nuclear fuel and high level waste; and $7,000,000 for characterization of potential geologic repository media.
  • “The Committee provides funding for evaluation of standardized transportation, aging and disposition cask and canister design, cost, and safety characteristics, in order to enable the Department to determine those that should be used if the Federal Government begins transporting fuel from reactor sites, as it is legally obligated to do, and consolidating fuel. The Committee notes that the Blue Ribbon Commission on America’s Nuclear Future has, in its draft report, recommended the creation of consolidated interim storage facilities, for which the Federal Government will need casks and canisters to transport and store spent fuel.
  •  
    too long to highlight all of it so see the rest on the site
D'coda Dcoda

Japan's Kansai Elec first to submit reactor test result [28Oct11] - 0 views

  • Move is first step in long process before its restart* No reactors taken offline have been restarted since Fukushima crisis (Adds comment in paragraph 18-19)
  • Japan's Kansai Electric Power Co became the first utility to submit the result of a first-stage stress test on one of its nuclear reactors, the initial step in rebuilding public faith in atomic energy.No reactors taken offline for routine maintenance have been restarted since a massive earthquake and tsunami in March triggered reactor meltdowns and the world's worst radioactive material leakage in 25 years at Tokyo Electric Power Co's Fukushima Daiichi station in the northeast.Japan's government, urged by industry, would like to get some reactors running again to support the ailing economy and minimise the risk of a power crunch this winter. It is reviewing its energy policy, including the role of nuclear power and guidelines on its safety.
  • Several other nuclear operators are also preparing to report on stress tests, with Shikoku Electric Power Co , another highly nuclear reliant utility in the west, seen among the next candidates to do so.Kansai Electric, the country's second-biggest utility, this morning submitted to the trade ministry's Nuclear and Industrial Safety Agency (NISA) the results of stress tests on the No.3 reactor at its Ohi plant in Fukui prefecture.The Osaka-based utility, which serves the flagship factories of big electronics firms including Panasonic Corp and Sharp Corp , has said meeting winter power demand would be tough without the restart of the 1,180 megawatt unit.
  • ...5 more annotations...
  • But submission of the report is only the beginning of a long process before reactors can actually restart.Trade Minister Yukio Edano said on Friday it would take several months before Kansai can restart the unit.The stress tests evaluate each reactor's resilience against four severe events -- earthquake, tsunami, station blackout and loss of water for cooling -- and a reactor operator's management of multiple steps to protect reactors.
  • If there is any doubt on the basis of a reactor's safety assumptions, such as estimated standard earthquake ground motion, that should be discussed before giving approval to its stress test, said Tomoya Ichimura, director of NISA's safety regulatory standard division.The checks by NISA on each utility's assessments on a reactor would be followed by approval by the Nuclear Safety Commission of Japan, an independent entity which monitors relevant agencies including NISA.NISA will take into account test results for EU rectors, which are undergoing similar stress tests, with results due this month. It also plans to seek advice on the regulation process from the U.N. International Atomic Energy Agency.
  • Approval would then be needed from the prime minister and relevant ministers, as well as local governments."It is impossible to gauge mathematically the level of confidence (over the reactor restart) by local communities and our people. We, politicians, are responsible to make the judgement," Edano said.How to ensure safety for the first reactor to restart in the post-Fukushima era is being carefully watched at home and from abroad.
  • "Greenpeace is extremely concerned that this government is going to push through the restart of reactors without having learned the key lessons from what really went wrong in terms of organisation and crisis management during the Fukushima crisis," the international environmental group said in a statement after Kansai's stress test submission.An investigation is under way by government-appointed experts into the causes of the Fukushima incident, but it could take years to complete.Setsuko Kuroda, a woman from Koriyama city in Fukushima prefecture and one of dozens of those who protested against atomic power in front of the trade ministry on Friday, said restarting reactors while the Fukushima crisis continues is out of the question.
  • Why are they even saying this when the situation (at Fukushima) is still under such condition? Is the economy more important or are lives more important?" she questioned.Only 10 of Japan's 54 commercial reactors are currently online, as the Fukushima crisis and subsequent scandals have left communities reluctant to allow restarts.Then Prime Minister Naoto Kan in July introduced the stress tests as preconditions before idled reactors restart.First-stage tests are on idled reactors which are ready to restart and second-stage tests apply to all reactors. (Additional reporting by Osamu Tsukimori, Yuko Inoue and Yoko Kubota; Editing by Michael Urquhart)
D'coda Dcoda

Some countries make progress on nuclear energy despite Fukushima fears [25Sep11] - 0 views

  • Germany’s decision to close its reactors rejected as unrealistic
  • Since the March 11 earthquake and tsunami hit the six TEPCO reactors at Fukushima Japan, anti-nuclear groups have been on a roll.  Germany’s panic attack which will result in closing 17 reactors accounting for a quarter of its electricity is widely touted as a bellwether example for other countries.   The goal of post-industrial visionaries is to get the mainstream media and the public to accept a scenario of the inevitable end to the use of nuclear energy in as many places as possible. But is this trend really taking place?  Recent developments indicate it is not.  Here are some examples.
  • China to lift ban on new projects By early 2012 China will resume approving the start of new nuclear energy projects following completion of a national nuclear safety plan.  According to wire services, the China Securities Journal is reporting that in August the government completed the inspection of its existing fleet of nuclear reactors which provide about 11 Gwe of power.  It said that plants under construction, including four from Westinghouse and two from Areva, were also part of the review.  In an unexpected move, the Journal said the government would offer greater transparency on nuclear safety issues by making the results of the safety reviews available for public inspection.
  • ...5 more annotations...
  • Czech Industry & Trade Minister Martin Kocourek (right) told the Bloomberg wire service  September 8 the country will not give in to anti-nuclear influences from Austria or Germany. “Czech doesn’t need ideology.  What it needs is a rational update of its energy strategy.  The current ideology-driven policies of some countries is one thing; our reality is another.” If state-owned Czech utility CEZ builds all five reactors, worth about $28 billion, it will export electricity to Germany and Poland.  CEZ is expected to release documents related to the bid process next month.  The bidders are Areva, Westinghouse, and Rosatom.  An award for the first two new reactors to be built at Temelin is expected in 2013.
  • Czech utility CEZ plans Europe’s largest reactor complexes The Czech government is planning a significant expansion of nuclear energy now that Germany has moved to shutter its 17 reactors by 2020.  A national energy strategy would call for building two or more new reactors at Temelin and three more at Dukovany. The two sites house a total of six existing reactors and grid infrastructure. 
  • On September 15 CEZ named Daniel Benes, 41, as its new CEO with a mandate to execute a national energy strategy that includes building new nuclear reactors.  On September 20 Benes told financial wire services it will be his top priority linked to the goal of energy security for the Czech Republic.
  • On September 23 Czech President Vaclav Klaus (left) spoke at the United Nations in support of nuclear energy.  According to English language Czech news media, Klaus said: . . . “We consider what happened in Fukushima did not by any means question the arguments for nuclear energy.  These arguments are strong, economically rational and convincing.” He called Germany’s decision to close its reactors an “irrational populist event.”  In a parallel statement trade minister Kocourek said that CEZ would not expand renewable energy sources beyond 13% because it is unrealistic to expect to run a modern country on them.  He added CEZ “has big doubts” about biomass.
  • South Korea to invest in Romanian nuclear plant A South Korean nuclear energy consortium may invest in a project to build a third and a fourth reactor at Cernovoda in southeast Romania. The consortium replaces an investor group which pulled out of the project earlier this year.  The project manager for the new reactors is EnergoNuclear.  Right now Romania’s state owned electric utility holds an 85% share in the project and Italy’s ENEL holds another 9%. If the deal goes through, the South Korean group could take up to a 45 % stake in the project which is estimated to cost $5.7 billion.  Romania has two CANDU reactors at the site near the country’s Black Sea coast.  South Korea has experience with the CANDU design so it is plausible it may reference it in a proposal to build the next two units. This would be a huge win for AECL which recently was split up with its reactor division sold off for peanuts to SNC Lavalin.  AECL has marketed itself in eastern Europe hoping for this kind of development.
D'coda Dcoda

The nuclear power plans that have survived Fukushima [28Sep11] - 0 views

  • SciDev.Net reporters from around the world tell us which countries are set on developing nuclear energy despite the Fukushima accident. The quest for energy independence, rising power needs and a desire for political weight all mean that few developing countries with nuclear ambitions have abandoned them in the light of the Fukushima accident. Jordan's planned nuclear plant is part of a strategy to deal with acute water and energy shortages.
  • The Jordan Atomic Energy Commission (JAEC) wants Jordan to get 60 per cent of its energy from nuclear by 2035. Currently, obtaining energy from neighbouring Arab countries costs Jordan about a fifth of its gross domestic product. The country is also one of the world's most water-poor nations. Jordan plans to desalinate sea water from the Gulf of Aqaba to the south, then pump it to population centres in Amman, Irbid, and Zarqa, using its nuclear-derived energy. After the Fukushima disaster, Jordan started re-evaluating safety procedures for its nuclear reactor, scheduled to begin construction in 2013. The country also considered more safety procedures for construction and in ongoing geological and environmental investigations.
  • The government would not reverse its decision to build nuclear reactors in Jordan because of the Fukushima disaster," says Abdel-Halim Wreikat, vice Chairman of the JAEC. "Our plant type is a third-generation pressurised water reactor, and it is safer than the Fukushima boiling water reactor." Wreikat argues that "the nuclear option for Jordan at the moment is better than renewable energy options such as solar and wind, as they are still of high cost." But some Jordanian researchers disagree. "The cost of electricity generated from solar plants comes down each year by about five per cent, while the cost of producing electricity from nuclear power is rising year after year," says Ahmed Al-Salaymeh, director of the Energy Centre at the University of Jordan. He called for more economic feasibility studies of the nuclear option.
  • ...20 more annotations...
  • And Ahmad Al-Malabeh, a professor in the Earth and Environmental Sciences department of Hashemite University, adds: "Jordan is rich not only in solar and wind resources, but also in oil shale rock, from which we can extract oil that can cover Jordan's energy needs in the coming years, starting between 2016 and 2017 ... this could give us more time to have more economically feasible renewable energy."
  • Finance, rather than Fukushima, may delay South Africa's nuclear plans, which were approved just five days after the Japanese disaster. South Africa remains resolute in its plans to build six new nuclear reactors by 2030. Katse Maphoto, the director of Nuclear Safety, Liabilities and Emergency Management at the Department of Energy, says that the government conducted a safety review of its two nuclear reactors in Cape Town, following the Fukushima event.
  • Vietnam's nuclear energy targets remain ambitious despite scientists' warning of a tsunami risk. Vietnam's plan to power 10 per cent of its electricity grid with nuclear energy within 20 years is the most ambitious nuclear energy plan in South-East Asia. The country's first nuclear plant, Ninh Thuan, is to be built with support from a state-owned Russian energy company and completed by 2020. Le Huy Minh, director of the Earthquake and Tsunami Warning Centre at Vietnam's Institute of Geophysics, has warned that Vietnam's coast would be affected by tsunamis in the adjacent South China Sea.
  • Larkin says nuclear energy is the only alternative to coal for generating adequate electricity. "What other alternative do we have? Renewables are barely going to do anything," he said. He argues that nuclear is capable of supplying 85 per cent of the base load, or constantly needed, power supply, while solar energy can only produce between 17 and 25 per cent. But, despite government confidence, Larkin says that a shortage of money may delay the country's nuclear plans.
  • The government has said yes but hasn't said how it will pay for it. This is going to end up delaying by 15 years any plans to build a nuclear station."
  • The Ninh Thuan nuclear plant would sit 80 to 100 kilometres from a fault line on the Vietnamese coast, potentially exposing it to tsunamis, according to state media. But Vuong Huu Tan, president of the state-owned Vietnam Atomic Energy Commission, told state media in March, however, that lessons from the Fukushima accident will help Vietnam develop safe technologies. And John Morris, an Australia-based energy consultant who has worked as a geologist in Vietnam, says the seismic risk for nuclear power plants in the country would not be "a major issue" as long as the plants were built properly. Japan's nuclear plants are "a lot more earthquake prone" than Vietnam's would be, he adds.
  • Undeterred by Fukushima, Nigeria is forging ahead with nuclear collaborations. There is no need to panic because of the Fukushima accident, says Shamsideen Elegba, chair of the Forum of Nuclear Regulatory Bodies in Africa. Nigeria has the necessary regulatory system to keep nuclear activities safe. "The Nigerian Nuclear Regulatory Authority [NNRA] has established itself as a credible organisation for regulatory oversight on all uses of ionising radiation, nuclear materials and radioactive sources," says Elegba who was, until recently, the NNRA's director general.
  • Vietnam is unlikely to experience much in the way of anti-nuclear protests, unlike neighbouring Indonesia and the Philippines, where civil society groups have had more influence, says Kevin Punzalan, an energy expert at De La Salle University in the Philippines. Warnings from the Vietnamese scientific community may force the country's ruling communist party to choose alternative locations for nuclear reactors, or to modify reactor designs, but probably will not cause extreme shifts in the one-party state's nuclear energy strategy, Punzalan tells SciDev.Net.
  • Will the Philippines' plans to rehabilitate a never-used nuclear power plant survive the Fukushima accident? The Philippines is under a 25-year moratorium on the use of nuclear energy which expires in 2022. The government says it remains open to harnessing nuclear energy as a long-term solution to growing electricity demand, and its Department of Science and Technology has been making public pronouncements in favour of pursuing nuclear energy since the Fukushima accident. Privately, however, DOST officials acknowledge that the accident has put back their job of winning the public over to nuclear by four or five years.
  • In the meantime, the government is trying to build capacity. The country lacks, for example, the technical expertise. Carmencita Bariso, assistant director of the Department of Energy's planning bureau, says that, despite the Fukushima accident, her organisation has continued with a study on the viability, safety and social acceptability of nuclear energy. Bariso says the study would include a proposal for "a way forward" for the Bataan Nuclear Power Plant, the first nuclear reactor in South East Asia at the time of its completion in 1985. The $2.3-billion Westinghouse light water reactor, about 60 miles north of the capital, Manila, was never used, though it has the potential to generate 621 megawatts of power. President Benigno Aquino III, whose mother, President Corazon Aquino, halted work on the facility in 1986 because of corruption and safety issues, has said it will never be used as a nuclear reactor but could be privatised and redeveloped as a conventional power plant.
  • But Mark Cojuangco, former lawmaker, authored a bill in 2008 seeking to start commercial nuclear operations at the Bataan reactor. His bill was not passed before Congress adjourned last year and he acknowledges that the Fukushima accident has made his struggle more difficult. "To go nuclear is still the right thing to do," he says. "But this requires a societal decision. We are going to spark public debates with a vengeance as soon as the reports from Fukushima are out." Amended bills seeking both to restart the reactor, and to close the issue by allowing either conversion or permanent closure, are pending in both the House and the Senate. Greenpeace, which campaigns against nuclear power, believes the Fukushima accident has dimmed the chances of commissioning the Bataan plant because of "increased awareness of what radioactivity can do to a place". Many parts of the country are prone to earthquakes and other natural disasters, which critics say makes it unsuitable both for the siting of nuclear power stations and the disposal of radioactive waste.
  • In Kenya, nuclear proponents argue for a geothermal – nuclear mix In the same month as the Fukushima accident, inspectors from the International Atomic Energy Agency approved Kenya's application for its first nuclear power station (31 March), a 35,000 megawatt facility to be built at a cost of Sh950 billion (US$9.8 billion) on a 200-acre plot on the Athi Plains, about 50km from Nairobi
  • The plant, with construction driven by Kenya's Nuclear Electricity Project Committee, should be commissioned in 2022. The government claims it could satisfy all of Kenya's energy needs until 2040. The demand for electricity is overwhelming in Kenya. Less than half of residents in the capital, Nairobi, have grid electricity, while the rural rate is two per cent. James Rege, Chairman of the Parliamentary Committee on Energy, Communication and Information, takes a broader view than the official government line, saying that geothermal energy, from the Rift Valley project is the most promising option. It has a high production cost but remains the country's "best hope". Nuclear should be included as "backup". "We are viewing nuclear energy as an alternative source of power. The cost of fossil fuel keeps escalating and ordinary Kenyans can't afford it," Rege tells SciDev.Net.
  • Hydropower is limited by rivers running dry, he says. And switching the country's arable land to biofuel production would threaten food supplies. David Otwoma, secretary to the Energy Ministry's Nuclear Electricity Development Project, agrees that Kenya will not be able to industrialise without diversifying its energy mix to include more geothermal, nuclear and coal. Otwoma believes the expense of generating nuclear energy could one day be met through shared regional projects but, until then, Kenya has to move forward on its own. According to Rege, much as the nuclear energy alternative is promising, it is extremely important to take into consideration the Fukushima accident. "Data is available and it must be one step at a time without rushing things," he says. Otwoma says the new nuclear Kenya can develop a good nuclear safety culture from the outset, "but to do this we need to be willing to learn all the lessons and embrace them, not forget them and assume that won't happen to us".
  • But the government adopted its Integrated Resource Plan (IRP) for 2010-2030 five days after the Fukushima accident. Elliot Mulane, communications manager for the South African Nuclear Energy Corporation, (NECSA) a public company established under the 1999 Nuclear Energy Act that promotes nuclear research, said the timing of the decision indicated "the confidence that the government has in nuclear technologies". And Dipuo Peters, energy minister, reiterated the commitment in her budget announcement earlier this year (26 May), saying: "We are still convinced that nuclear power is a necessary part of our strategy that seeks to reduce our greenhouse gas emissions through a diversified portfolio, comprising some fossil-based, renewable and energy efficiency technologies". James Larkin, director of the Radiation and Health Physics Unit at the University of the Witwatersrand, believes South Africa is likely to go for the relatively cheap, South Korean generation three reactor.
  • It is not only that we say so: an international audit came here in 2006 to assess our procedure and processes and confirmed the same. Elegba is firmly of the view that blame for the Fukushima accident should be allocated to nature rather than human error. "Japan is one of the leaders not only in that industry, but in terms of regulatory oversight. They have a very rigorous system of licensing. We have to make a distinction between a natural event, or series of natural events and engineering infrastructure, regulatory infrastructure, and safety oversight." Erepamo Osaisai, Director General of the Nigeria Atomic Energy Commission (NAEC), has said there is "no going back" on Nigeria's nuclear energy project after Fukushima.
  • Nigeria is likely to recruit the Russian State Corporation for Atomic Energy, ROSATOM, to build its first proposed nuclear plant. A delegation visited Nigeria (26- 28 July) and a bilateral document is to be finalised before December. Nikolay Spassy, director general of the corporation, said during the visit: "The peaceful use of nuclear power is the bedrock of development, and achieving [Nigeria's] goal of being one of the twenty most developed countries by the year 2020 would depend heavily on developing nuclear power plants." ROSATOM points out that the International Atomic Energy Agency monitors and regulates power plant construction in previously non-nuclear countries. But Nnimmo Bassey, executive director of the Environmental Rights Action/Friends of the Earth Nigeria (ERA/FoEN), said "We cannot see the logic behind the government's support for a technology that former promoters in Europe, and other technologically advanced nations, are now applying brakes to. "What Nigeria needs now is investment in safe alternatives that will not harm the environment and the people. We cannot accept the nuclear option."
  • Thirsty for electricity, and desirous of political clout, Egypt is determined that neither Fukushima ― nor revolution ― will derail its nuclear plans. Egypt was the first country in the Middle East and North Africa to own a nuclear programme, launching a research reactor in 1961. In 2007 Egypt 'unfroze' a nuclear programme that had stalled in the aftermath of the Chernobyl disaster. After the Egyptian uprising in early 2011, and the Fukushima accident, the government postponed an international tender for the construction of its first plant.
  • Yassin Ibrahim, chairman of the Nuclear Power Plants Authority, told SciDev.Net: "We put additional procedures in place to avoid any states of emergency but, because of the uprising, the tender will be postponed until we have political stability after the presidential and parliamentary election at the end of 2011". Ibrahim denies the nuclear programme could be cancelled, saying: "The design specifications for the Egyptian nuclear plant take into account resistance to earthquakes and tsunamis, including those greater in magnitude than any that have happened in the region for the last four thousand years. "The reactor type is of the third generation of pressurised water reactors, which have not resulted in any adverse effects to the environment since they began operation in the early sixties."
  • Ibrahim El-Osery, a consultant in nuclear affairs and energy at the country's Nuclear Power Plants Authority, points out that Egypt's limited resources of oil and natural gas will run out in 20 years. "Then we will have to import electricity, and we can't rely on renewable energy as it is still not economic yet — Egypt in 2010 produced only two per cent of its needs through it." But there are other motives for going nuclear, says Nadia Sharara, professor of mineralogy at Assiut University. "Owning nuclear plants is a political decision in the first place, especially in our region. And any state that has acquired nuclear technology has political weight in the international community," she says. "Egypt has the potential to own this power as Egypt's Nuclear Materials Authority estimates there are 15,000 tons of untapped uranium in Egypt." And she points out it is about staying ahead with technology too. "If Egypt freezes its programme now because of the Fukushima nuclear disaster it will fall behind in many science research fields for at least the next 50 years," she warned.
D'coda Dcoda

Reactors 1 & 2 have HOLES up to 50 meters, clean up notes [9Dec11] - 0 views

  • expected to take more than 30 years to decommission crippled reactors at the Fukushima No. 1 Nuclear Power Plant, and workers tasked with the difficult mission would have to venture into "uncharted territory" filled with hundreds of metric tons of highly radioactive nuclear fuel,
  • After the expert committee of the Japan Atomic Energy Commission (JAEC) compiled a report on procedures to decommission the No. 1 to 4 reactors at the Fukushima No. 1 Nuclear Power Plant on Dec. 7, the actual work is expected to move into high gear after the turn of the year. As in the case of the 1979 Three Mile Island accident, the workers would try to remove melted nuclear fuel after shielding radiation with water, a technique called a "water tomb." But the work would have to be done in a "territory where humans have not stepped into before," said a senior official of Tokyo Electric Power Co. (TEPCO), the operator of the troubled Fukushima nuclear power station. The work is so difficult that it is expected to take more than 30 years to finish decommissioning the reactors.
  • Up to about 5,000 millisieverts per hour of radiation -- lethal levels -- have been detected in the reactor building of the No. 1 reactor.
  • ...5 more annotations...
  • The key part of the decommissioning work is to remove a total of 1,496 fuel rods from the No. 1 to 3 nuclear reactors and 3,108 fuel rods from nuclear fuel pools of the No. 1 to 4 reactors. The government and TEPCO are expected to start decommissioning the reactors early in the New Year after unveiling detailed plans around Dec. 16 that the nuclear plant has been brought under control by achieving a stable state called a ''cold shutdown.''
  • TEPCO said it would bring the nuclear plant under control by filling the reactors with water. But subsequent analysis of the accident suggested that the No. 1 and 2 reactors had holes of up to 50 square centimeters caused by hydrogen explosions and the like. In the work schedule announced in May, TEPCO said it had scrapped its plan to repair the containment vessels and suspended the work to fill them with water.
  • workers have been fighting an uphill battle to remove crumbled fuel. The reactors had been running without cooling water for a long time, and most of the fuel melted and apparently dropped into the containment vessel from the bottom of the pressure vessel at the No. 1 reactor
  • A single fuel rod contains about 170 kilograms of uranium, and a simple calculation suggests that about 254 tons of uranium in the reactors alone must be recovered. The distance between the upper lid and the bottom of a containment vessel is up to 35 meters. From that far away, the work has to be done to chop off and recover melted and crumbled fuel by using remote controlled cranes. Furthermore, the melted fuel is mixed with metal from fuel pellets and reactor parts.
  • "Because no one has seen the inside of the nuclear reactors, the timing of starting the work to recover nuclear fuel mentioned in the report is only a nonbinding target."
D'coda Dcoda

Fast reactor advocates throw down gauntlet to MIT authors[24Jul11] - 0 views

  • Near the end of 2010, the Massachusetts Institute of Technology released a summary of a report titled The Future of the Nuclear Fuel Cycle as part of its MIT Energy Initiative. The complete report was released a few months ago. The conclusions published that report initiated a virtual firestorm of reaction among the members of the Integral Fast Reactor (IFR) Study group who strongly disagreed with the authors.
  • the following quote from the “Study Context” provides a good summary of why the fast reactor advocates were so dismayed by the report.
  • For decades, the discussion about future nuclear fuel cycles has been dominated by the expectation that a closed fuel cycle based on plutonium startup of fast reactors would eventually be deployed. However, this expectation is rooted in an out-of-date understanding about uranium scarcity. Our reexamination of fuel cycles suggests that there are many more viable fuel cycle options and that the optimum choice among them faces great uncertainty—some economic, such as the cost of advanced reactors, some technical such as implications for waste management, and some societal, such as the scale of nuclear power deployment and the management of nuclear proliferation risks. Greater clarity should emerge over the next few decades, assuming that the needed research is carried out for technological alternatives and that the global response to climate change risk mitigation comes together. A key message from our work is that we can and should preserve our options for fuel cycle choices by continuing with the open fuel cycle, implementing a system for managed LWR spent fuel storage, developing a geological repository, and researching technology alternatives appropriate to a range of nuclear energy futures.
  • ...10 more annotations...
  • The group of fast reactor supporters includes some notable scientists and engineers whose list of professional accomplishments is at least as long as those of the people who produced the MIT report. In addition, it includes people like Charles Till and Yoon Chang who were intimately involved in the US’s multi-decade long fast reactor development and demonstration program that resulted in demonstrating a passively safe, sodium cooled reactor and an integral recycling system based on metallic fuel and pyroprocessing.
  • That effort, known as the Integral Fast Reactor, was not just based on an out-dated concept of uranium availability, but also on the keen recognition that the public wants a clear solution to “the nuclear waste issue” that does not look like a decision to “kick the can down the road.”
  • he Science Council for Global Initiatives produced a detailed critique of the MIT paper and published that on Barry Brook’s Brave New Climate blog at the end of May 2011. The discussion has a great deal of interest for technical specialists and is supporting evidence that belies the often asserted falsehood (by people who oppose nuclear technology) that the people interested in developing and deploying nuclear technology speak with a single, almost brainwashed voice.
  • In recent days, however, the controversy has become more interesting because the IFR discussion group has decided to issue a public debate challenge and to allow people like me to write about that challenge in an attempt to produce some response.
  • I think your team is dead wrong on your conclusion that we don’t need fast reactors/closed fuel cycle for decades.Your study fails to take into account the political landscape the competitive landscape the safety issue environmental issues with uranium miningIt is unacceptable to the public to not have a solution to the waste issue. Nuclear power has been around for over 50 years, and we STILL HAVE NO OPTION FOR THE WASTE today other than interim dry cask storage. There is no national repository. Without that, the laws in my state forbid construction of a new nuclear power plant.
  • Other countries are pursuing fast reactors, we are not. Russia has 30 years of commercial operating history with fast reactors. The US has zero.We invented the best Gen IV technology according to the study done by the Gen IV International Forum. So what did we do with it? After spending $5B on the project, and after proving it met all expectations, we CANCELLED it (although the Senate voted to fund it).
  • An average investment of $300M a year could re-start our fast reactor program with a goal of actually commercializing our best reactor design (the IFR according the GIF study).
  • At least we’d have a bird in the hand that we know works, largely solves the waste problem, since the fast reactor waste needs only to be stored for a few hundred years at most, and doesn’t require electric power or any active systems to safely shut down.
  • Investing lots of money in a project and pulling the funding right before completion is a bad strategy for technology leadership.
  • MIT should be arguing for focusing and finishing what we started with the IFR. At least we’d have something that addresses safety, waste, and environmental issues. Uranium is cheap because we don’t have to pay for the environmental impact of uranium mining.
D'coda Dcoda

NISA Says Stress Tests to RestartJapanese Reactors Will Take Months [26Jul11] - 0 views

  • Plant Status After a 6.2 magnitude earthquake struck offshore from Fukushima in the early hours of July 25, Tokyo Electric Power Co. reported there were no problems with any of the systems used to stabilize the reactors at Fukushima Daiichi and no injuries. TEPCO checked the systems for water and nitrogen injection into reactors 1, 2 and 3, the water treatment facility, and the used fuel pool cooling systems for reactors 2 and 3. The Japan Atomic Industry Forum said temperatures at the bottom of Fukushima Daiichi reactor 1 have remained below 100 degrees Celsius (212 Fahrenheit) for six consecutive days through July 24. TEPCO says it achieved the lowered temperature by raising the amount of water injected into the reactor. The company has begun implementing step 2 of its recovery plan for the reactors, which includes maintaining temperatures at the bottom of reactors 1, 2 and 3 below 100 degrees Celsius. The stable operation of the circulatory water injection system is crucial to achieving that goal. TEPCO said a faulty circuit breaker was the cause of a five-hour loss of electrical power to reactors 3 and 4 July 22. Power for contaminated water treatment and for the reactors’ used fuel pool cooling was eventually restored via an alternate source. TEPCO says there was no major increase in the temperature of the pools
  • The company is working to improve switching systems among external power supplies. Industry/Regulatory/Political Issues A July 28 public Nuclear Regulatory Commission meeting will focus on the agency’s near-term task force recommendations for safety enhancements at U.S. nuclear energy facilities after the Fukushima accident. International Atomic Energy Agency Director General Yukiya Amano today toured the Fukushima Daiichi site, where he met with TEPCO personnel and gave an interview on location describing his visit. Amano is to meet Japanese Prime Minister Naoto Kan and government ministers to discuss the outcomes of the June IAEA ministerial conference on nuclear safety. The Nuclear and Industrial Safety Agency said it will take months to complete the first of two-stage “stress tests” it has ordered all Japanese nuclear power reactor operators to conduct before shutdown reactors can restart. NISA said it does not anticipate any of the 22 reactors that were halted for regular safety checks to resume operations this summer. The tests involve computer simulations of the reactors’ responses to emergencies such as earthquakes, tsunamis and loss of off-site power.
  • As TEPCO moves into the second stage of its recovery plan at Fukushima, the joint office it operates with the Japanese government to conduct and review its activities will be restructured. A new radiation and health management team will be established, and two other teams will be incorporated into a “medium-to-long term countermeasures” team. Media Highlights The New York Times editorialized on July 24 on the U.S. response to the Fukushima Daiichi accident. The opinion piece discussed steps taken by the nuclear energy industry and recommendations made by the NRC’s Fukushima-focused task force. Upcoming Events NEI will brief financial analysts in New [...] ...read more
D'coda Dcoda

Actions speak louder than words over cold shutdown goal for Fukushima nuclear reactors ... - 0 views

  • Achieving a "cold shutdown" of a nuclear reactor is not difficult as long as the reactor is not broken. A cold shutdown is defined by experts as a situation in which nuclear reactors whose operations are suspended are being stably cooled down and the temperatures in them are kept below 100 degrees Celsius. However, it is no easy task to achieve a cold shutdown at the tsunami-hit Fukushima No. 1 Nuclear Power Plant where fuel has melted and holes have developed in damaged reactors.
  • Goshi Hosono, state minister for the prevention of nuclear accidents, told the International Atomic Energy Agency (IAEA) annual general meeting under way in Vienna that Tokyo will do its best to achieve a cold shutdown of the stricken reactors at the plant by the end of this year. His remark suggests that the government intends to bring forward its target of achieving a stable cool-down of the troubled reactors and of substantially reducing the amount of radioactive substances released from the plant by January 2012.
  • The temperature at the bottom of the No. 1 reactor's pressure vessel has been stabilized at less than 100 degrees Celsius, and that of the No. 3 reactor has recently been kept below that level. Hosono appears to have made the remark at the IAEA conference while keeping in mind these positive signs. It is a matter of course for the government to try its utmost to bring the crippled reactors under control as soon as possible, and it is important for it to show its determination to achieve this goal to the international community.
  • ...5 more annotations...
  • At the same time, however, it is notable that the government has failed to clarify what a cold shutdown at the Fukushima plant specifically means. Currently, water contaminated with radioactive materials is purified and reused to cool down reactor cores as a last-ditch measure, and plant operator Tokyo Electric Power Co. (TEPCO) is unlikely to be able to use a conventional cooling system in the foreseeable future.
  • If the cooling system with a total extension of four kilometers develops trouble, the temperatures of the reactor cores could rise again. Since it remains unclear where the melted fuel is situated in the troubled reactors, the temperatures of the pressure vessels alone are far from convincing. Under these circumstances, the phrase, "cold shutdown," should not be used in a casual manner without clearly defining it. It is important to grasp the actual conditions of the reactors and fuel as accurately as possible and take appropriate countermeasures in a well-organized manner.
  • The lifting and reviewing of evacuation advisories depends largely on whether the cold shutdown of the stricken nuclear reactors can be achieved. Therefore, the government should specifically explain the conditions of the reactors and risks involving them to the public. In anticipation that the reactors will be stabilized in a relatively short period, the government is set to lift its designation of areas 20-30 kilometers from the nuclear power station as "emergency evacuation preparation zones" as early as this month. In these areas, residents are allowed to stay in their neighborhoods, but kindergartens and schools remain closed. Such a contradiction should be eliminated according to the circumstances of each of these areas.
  • On the other hand, it is indispensable to regularly measure the precise levels of radiation and decontaminate areas tainted with radioactive substances so that residents can return to their neighborhoods without worries about being exposed to radiation. Moreover, it is necessary to speed up efforts to repair and build public infrastructure in the affected areas.
  • Hosono has sought cooperation from the IAEA to share its expertise in decontamination. It is an important task to bring together the knowledge of the international community to revive crisis-hit Fukushima.
D'coda Dcoda

TEPCO Now Says There Was No Hydrogen Explosion at Reactor 2 [01Oct11] - 1 views

  • From Yomiuri Shinbun (3:03AM JST 10/2/2011):
  • Details of an interim report by TEPCO's internal "Fukushima nuclear accident investigation committee" (headed by Vice President Masao Yamazaki) were revealed.
  • The committee reversed the company's position that there had been a hydrogen explosion in Reactor 2, and now concluded there was no such explosion. As to the tsunami that triggered the accident, the committee says "it was beyond expectations"; of the delay in initial response to the accident, the committee concludes "it couldn't be helped". Overall, the report looks full of self-justification. TEPCO plans to run the report with the verification committee made of outside experts before it publishes the report.
  • ...3 more annotations...
  • At Fukushima I Nuclear Power Plant, the Reactor 1 reactor building blew up in a hydrogen explosion in the afternoon of March 12, followed by a hydrogen explosion of Reactor 3 in the morning of March 14. Further, in the early morning on March 15, there was an explosive sound, and the damage to the Reactor 4 reactor building was confirmed. Right after the explosive sound the pressure in the Suppression Chamber of Reactor 2 dropped sharply, which led TEPCO to conclude that there were near-simultaneous explosions in Reactors 2 and 4. The Japanese government reported the events as such in the report to IAEA in June.So then what does TEPCO now think happened in Reactor 2 in the early morning on March 15? Yomiuri doesn't say in the article text, but at the bottom of the illustration that accompanies the article it says:"There was no explosion, but a possibility of some kind of damage to the Containment Vessel."So, before TEPCO completely changes story, here's what they say happened on Reactor 4 on March 15 (from the daily "Status of TEPCO's Facilities - past progress" report, page 6):
  • It says "abnormal sound was confirmed near the suppression chamber" at 6:14AM on March 15.Now, this is what TEPCO says about Reactor 4 on the same day, about the same time, from Page 16:
  • It says "an explosive sound was heard" at 6AM on March 15. The Reactor 4 explosion occurred before the Reactor 2 "explosion" which TEPCO now says never happened.The two sounds are 14 minutes apart, and TEPCO now claims they misheard the second one and there was no explosion in the Suppression Chamber of Reactor 2.(By the way, the fire spotted at 9:38AM on March 15 on Reactor 4 was never reported to the local fire department or the local government, as I reported on March 15.)
D'coda Dcoda

Plugging leaks will end crisis, not cold shutdown: analysts [12Sep11] - 0 views

  • Ever since the nuclear crisis erupted six months ago, the public has been clamoring to know when the damaged reactors at the Fu ku shi ma No. 1 power plant will be brought under control and when the nightmare will end. The government and Tokyo Electric Power Co., which runs the crippled plant, are working to bring the three reactors into cold shutdown by mid-January.
  • Cold shutdown means the temperature at the bottom of the pressure vessel, which holds the core, has been lowered to less than 100 degrees. This critical milestone, known as "Step 2" in Tepco's road map for containing the crisis, would limit the release of radioactive materials from the plant to less than 1 millisievert per year, a level that poses no health risks.
  • Since work at the plant is proceeding relatively smoothly, it appears likely the mid-January target will be met. But Fukushima No. 1 will still have a long way to go before the flooded plant's reactors are stable enough to be considered safe, experts warn. The main reason is the abundance of highly radioactive water.
  • ...10 more annotations...
  • "There are about 110,00 tons of contaminated water (in the plant) and the situation is still not completely under control because coolant water is leaking from the containment vessels. There is no guarantee that the irradiated water won't leak from the plant (and contaminate the environment)" if another natural disaster strikes, said Hisashi Ninokata, a professor of reactor engineering at the Tokyo Institute of Technology.
  • After achieving cold shutdowns of reactors 1, 2 and 3, the government may declare parts of the 20-km no-go zone around the plant safe. It may even let the evacuees return, as long as the area is decontaminated and crucial infrastructure restored.
  • But the longer the tainted water leaks, the more the radioactive waste will grow, leaving the Fukushima plant vulnerable to further disasters, Ninokata said. Before the Fukushima crisis can be said contained, the holes and cracks from which the water and fuel are escaping must be located and sealed. But this extremely difficult task could take years because the radiation near the reactors is simply too high to let workers get near them.
  • "It'll be too early to say that the situation has reached a stable phase even after Step 2 is completed," said Chihiro Kamisawa, a researcher at Citizens' Nuclear Information Center, a nonprofit group of scientists and activists opposed to nuclear power. When a reactor is in cold shutdown, the water cooling its fuel is still hot but no longer boiling, which significantly reduces the amount of radioactive emissions.
  • In late July, the temperature in reactor No. 1's pressure vessel fell below 100 degrees. On Monday, the same thing was achieved in reactor 3 after Tepco activated a system that pumps water deep into the containment vessel. But on Friday, reactor No. 2 was still boiling away with a reading of 112.6. "Efforts seem to be making smooth progress, and I think Step 2 is likely to be achieved by mid-January," said Shinichi Morooka, a Waseda University professor and reactor expert.
  • Another reason for optimism is the progress being made with the water decontamination system. The cleaning rate has greatly improved in the past few weeks and exceeded 90 percent of capacity last week. If the decontamination system ever reaches its full potential, it will allow Tepco to inject coolant at a higher rate and bring the melted cores to lower and stabler temperatures.
  • The government also plans to start decontaminating soil in various hot spots so the evacuees can return once the second step is completed. But some experts are questioning whether residents should be allowed to return so soon. The cracks and holes in the leaking reactors haven't even been pinpointed yet, let alone fixed, they say.
  • "As an engineer, I am worried (about the plan to let residents return) when it is still unclear what is really going on inside the reactors," said Morooka. For the time being, Tepco can only guess where the water is leaking from and which parts need repair, because radiation has prevented workers from fully exploring the buildings.
  • Spokesman Junichi Matsumoto said that since no extensive damage to the reactors was found during inspections of the first and second floors of the buildings, any holes or cracks are probably at the basement level. But with the basement floors flooded, Tepco's top priority is just to get the water out. Plans to fix the reactors aren't even being discussed yet, Matsumoto said.
  • Asked if the containment vessels can take another quake, the Tokyo Institute of Technology's Ninokata said he believes the impact would likely be distributed evenly through the structure without widening existing cracks or holes. But if the impact somehow focuses on parts damaged by the March 11 disasters, there could be further damage, he said. "The containment vessel is what really ensures the safety of a nuclear reactor," Ninokata said, warning that if radioactive materials are still leaking out, allowing residents to return would risk harming their health.
D'coda Dcoda

Shutdown of Fukushima Reactors Is Ahead of Schedule [Nov11] - 0 views

  • Editor's Note: This is part of the IEEE Spectrum special report: Fukushima and the Future of Nuclear Power.
  • This past April, when the Japanese government and Tokyo Electric Power Co. (TEPCO) jointly unveiled their plan to bring the damaged reactors of the Fukushima Dai-ichi nuclear power plant to a cold shutdown and gain control of the release of radioactive materials, they set a tentative completion date for mid-January 2012. And "tentative" had to be the operative word, for the obstacles TEPCO faced—and to some extent still does face—are challenging in the extreme. They include:
  • Fuel rod meltdowns in reactors 1, 2, and 3 due to loss of cooling systems following the 11 March earthquake and tsunami; Severe damage to the upper levels of reactor buildings 1, 3, and 4 and slight damage to building 2, stemming from hydrogen explosions; High levels of radiation and contaminated rubble, making working conditions hazardous and difficult; Thousands of metric tons of contaminated water accumulating on the site and leaking out of the reactors.
  • ...5 more annotations...
  • It appears, however, that the process is now ahead of schedule. Environment Minister Goshi Hosono, who is also in charge of the Fukushima nuclear accident recovery, told the International Atomic Energy Agency's annual general conference in Vienna on 19 September that Japan was now aiming to complete a cold shutdown of the Fukushima plant by December 2011, instead of mid-January 2012. Progress was already evident in July, when Hosono announced that workers had completed step 1 of the two-step road map on schedule, reducing radioactive emissions and starting to bring down the core temperatures in reactors 1, 2, and 3. Hosono attributed the success to the construction of a new cooling system, which had begun pumping water into all three damaged reactors. In addition to cooling, the system also decontaminates the water accumulating in the basements of the reactor and turbine buildings. The contamination is the result of injected water coming into contact with the molten fuel in the pressure vessels.
  • Critics, however, were quick to question the stability of the system and its ad hoc design. The combination of filtering and decontamination technologies—mainly from the French nuclear giant Areva and the U.S. nuclear waste management company Kurion—includes some 4 kilometers of piping. The critics have a point. Even with the addition of a reportedly more robust system (to be used in parallel or as backup as needed) from Toshiba and IHI Corp., TEPCO admits the system underwent 39 disruptions between 10 July and 8 September. One consequence is that roughly 100 000 metric tons of water still need to be decontaminated.
  • Disruptions and remaining challenges notwithstanding, TEPCO has been making progress toward step 2 of the road map: a cold shutdown. According to TEPCO, that means achieving and maintaining a temperature of less than 100 °C as measured at the bottom of a reactor pressure vessel—the steel vessel containing the fuel rods—which itself is enclosed inside a protective containment vessel. A major advance came at the beginning of September, when TEPCO was able to start up the core spray lines to cool reactors 1 and 3. The core spray lines apply water directly to the cores from above, while the system installed in July has been cooling the cores by injecting water from the bottom. TEPCO has also begun increasing the amount of water being injected into reactor 2. The core spray line could not be used until recently because TEPCO first had to survey the subsystem's piping and valves. Given the high radiation in the area, this was difficult, but workers completed the job in July and confirmed the system's operability in August.
  • By late September, as a result of these efforts, the temperatures in all three reactors had dropped below 100 °C for the first time since the accident. As of 29 September, the temperatures for reactors 1, 2, and 3, respectively, were 77.5 °C, 99.7 °C, and 78.7 °C. "We are steadily bringing the postaccident situation under control," says Hosono. "To achieve step 2 this year, we'll move the schedule forward and do our best." But Yoshinori Moriyama, deputy director-general of Japan's Nuclear and Industrial Safety Agency (NISA) is cautious. "We need to maintain this state over the midterm," he says. "Temporary lower temperatures and the nonrelease of radioactive substances do not immediately mean that this is a cold shutdown." In order for NISA to declare a cold shutdown, the temperatures must remain stable and below 100 °C into December. So NISA won't officially declare a cold shutdown until near the end of 2011.
  • Despite these positive developments, nuclear experts point out that achieving a cold shutdown does not make the troubled plant completely safe, given that even spent fuel continues to generate heat for years after use. And upon achieving a cold shutdown, TEPCO must take on a new series of challenges. These include finding where the injected water is escaping, stopping those leaks, dealing with the accumulated contaminated water, removing and storing the thousands of spent fuel rods from the pools in reactors 1 to 4, and then figuring out a way to remove the melted fuel. The last is a task that could take a decade or more, according to experts.
D'coda Dcoda

TEPCO never pushed electrical safety plan at nuke plant [23Oct11] - 0 views

  • A plan to connect six reactors at the crippled Fukushima No. 1 nuclear power plant, which could have reduced the damage from the Great East Japan Earthquake and tsunami, never left the drawing board, according to sources. Tokyo Electric Power Co. sources said while consideration had been given in 2006 to connecting all sources of electricity at all six reactors, no decision was made because of technical problems. However, nuclear engineering experts said the work could have been implemented and added that overconfidence about the low possibility of all reactors losing all their electrical sources was likely behind the failure to proceed with the reconstruction work.
  • "TEPCO officials likely concluded that there was no need to spend time and money because of an overconfidence that a loss of electricity sources would never occur," said Tadahiro Katsuta, associate professor of nuclear engineering at Meiji University. "If the work had been carried out, there was the possibility that damage could have been reduced." After the March 11 tsunami hit the Fukushima No. 1 plant, the No. 1 to No. 4 reactors lost their electrical sources. The inability to properly cool the reactors led to a core meltdown and hydrogen explosions that severely damaged the reactors and spewed large amounts of radioactive materials into the atmosphere. The No. 5 and No. 6 reactors were connected in terms of electricity sources and the emergency diesel generator at the No. 6 reactor, which was the only one that continued to work, enabled cooling to continue at those two reactors.
  • As an emergency measure, TEPCO officials laid electrical cables between all six reactors by April 25. Because TEPCO proceeded with such work after the quake and tsunami, experts said if reconstruction work had been conducted in 2006, there was the possibility that a major accident could have even been prevented. According to former TEPCO executives, a plan was considered in 2006 to strengthen the electricity facilities at the Fukushima No. 1 plant to avoid a critical accident that might occur should all electrical sources be lost due to a natural disaster. The No. 1 to No. 4 reactors on the south side of the plant were connected by electrical cables and those four reactors could share electricity if the need arose.
  • ...2 more annotations...
  • The No. 5 and No. 6 reactors on the north side of the plant also shared electrical sources with each other, but those two reactors were not connected to the four to the south. The plan for reconstruction work considered installing steel towers to link the electrical cables or digging tunnels through which cable could connect all six reactors. The former TEPCO executive said, "An estimate of the construction needed for the reconstruction work, including related civil engineering work, totaled several billions of yen and there was a plan to go ahead with the work." However, according to an explanation by other TEPCO officials, there were many structures and buried objects that would have been a hindrance to laying cables in the plant and there were also concerns that if the electrical cables became too long a drop in voltage might have occurred. Those reasons led TEPCO officials to abandon any further consideration for more specific plans.
  • Katsuta, the Meiji University nuclear engineering professor, said the buried objects could have been moved and any voltage drop could have been overcome by using transformers. Shiori Ishino, a professor emeritus of nuclear engineering at the University of Tokyo, added, "Since they hurriedly implemented measures after the accident, why could they not have done similar work beforehand? A serious analysis of what was involved in the decision should be made." In response, a TEPCO spokesperson said while it is true that consideration was given for the reconstruction work at one time, there are no documents showing that a decision was ever made on it. "Connecting cables between the six reactors after the accident was nothing more than an immediate measure taken during an emergency," the spokesperson said.
D'coda Dcoda

Post-Fukushima, Nuclear Power Changes Latitudes - [28Nov11] - 0 views

  • As the full cost of the Fukushima nuclear accident continues to climb—Japanese officials now peg it at $64 billion or more—nuclear power’s future is literally headed south. Developed countries are slowing or shuttering their nuclear-power programs, while states to their south, in the world’s hotspots (think the Middle East and Far East), are pushing to build reactors of their own. Normally, this would lead to even more of a focus on nuclear safety and nonproliferation. Yet, given how nuclear-reactor sales have imploded in the world’s advanced economies, both these points have been trumped by nuclear supplier states’ desires to corner what reactor markets remain.
  • This spring, Germany permanently shut down eight of its reactors and pledged to shutter the rest by 2022. Shortly thereafter, the Italians voted overwhelmingly to keep their country nonnuclear. Switzerland and Spain followed suit, banning the construction of any new reactors. Then Japan’s prime minister killed his country’s plans to expand its reactor fleet, pledging to reduce Japan’s reliance on nuclear power dramatically. Taiwan’s president did the same. Now Mexico is sidelining construction of 10 reactors in favor of developing natural-gas-fired plants, and Belgium is toying with phasing its nuclear plants out, perhaps as early as 2015.
  • China—nuclear power’s largest prospective market—suspended approvals of new reactor construction while conducting a lengthy nuclear-safety review. Chinese nuclear-capacity projections for the year 2020 subsequently tumbled by as much as 30 percent. A key bottleneck is the lack of trained nuclear technicians: to support China’s stated nuclear-capacity objectives, Beijing needs to graduate 6,000 nuclear experts a year. Instead, its schools are barely generating 600.
  • ...7 more annotations...
  • India, another potential nuclear boom market, is discovering a different set of headaches: effective local opposition, growing national wariness about foreign nuclear reactors, and a nuclear liability controversy that threatens to prevent new reactor imports. India was supposed to bring the first of two Russian-designed reactors online this year in tsunami-prone Tamil Nadu state. Following Fukushima, though, local residents staged a series of starvation strikes, and the plant’s opening has now been delayed. More negative antinuclear reactions in the nearby state of West Bengal forced the local government to pull the plug on a major Russian project in Haripur. It’s now blocking an even larger French reactor-construction effort at Jaitapur.
  • These nuclear setbacks come as Prime Minister Manmohan Singh is straining to reconcile India’s national nuclear-accident-liability legislation with U.S. demands that foreign reactor vendors be absolved of any responsibility for harm that might come to property or people outside of a reactor site after an accident
  • persuade his Parliament to cap foreign vendors’ liability to no more than $300 million (even though Japan has pegged Fukushima damages at no less than $64 billion).
  • n the United States, new-reactor construction has also suffered—not because of public opposition but because of economics
  • The bottom line is that in 2007, U.S. utilities applied to the Nuclear Regulatory Commission to build 28 nuclear-power plants before 2020; now, if more than three come online before the end of the decade, it will be a major accomplishment.
  • France—per capita, the world’s most nuclear-powered state. Frequently heralded as a nuclear commercial model for the world, today it’s locked in a national debate over a partial nuclear phaseout.
  • his Socialist opponent, François Hollande, now well ahead in the polls, has proposed cutting nuclear power’s contribution to the electrical grid by more than a third by 2025. Hollande is following a clear shift in French public opinion, from two thirds who backed nuclear power before Fukushima to 62 percent who are now favoring a progressive phaseout. In addition, the French courts just awarded Greenpeace €1.5 million against the French nuclear giant EDF for illegally spying on the group. Public support of this judgment and the French Socialist Party’s wooing of the French Greens makes the likelihood of Hollande backing off his pledge minuscule.
  •  
    long article with 2 more pages (not highlighted)
D'coda Dcoda

The yellow powder might be plutonium [25Sep11] - 0 views

  • About the previous post http://fukushima-diary.com/2011/09/news-japan-after-the-typhoon/ I received a message from a reader of this blog. It was to suggest the yellow powder could be plutonium. Here is the explanation. http://sti.srs.gov/fulltext/ms2002705/ms2002705.html source for text below
  • Plutonium-239 is one of the two fissile materials used for the production of nuclear weapons and in some nuclear reactors as a source of energy. The other fissile material is uranium-235. Plutonium-239 is virtually nonexistent in nature. It is made by bombarding uranium-238 with neutrons in a nuclear reactor. Uranium-238 is present in quantity in most reactor fuel; hence plutonium-239 is continuously made in these reactors. Since plutonium-239 can itself be split by neutrons to release energy, plutonium-239 provides a portion of the energy generation in a nuclear reactor. The physical properties of plutonium metal are summarized in Table 1.
  • Only two plutonium isotopes have commercial and military applications. Plutonium-238, which is made in nuclear reactors from neptunium-237, is used to make compact thermoelectric generators; plutonium-239 is used for nuclear weapons and for energy; plutonium-241, although fissile, (see next paragraph) is impractical both as a nuclear fuel and a material for nuclear warheads. Some of the reasons are far higher cost , shorter half-life, and higher radioactivity than plutonium-239. Isotopes of plutonium with mass numbers 240 through 242 are made along with plutonium-239 in nuclear reactors, but they are contaminants with no commercial applications. In this fact sheet we focus on civilian and military plutonium (which are interchangeable in practice–see Table 5), which consist mainly of plutonium-239 mixed with varying amounts of other isotopes, notably plutonium-240, -241, and -242.
  • ...9 more annotations...
  • Plutonium belongs to the class of elements called transuranic elements whose atomic number is higher than 92, the atomic number of uranium. Essentially all transuranic materials in existence are manmade. The atomic number of plutonium is 94. Plutonium has 15 isotopes with mass numbers ranging from 232 to 246. Isotopes of the same element have the same number of protons in their nuclei but differ by the number of neutrons. Since the chemical characteristics of an element are governed by the number of protons in the nucleus, which equals the number of electrons when the atom is electrically neutral (the usual elemental form at room temperature), all isotopes have nearly the same chemical characteristics. This means that in most cases it is very difficult to separate isotopes from each other by chemical techniques.
  • Plutonium-239 and plutonium-241 are fissile materials. This means that they can be split by both slow (ideally zero-energy) and fast neutrons into two new nuclei (with the concomitant release of energy) and more neutrons. Each fission of plutonium-239 resulting from a slow neutron absorption results in the production of a little more than two neutrons on the average. If at least one of these neutrons, on average, splits another plutonium nucleus, a sustained chain reaction is achieved.
  • The even isotopes, plutonium-238, -240, and -242 are not fissile but yet are fissionable–that is, they can only be split by high energy neutrons. Generally, fissionable but non-fissile isotopes cannot sustain chain reactions; plutonium-240 is an exception to that rule. The minimum amount of material necessary to sustain a chain reaction is called the critical mass. A supercritical mass is bigger than a critical mass, and is capable of achieving a growing chain reaction where the amount of energy released increases with time.
  • The amount of material necessary to achieve a critical mass depends on the geometry and the density of the material, among other factors. The critical mass of a bare sphere of plutonium-239 metal is about 10 kilograms. It can be considerably lowered in various ways. The amount of plutonium used in fission weapons is in the 3 to 5 kilograms range. According to a recent Natural Resources Defense Council report (1), nuclear weapons with a destructive power of 1 kiloton can be built with as little as 1 kilogram of weapon grade plutonium(2). The smallest theoretical critical mass of plutonium-239 is only a few hundred grams.
  • In contrast to nuclear weapons, nuclear reactors are designed to release energy in a sustained fashion over a long period of time. This means that the chain reaction must be controlled–that is, the number of neutrons produced needs to equal the number of neutrons absorbed. This balance is achieved by ensuring that each fission produces exactly one other fission. All isotopes of plutonium are radioactive, but they have widely varying half-lives. The half-life is the time it takes for half the atoms of an element to decay. For instance, plutonium-239 has a half-life of 24, 110 years while plutonium-241 has a half-life of 14.4 years. The various isotopes also have different principal decay modes. The isotopes present in commercial or military plutonium-239 are plutonium-240, -241, and -242. Table 2 shows a summary of the radiological properties of five plutonium isotopes. The isotopes of plutonium that are relevant to the nuclear and commercial industries decay by the emission of alpha particles, beta particles, or spontaneous fission. Gamma radiation, which is penetrating electromagnetic radiation, is often associated with alpha and beta decays.
  • Table 3 describes the chemical properties of plutonium in air. These properties are important because they affect the safety of storage and of operation during processing of plutonium. The oxidation of plutonium represents a health hazard since the resulting stable compound, plutonium dioxide is in particulate form that can be easily inhaled. It tends to stay in the lungs for long periods, and is also transported to other parts of the body. Ingestion of plutonium is considerably less dangerous since very little is absorbed while the rest passes through the digestive system.
  • Plutonium-239 is formed in both civilian and military reactors from uranium-238. The subsequent absorption of a neutron by plutonium-239 results in the formation of plutonium-240. Absorption of another neutron by plutonium-240 yields plutonium-241. The higher isotopes are formed in the same way. Since plutonium-239 is the first in a string of plutonium isotopes created from uranium-238 in a reactor, the longer a sample of uranium-238 is irradiated, the greater the percentage of heavier isotopes. Plutonium must be chemically separated from the fission products and remaining uranium in the irradiated reactor fuel. This chemical separation is called reprocessing. Fuel in power reactors is irradiated for longer periods at higher power levels, called high “burn-up”, because it is fuel irradiation that generates the heat required for power production. If the goal is production of plutonium for military purposes then the “burn-up” is kept low so that the plutonium-239 produced is as pure as possible, that is, the formationo of the higher isotopes, particularly plutonium-240, is kept to a minimum. Plutonium has been classified into grades by the US DOE (Department of Energy) as shown in Table 5.
  • It is important to remember that this classification of plutonium according to grades is somewhat arbitrary. For example, although “fuel grade” and “reactor grade” are less suitable as weapons material than “weapon grade” plutonium, they can also be made into a nuclear weapon, although the yields are less predictable because of unwanted neutrons from spontaneous fission. The ability of countries to build nuclear arsenals from reactor grade plutonium is not just a theoretical construct. It is a proven fact. During a June 27, 1994 press conference, Secretary of Energy Hazel O’Leary revealed that in 1962 the United States conducted a successful test with “reactor grade” plutonium. All grades of plutonium can be used as weapons of radiological warfare which involve weapons that disperse radioactivity without a nuclear explosion.
  • Benedict, Manson, Thomas Pigford, and Hans Wolfgang Levi, Nuclear Chemical Engineering, 2d ed. (New York: McGraw Hill Book Company, 1981). Wick, OJ, Editor, Plutonium Handbook: A Guide to the Technology, vol I and II, (La Grange Park, Illinois: American Nuclear Society, 1980). Cochran, Thomas B., William M. Arkin, and Milton M. Honig, Nuclear Weapons Databook, Vol I, Natural Resources Defense Council. (Cambridge, Massachusetts: Ballinger Publishing Company, 1984) Plutonium(IV) oxide is the chemical compound with the formula PuO2. This high melting point solid is a principal compound of plutonium. It can vary in color from yellow to olive green, depending on the particle size, temperature and method of production.[1]
  •  
    excellent article explains plutonium
1 - 20 of 715 Next › Last »
Showing 20 items per page