Skip to main content

Home/ Open Intelligence / Energy/ Group items tagged generator

Rss Feed Group items tagged

D'coda Dcoda

Japan: A Nuclear Gypsy's Tale [03Aug11] - 0 views

  • Before the Fukushima accident brought to light the parlous state of the Japanese nuclear industry, for years temporary workers have jumped in and out of remunerative short-term jobs at the power plants ignoring the risk of their profession. Takeshi Kawakami (川上武志) was one of the so-called ‘nuclear gypsies’ and just like many other colleagues of his, for about 30 years he made a livelihood working at the different nuclear plants of the country for short periods. For years he earned money helping repair or replace malfunctioning parts of nuclear reactors and carrying out dangerous operations, with a high-risk of radiation exposure.
  • In his blog, Kawakami denounced the corruption and collusion between the government and the nuclear industry, focusing his coverage on the Hamaoka nuclear power plant. This power plant was recently shut down at the request of the Japanese government for remedial work after it was deemed dangerous to continue operating in light of its position on one of the major seismic faults lines in the Japanese archipelago. In the post partly translated here, he tells of his experiences as a temporary worker when he worked for the first time inside a steam generator at the Genkai nuclear power plant in southern Japan.
  • The following post was originally published on December 26th, 2010 and translated with the author's consent:
  • ...12 more annotations...
  • I worked at Hamaoka nuclear plant for a little over 5 years, but it was not the only time I’d worked at a power plant. Before Hamaoka, I spent my 30s working at a nearby nuclear plant for about 10 years in the 1980’s. At that time, I did not work at just one site but was moving from one plant to another to do regular maintenance work. Recently, that kind of people are called “Nuclear gypsies” with a bit of contempt and in that period I was living as one of those. Two years after I began the wandering life of a gypsy, I entered for the first time the core container of a steam generator. At the time I was working at the Genkai Nuclear Power Plant in Saga Prefecture. [Editor's note: In brief, there is a containment building within the plant. This houses the core and the steam generator.] The core is the part of the reactor where uranium fuel undergoes nuclear fission. It generates heat which is then passed to The steam generator which produces the steam to power the turbines which turn the generators elsewhere in the plant . The level of radioactivity in the containment building is very high compared to elsewhere [in the plant]. My job involved entering [the generator] and installing a robot monitor that would enable examination of whether there was any damage in the steam generator.
  • Actually what happened on the day was that another person replaced me and entered the steam generator to install the robot. After the installation was completed, there was a problem in that the robot wouldn’t respond and thus could not be operated from outside. There are many small holes in the walls of the central part of the steam generator and the six (I believe there were six) ‘legs’ of a robot, operated via a remote control, should be able to survey it through those holes. The employees in charge of supervising the installation concluded that there had been a problem in properly positioning the robot’s legs.
  • If the ‘legs’ are not completely inserted and the robot is left in that position, it could fall down at any time. If that happens, it spells the loss of a precision machine that's said to be worth several hundred million yen. That’s why I was sent in to enter the generator, on very short notice, to replace the robot back to its correct operating position before that happened. I started putting on the gear to enter the housing at a spot near the steam generator. Two workers helped me put it on. I was already wearing two layers of work clothes, and on top of those, I put on Tyvek protective gear made of paper and vinyl, and an airline respirator. Plus, I wrapped a lot of vinyl tape around my neck, my wrists and my ankles, to block even the slightest opening.
  • Once I finished putting on the protective gear — which honestly looks like an astronaut suit — I headed toward the housing. When I arrived at the area near the housing, two workers were waiting. They were employees of a company called the Japanese Society for Non-Destructive Inspection [JSNDI] and, to my surprise, despite the area being highly radioactive, they were wearing nothing but plain working clothes. They weren’t even wearing masks. The person who appeared to be in charge invited me over and, after a look at my eyes inside the mask, nodded his head a few times. I guess just looking into my eyes he was able to determine that I’d be able to handle working in the core.
  • He and I went to the steam generator together.
  • The base of the steam generator more or less reached my shoulder, at slightly less than 1.5m. At the bottom, there was a manhole. The manhole was open, and I immediately realized I would have to climb up into it.
  • The JSNDI employee in charge put his arm around me and together we approached the manhole. We looked over the edge and peered in. Inside was dark, and the air was dense and stagnant. It felt as though something sinister was living inside. My expression glazed over. A slight sensation of dread came over me. As I approached the manhole, I noticed a ringing in my ears and felt reluctant to go in. When I looked inside, I saw that the robot was attached to the wall indicated by the [JSNDI] employee. It was not properly attached, which is why I had been sent in.
  • The robot was square-shaped, 40 cm on each side and 20 cm deep. It was called a ‘spider robot’. The JSNDI employee put his face at the edge of the manhole, a third of his face peering in, and diligently explained what I had to do. There was little awareness at the time of the dangers to workers of radiation exposure, but even so I was concerned about the bold act of the employee, who looked inside the housing with me. He continued looking inside, unfazed, and I remember wondering why he wasn’t scared. I was almost completely covered while he wasn’t even wearing a mask. […]
  • I stood up, climbed the ladder, and pushed my upper body through the manhole. In that second, something grabbed at my head and squeezed hard. A pounding in my ear started right away.
  • One worker said that right after he entered a nuclear reactor he heard a noise like a moving crab. “zawa,zawa,zawa…” He said that he could still hear this noise after he finished the work. Even after the inspection work, when he went back home, he couldn’t forget that noise. The man ended up having a nervous breakdown. A writer who heard this story spoke to this man and wrote a mystery novel based on that experience. The title of the book is “The crab of the nuclear reactor”. It was published in 1981 and was very popular among us.
  • I never heard such a crab-like noise but I had the feeling that my head was being tightly constricted and deep in my ears I heard very high-tempo echoes like a sutra “gan, gan, gan”. When I entered the steam generator I stood up all of a sudden and my helmet hit the ceiling. So I had to bend my neck and hold both the arms of the robot in the darkish room. “OK” I screamed. So the robot was unlocked and its feet jumped out of the hole. The entire robot was not as heavy as I had thought. After I matched its feet position in the holes I gave them another OK sign and so it was positioned in the hole. In the dark, when I verified that all the feet had entered into the holes I gave them another OK and jumped out of the manhole. […]
  • Once outside,] I was almost in shock but looked at the alarm meter and saw that it had recorded a value equal to 180, when the maximum it can record is 200. In only 15 seconds, I was exposed to an unbelievably high level of radiation, 180 millirem. At that time the unit ‘millirem' was used while now it’s different. Now everybody uses sievert. That time I was in charge of an inspection work that lasted about 1 month. After that I worked in another nuclear reactor but even on the second time I couldn’t get through the fear and experienced the same creepy noise.
D'coda Dcoda

The Dispatch Queue - An Alternative Means of Accounting for External Costs? [28Sep11] - 0 views

  • Without much going on recently that hasn’t been covered by other blog posts, I’d like to explore a topic not specifically tied to nuclear power or to activities currently going on in Washington, D.C. It involves an idea I have about a possible alternative means of having the electricity market account for the public health and environmental costs of various energy sources, and encouraging the development and use of cleaner sources (including nuclear) without requiring legislation. Given the failure of Congress to take action on global warming, as well as environmental issues in general, non-legislative approaches to accomplishing environmental goals may be necessary. The Problem
  • One may say that the best response would be to significantly tighten pollution regulations, perhaps to the point where no sources have significant external costs. There are problems with this approach, however, above and beyond the fact that the energy industry has (and will?) successfully blocked the legislation that would be required. Significant tightening of regulations raises issues such as how expensive compliance will be, and whether or not viable alternative (cleaner) sources would be available. The beauty of simply placing a cost (or tax) on pollution that reflects its costs to public health and the environment is that those issues need not be addressed. The market just decides between sources based on the true, overall cost of each, resulting in the minimum overall (economic + environmental) cost-generation portfolio
  • The above reasoning is what led to policies like cap-and-trade or a CO2 emissions tax being proposed as a solution for the global warming problem. This has not flown politically, however. Policies that attempt to have external costs included in the market cost of energy have been labeled a “tax increase.” This is particularly true given that the associated pollution taxes (or emissions credit costs) would have largely gone to the government.
  • ...15 more annotations...
  • One final idea, which does not involve money going to or from government, is simply requiring that cleaner sources provide a certain fraction of our overall power generation. The many state Renewable Portfolio Standards (that do not include nuclear) and the Clean Energy Standard being considered by Congress and the Obama administration (which does include nuclear) are examples of this policy. While better than nothing, such policies are not ideal in that they are crude, and don’t involve a quantitative incentive based on real external costs. An energy source is either defined as “clean,” or it is not. Note that the definition of “clean” would be decided politically, as opposed to objectively based on tangible external costs determined by scientific studies (nuclear’s exclusion from state Renewable Portfolio Standards policies being one outrageous example). Finally, there is the fact that any such policy would require legislation.
  • Well, if we can’t tax pollution, how about encouraging the use of clean sources by giving them subsidies? This has proved to be more popular so far, but this idea has also recently run into trouble, given the current situation with the budget deficit and national debt. Events like the Solyndra bankruptcy have put government clean energy subsidies even more on the defensive. Thus, it seems that neither policies involving money flowing to the government nor policies involving money flowing from the government are politically viable at this point.
  • All of the above begs the question whether there is a policy available that will encourage the use of cleaner energy sources that is revenue-neutral (i.e., does not involve money flowing to or from the government), does not involve the outright (political) selection of certain energy sources over others, and does not require legislation. Enter the Dispatch Queue
  • There must be enough power plants in a given region to meet the maximum load (or demand) expected to occur. In fact, total generation capacity must exceed maximum demand by a specified “reserve margin,” to address the possibility of a plant going offline, or other possible considerations. Due to the fact that demand varies significantly with time, a significant fraction of the generation capacity remains offline, some or most of the time. The dispatch queue is a means by which utilities, or independent regional grid operators, decide which power plants will operate in order to meet demand at any given instant. A good discussion of dispatch queues and how they operate can be found in this Department of Energy report.
  • The general goal of the methodology used to set the dispatch queue order is to minimize overall generation cost, while staying in compliance with all federal or state laws (environmental rules, etc.). This is done by placing the power plants with the lowest “variable” cost first in the queue. Plants with the highest “variable” cost are placed last. The “variable” cost of a plant represents how much more it costs to operate the plant than it costs to leave it idle (i.e., it includes the fuel cost and maintenance costs that arise from operation, but does not include the plant capital cost, personnel costs, or any fixed maintenance costs). Thus, one starts with the least expensive plants, and moves up (in cost) until generation meets demand. The remaining, more expensive plants are not fired up. This ensures that the lowest-operating-cost set of plants is used to meet demand at any given time
  • As far as who makes the decisions is concerned, in many cases the local utility itself runs the dispatch for its own service territory. In most of the United States, however, there is a large regional grid (covering several utilities) that is operated by an Independent System Operator (ISO) or Regional Transmission Organization (RTO), and those organizations, which are independent of the utilities, set the dispatch queue for the region. The Idea
  • As discussed above, a plant’s place in the dispatch queue is based upon variable cost, with the lowest variable cost plants being first in the queue. As discussed in the DOE report, all the dispatch queues in the country base the dispatch order almost entirely on variable cost, with the only possible exceptions being issues related to maximizing grid reliability. What if the plant dispatch methodology were revised so that environmental costs were also considered? Ideally, the public health and environmental costs would be objectively and scientifically determined and cast in terms of an equivalent economic cost (as has been done in many scientific studies such as the ExternE study referenced earlier). The calculated external cost would be added to a plant’s variable cost, and its place in the dispatch queue would be adjusted accordingly. The net effect would be that dirtier plants would be run much less often, resulting in greatly reduced pollution.
  • This could have a huge impact in the United States, especially at the current time. Currently, natural gas prices are so low that the variable costs of combine-cycle natural gas plants are not much higher than those of coal plants, even without considering environmental impacts. Also, there is a large amount of natural gas generation capacity sitting idle.
  • More specifically, if dispatch queue ordering methods were revised to even place a small (economic) weight on environmental costs, there would be a large switch from coal to gas generation, with coal plants (especially the older, dirtier ones) moving to the back of the dispatch queue, and only running very rarely (at times of very high demand). The specific idea of putting gas plants ahead of coal plants in the dispatch queue is being discussed by others.
  • The beauty of this idea is that it does not involve any type of tax or government subsidy. It is revenue neutral. Also, depending on the specifics of how it’s implemented, it can be quantitative in nature, with environmental costs of various power plants being objectively weighed, as opposed certain sources simply being chosen, by government/political fiat, over others. It also may not require legislation (see below). Finally, dispatch queues and their policies and methods are a rather arcane subject and are generally below the political radar (many folks haven’t even heard of them). Thus, this approach may allow the nation’s environmental goals to be (quietly) met without causing a political uproar. It could allow policy makers to do the right thing without paying too high of a political cost.
  • Questions/Issues The DOE report does mention some examples of dispatch queue methods factoring in issues other than just the variable cost. It is fairly common for issues of grid reliability to be considered. Also, compliance with federal or state environmental requirements can have some impacts. Examples of such laws include limits on the hours of operation for certain polluting facilities, or state requirements that a “renewable” facility generate a certain amount of power over the year. The report also discusses the possibility of favoring more fuel efficient gas plants over less efficient ones in the queue, even if using the less efficient plants at that moment would have cost less, in order to save natural gas. Thus, the report does discuss deviations from the pure cost model, to consider things like environmental impact and resource conservation.
  • I could not ascertain from the DOE report, however, what legal authorities govern the entities that make the plant dispatch decisions (i.e., the ISOs and RTOs), and what types of action would be required in order to change the dispatch methodology (e.g., whether legislation would be required). The DOE report was a study that was called for by the Energy Policy Act of 2005, which implies that its conclusions would be considered in future congressional legislation. I could not tell from reading the report if the lowest cost (only) method of dispatch is actually enshrined somewhere in state or federal law. If so, the changes I’m proposing would require legislation, of course.
  • The DOE report states that in some regions the local utility runs the dispatch queue itself. In the case of the larger grids run by the ISOs and RTOs (which cover most of the country), the report implies that those entities are heavily influenced, if not governed, by the Federal Energy Regulatory Commission (FERC), which is part of the executive branch of the federal government. In the case of utility-run dispatch queues, it seems that nothing short of new regulations (on pollution limits, or direct guidance on dispatch queue ordering) would result in a change in dispatch policy. Whereas reducing cost and maximizing grid reliability would be directly in the utility’s interest, favoring cleaner generation sources in the queue would not, unless it is driven by regulations. Thus, in this case, legislation would probably be necessary, although it’s conceivable that the EPA could act (like it’s about to on CO2).
  • In the case of the large grids run by ISOs and RTOs, it’s possible that such a change in dispatch methodology could be made by the federal executive branch, if indeed the FERC has the power to mandate such a change
  • Effect on Nuclear With respect to the impacts of including environmental costs in plant dispatch order determination, I’ve mainly discussed the effects on gas vs. coal. Indeed, a switch from coal to gas would be the main impact of such a policy change. As for nuclear, as well as renewables, the direct/immediate impact would be minimal. That is because both nuclear and renewable sources have high capital costs but very low variable costs. They also have very low environmental impacts; much lower than those of coal or gas. Thus, they will remain at the front of the dispatch queue, ahead of both coal and gas.
D'coda Dcoda

The nuclear power plans that have survived Fukushima [28Sep11] - 0 views

  • SciDev.Net reporters from around the world tell us which countries are set on developing nuclear energy despite the Fukushima accident. The quest for energy independence, rising power needs and a desire for political weight all mean that few developing countries with nuclear ambitions have abandoned them in the light of the Fukushima accident. Jordan's planned nuclear plant is part of a strategy to deal with acute water and energy shortages.
  • The Jordan Atomic Energy Commission (JAEC) wants Jordan to get 60 per cent of its energy from nuclear by 2035. Currently, obtaining energy from neighbouring Arab countries costs Jordan about a fifth of its gross domestic product. The country is also one of the world's most water-poor nations. Jordan plans to desalinate sea water from the Gulf of Aqaba to the south, then pump it to population centres in Amman, Irbid, and Zarqa, using its nuclear-derived energy. After the Fukushima disaster, Jordan started re-evaluating safety procedures for its nuclear reactor, scheduled to begin construction in 2013. The country also considered more safety procedures for construction and in ongoing geological and environmental investigations.
  • The government would not reverse its decision to build nuclear reactors in Jordan because of the Fukushima disaster," says Abdel-Halim Wreikat, vice Chairman of the JAEC. "Our plant type is a third-generation pressurised water reactor, and it is safer than the Fukushima boiling water reactor." Wreikat argues that "the nuclear option for Jordan at the moment is better than renewable energy options such as solar and wind, as they are still of high cost." But some Jordanian researchers disagree. "The cost of electricity generated from solar plants comes down each year by about five per cent, while the cost of producing electricity from nuclear power is rising year after year," says Ahmed Al-Salaymeh, director of the Energy Centre at the University of Jordan. He called for more economic feasibility studies of the nuclear option.
  • ...20 more annotations...
  • And Ahmad Al-Malabeh, a professor in the Earth and Environmental Sciences department of Hashemite University, adds: "Jordan is rich not only in solar and wind resources, but also in oil shale rock, from which we can extract oil that can cover Jordan's energy needs in the coming years, starting between 2016 and 2017 ... this could give us more time to have more economically feasible renewable energy."
  • Finance, rather than Fukushima, may delay South Africa's nuclear plans, which were approved just five days after the Japanese disaster. South Africa remains resolute in its plans to build six new nuclear reactors by 2030. Katse Maphoto, the director of Nuclear Safety, Liabilities and Emergency Management at the Department of Energy, says that the government conducted a safety review of its two nuclear reactors in Cape Town, following the Fukushima event.
  • Vietnam's nuclear energy targets remain ambitious despite scientists' warning of a tsunami risk. Vietnam's plan to power 10 per cent of its electricity grid with nuclear energy within 20 years is the most ambitious nuclear energy plan in South-East Asia. The country's first nuclear plant, Ninh Thuan, is to be built with support from a state-owned Russian energy company and completed by 2020. Le Huy Minh, director of the Earthquake and Tsunami Warning Centre at Vietnam's Institute of Geophysics, has warned that Vietnam's coast would be affected by tsunamis in the adjacent South China Sea.
  • Larkin says nuclear energy is the only alternative to coal for generating adequate electricity. "What other alternative do we have? Renewables are barely going to do anything," he said. He argues that nuclear is capable of supplying 85 per cent of the base load, or constantly needed, power supply, while solar energy can only produce between 17 and 25 per cent. But, despite government confidence, Larkin says that a shortage of money may delay the country's nuclear plans.
  • The government has said yes but hasn't said how it will pay for it. This is going to end up delaying by 15 years any plans to build a nuclear station."
  • The Ninh Thuan nuclear plant would sit 80 to 100 kilometres from a fault line on the Vietnamese coast, potentially exposing it to tsunamis, according to state media. But Vuong Huu Tan, president of the state-owned Vietnam Atomic Energy Commission, told state media in March, however, that lessons from the Fukushima accident will help Vietnam develop safe technologies. And John Morris, an Australia-based energy consultant who has worked as a geologist in Vietnam, says the seismic risk for nuclear power plants in the country would not be "a major issue" as long as the plants were built properly. Japan's nuclear plants are "a lot more earthquake prone" than Vietnam's would be, he adds.
  • Undeterred by Fukushima, Nigeria is forging ahead with nuclear collaborations. There is no need to panic because of the Fukushima accident, says Shamsideen Elegba, chair of the Forum of Nuclear Regulatory Bodies in Africa. Nigeria has the necessary regulatory system to keep nuclear activities safe. "The Nigerian Nuclear Regulatory Authority [NNRA] has established itself as a credible organisation for regulatory oversight on all uses of ionising radiation, nuclear materials and radioactive sources," says Elegba who was, until recently, the NNRA's director general.
  • Vietnam is unlikely to experience much in the way of anti-nuclear protests, unlike neighbouring Indonesia and the Philippines, where civil society groups have had more influence, says Kevin Punzalan, an energy expert at De La Salle University in the Philippines. Warnings from the Vietnamese scientific community may force the country's ruling communist party to choose alternative locations for nuclear reactors, or to modify reactor designs, but probably will not cause extreme shifts in the one-party state's nuclear energy strategy, Punzalan tells SciDev.Net.
  • Will the Philippines' plans to rehabilitate a never-used nuclear power plant survive the Fukushima accident? The Philippines is under a 25-year moratorium on the use of nuclear energy which expires in 2022. The government says it remains open to harnessing nuclear energy as a long-term solution to growing electricity demand, and its Department of Science and Technology has been making public pronouncements in favour of pursuing nuclear energy since the Fukushima accident. Privately, however, DOST officials acknowledge that the accident has put back their job of winning the public over to nuclear by four or five years.
  • In the meantime, the government is trying to build capacity. The country lacks, for example, the technical expertise. Carmencita Bariso, assistant director of the Department of Energy's planning bureau, says that, despite the Fukushima accident, her organisation has continued with a study on the viability, safety and social acceptability of nuclear energy. Bariso says the study would include a proposal for "a way forward" for the Bataan Nuclear Power Plant, the first nuclear reactor in South East Asia at the time of its completion in 1985. The $2.3-billion Westinghouse light water reactor, about 60 miles north of the capital, Manila, was never used, though it has the potential to generate 621 megawatts of power. President Benigno Aquino III, whose mother, President Corazon Aquino, halted work on the facility in 1986 because of corruption and safety issues, has said it will never be used as a nuclear reactor but could be privatised and redeveloped as a conventional power plant.
  • But Mark Cojuangco, former lawmaker, authored a bill in 2008 seeking to start commercial nuclear operations at the Bataan reactor. His bill was not passed before Congress adjourned last year and he acknowledges that the Fukushima accident has made his struggle more difficult. "To go nuclear is still the right thing to do," he says. "But this requires a societal decision. We are going to spark public debates with a vengeance as soon as the reports from Fukushima are out." Amended bills seeking both to restart the reactor, and to close the issue by allowing either conversion or permanent closure, are pending in both the House and the Senate. Greenpeace, which campaigns against nuclear power, believes the Fukushima accident has dimmed the chances of commissioning the Bataan plant because of "increased awareness of what radioactivity can do to a place". Many parts of the country are prone to earthquakes and other natural disasters, which critics say makes it unsuitable both for the siting of nuclear power stations and the disposal of radioactive waste.
  • In Kenya, nuclear proponents argue for a geothermal – nuclear mix In the same month as the Fukushima accident, inspectors from the International Atomic Energy Agency approved Kenya's application for its first nuclear power station (31 March), a 35,000 megawatt facility to be built at a cost of Sh950 billion (US$9.8 billion) on a 200-acre plot on the Athi Plains, about 50km from Nairobi
  • The plant, with construction driven by Kenya's Nuclear Electricity Project Committee, should be commissioned in 2022. The government claims it could satisfy all of Kenya's energy needs until 2040. The demand for electricity is overwhelming in Kenya. Less than half of residents in the capital, Nairobi, have grid electricity, while the rural rate is two per cent. James Rege, Chairman of the Parliamentary Committee on Energy, Communication and Information, takes a broader view than the official government line, saying that geothermal energy, from the Rift Valley project is the most promising option. It has a high production cost but remains the country's "best hope". Nuclear should be included as "backup". "We are viewing nuclear energy as an alternative source of power. The cost of fossil fuel keeps escalating and ordinary Kenyans can't afford it," Rege tells SciDev.Net.
  • Hydropower is limited by rivers running dry, he says. And switching the country's arable land to biofuel production would threaten food supplies. David Otwoma, secretary to the Energy Ministry's Nuclear Electricity Development Project, agrees that Kenya will not be able to industrialise without diversifying its energy mix to include more geothermal, nuclear and coal. Otwoma believes the expense of generating nuclear energy could one day be met through shared regional projects but, until then, Kenya has to move forward on its own. According to Rege, much as the nuclear energy alternative is promising, it is extremely important to take into consideration the Fukushima accident. "Data is available and it must be one step at a time without rushing things," he says. Otwoma says the new nuclear Kenya can develop a good nuclear safety culture from the outset, "but to do this we need to be willing to learn all the lessons and embrace them, not forget them and assume that won't happen to us".
  • But the government adopted its Integrated Resource Plan (IRP) for 2010-2030 five days after the Fukushima accident. Elliot Mulane, communications manager for the South African Nuclear Energy Corporation, (NECSA) a public company established under the 1999 Nuclear Energy Act that promotes nuclear research, said the timing of the decision indicated "the confidence that the government has in nuclear technologies". And Dipuo Peters, energy minister, reiterated the commitment in her budget announcement earlier this year (26 May), saying: "We are still convinced that nuclear power is a necessary part of our strategy that seeks to reduce our greenhouse gas emissions through a diversified portfolio, comprising some fossil-based, renewable and energy efficiency technologies". James Larkin, director of the Radiation and Health Physics Unit at the University of the Witwatersrand, believes South Africa is likely to go for the relatively cheap, South Korean generation three reactor.
  • It is not only that we say so: an international audit came here in 2006 to assess our procedure and processes and confirmed the same. Elegba is firmly of the view that blame for the Fukushima accident should be allocated to nature rather than human error. "Japan is one of the leaders not only in that industry, but in terms of regulatory oversight. They have a very rigorous system of licensing. We have to make a distinction between a natural event, or series of natural events and engineering infrastructure, regulatory infrastructure, and safety oversight." Erepamo Osaisai, Director General of the Nigeria Atomic Energy Commission (NAEC), has said there is "no going back" on Nigeria's nuclear energy project after Fukushima.
  • Nigeria is likely to recruit the Russian State Corporation for Atomic Energy, ROSATOM, to build its first proposed nuclear plant. A delegation visited Nigeria (26- 28 July) and a bilateral document is to be finalised before December. Nikolay Spassy, director general of the corporation, said during the visit: "The peaceful use of nuclear power is the bedrock of development, and achieving [Nigeria's] goal of being one of the twenty most developed countries by the year 2020 would depend heavily on developing nuclear power plants." ROSATOM points out that the International Atomic Energy Agency monitors and regulates power plant construction in previously non-nuclear countries. But Nnimmo Bassey, executive director of the Environmental Rights Action/Friends of the Earth Nigeria (ERA/FoEN), said "We cannot see the logic behind the government's support for a technology that former promoters in Europe, and other technologically advanced nations, are now applying brakes to. "What Nigeria needs now is investment in safe alternatives that will not harm the environment and the people. We cannot accept the nuclear option."
  • Thirsty for electricity, and desirous of political clout, Egypt is determined that neither Fukushima ― nor revolution ― will derail its nuclear plans. Egypt was the first country in the Middle East and North Africa to own a nuclear programme, launching a research reactor in 1961. In 2007 Egypt 'unfroze' a nuclear programme that had stalled in the aftermath of the Chernobyl disaster. After the Egyptian uprising in early 2011, and the Fukushima accident, the government postponed an international tender for the construction of its first plant.
  • Yassin Ibrahim, chairman of the Nuclear Power Plants Authority, told SciDev.Net: "We put additional procedures in place to avoid any states of emergency but, because of the uprising, the tender will be postponed until we have political stability after the presidential and parliamentary election at the end of 2011". Ibrahim denies the nuclear programme could be cancelled, saying: "The design specifications for the Egyptian nuclear plant take into account resistance to earthquakes and tsunamis, including those greater in magnitude than any that have happened in the region for the last four thousand years. "The reactor type is of the third generation of pressurised water reactors, which have not resulted in any adverse effects to the environment since they began operation in the early sixties."
  • Ibrahim El-Osery, a consultant in nuclear affairs and energy at the country's Nuclear Power Plants Authority, points out that Egypt's limited resources of oil and natural gas will run out in 20 years. "Then we will have to import electricity, and we can't rely on renewable energy as it is still not economic yet — Egypt in 2010 produced only two per cent of its needs through it." But there are other motives for going nuclear, says Nadia Sharara, professor of mineralogy at Assiut University. "Owning nuclear plants is a political decision in the first place, especially in our region. And any state that has acquired nuclear technology has political weight in the international community," she says. "Egypt has the potential to own this power as Egypt's Nuclear Materials Authority estimates there are 15,000 tons of untapped uranium in Egypt." And she points out it is about staying ahead with technology too. "If Egypt freezes its programme now because of the Fukushima nuclear disaster it will fall behind in many science research fields for at least the next 50 years," she warned.
D'coda Dcoda

CPS must die [24Oct07} - 0 views

  • Collectively, Texas eats more energy than any other state, according to the U.S. Department of Energy. We’re fifth in the country when it comes to our per-capita energy intake — about 532 million British Thermal Units per year. A British Thermal Unit, or Btu, is like a little “bite” of energy. Imagine a wooden match burning and you’ve got a Btu on a stick. Of course, the consumption is with reason. Texas, home to a quarter of the U.S. domestic oil reserves, is also bulging with the second-highest population and a serious petrochemical industry. In recent years, we managed to turn ourselves into the country’s top producer of wind energy. Despite all the chest-thumping that goes on in these parts about those West Texas wind farms (hoist that foam finger!), we are still among the worst in how we use that energy. Though not technically “Southern,” Texans guzzle energy like true rednecks. Each of our homes use, on average, about 14,400 kilowatt hours per year, according to the U.S. Energy Information Administration. It doesn’t all have to do with the A/C, either. Arizonans, generally agreed to be sharing the heat, typically use about 12,000 kWh a year; New Mexicans cruise in at an annual 7,200 kWh. Don’t even get me started on California’s mere 6,000 kWh/year figure.
  • Let’s break down that kilowatt-hour thing. A watt is the energy of one candle burning down. (You didn’t put those matches away, did you?) A kilowatt is a thousand burnin’ candles. And a kilowatt hour? I think you can take it from there. We’re wide about the middle in Bexar, too. The average CPS customer used 1,538 kilowatt hours this June when the state average was 1,149 kWh, according to ERCOT. Compare that with Austin residents’ 1,175 kWh and San Marcos residents’ 1,130 kWh, and you start to see something is wrong. So, we’re wasteful. So what? For one, we can’t afford to be. Maybe back when James Dean was lusting under a fountain of crude we had if not reason, an excuse. But in the 1990s Texas became a net importer of energy for the first time. It’s become a habit, putting us behind the curve when it comes to preparing for that tightening energy crush. We all know what happens when growing demand meets an increasingly scarce resource … costs go up. As the pressure drop hits San Anto, there are exactly two ways forward. One is to build another massively expensive power plant. The other is to transform the whole frickin’ city into a de-facto power plant, where energy is used as efficiently as possible and blackouts simply don’t occur.
  • Consider, South Texas Project Plants 1&2, which send us almost 40 percent of our power, were supposed to cost $974 million. The final cost on that pair ended up at $5.5 billion. If the planned STP expansion follows the same inflationary trajectory, the price tag would wind up over $30 billion. Applications for the Matagorda County plants were first filed with the Atomic Energy Commission in 1974. Building began two years later. However, in 1983 there was still no plant, and Austin, a minority partner in the project, sued Houston Power & Lighting for mismanagement in an attempt to get out of the deal. (Though they tried to sell their share several years ago, the city of Austin remains a 16-percent partner, though they have chosen not to commit to current expansion plans).
  • ...17 more annotations...
  • CPS didn’t just pull nukes out of a hat when it went looking for energy options. CEO Milton Lee may be intellectually lazy, but he’s not stupid. Seeking to fulfill the cheap power mandate in San Antonio and beyond (CPS territory covers 1,566 square miles, reaching past Bexar County into Atascosa, Bandera, Comal, Guadalupe, Kendall, Medina, and Wilson counties), staff laid natural gas, coal, renewables and conservation, and nuclear side-by-side and proclaimed nukes triumphant. Coal is cheap upfront, but it’s helplessly foul; natural gas, approaching the price of whiskey, is out; and green solutions just aren’t ready, we’re told. The 42-member Nuclear Expansion Analysis Team, or NEAT, proclaimed “nuclear is the lowest overall risk considering possible costs and risks associated with it as compared to the alternatives.” Hear those crickets chirping?
  • NEAT members would hold more than a half-dozen closed-door meetings before the San Antonio City Council got a private briefing in September. When the CPS board assembled October 1 to vote the NRG partnership up or down, CPS executives had already joined the application pending with the U.S. Nuclear Regulatory Commission. A Supplemental Participation Agreement allowed NRG to move quickly in hopes of cashing in on federal incentives while giving San Antonio time to gather its thoughts. That proved not too difficult. Staff spoke of “overwhelming support” from the Citizen’s Advisory Board and easy relations with City staff. “So far, we haven’t seen any fatal flaws in our analysis,” said Mike Kotera, executive vice president of energy development for CPS. With boardmember and Mayor Phil Hardberger still in China inspecting things presumably Chinese, the vote was reset for October 29.
  • No one at the meeting asked about cost, though the board did request a month-by-month analysis of the fiasco that has been the South Texas Project 1&2 to be delivered at Monday’s meeting. When asked privately about cost, several CPS officers said they did not know what the plants would run, and the figure — if it were known — would not be public since it is the subject of contract negotiations. “We don’t know yet,” said Bob McCullough, director of CPS’s corporate communications. “We are not making the commitment to build the plant. We’re not sure at this point we really understand what it’s going to cost.” The $206 million outlay the board will consider on Monday is not to build the pair of 1,300-megawatt, Westinghouse Advanced Boiling Water Reactors. It is also not a contract to purchase power, McCullough said. It is merely to hold a place in line for that power.
  • It’s likely that we would come on a recurring basis back to the board to keep them apprised of where we are and also the decision of whether or not we think it makes sense for us to go forward,” said Larry Blaylock, director of CPS’s Nuclear Oversight & Development. So, at what point will the total cost of the new plants become transparent to taxpayers? CPS doesn’t have that answer. “At this point, it looks like in order to meet our load growth, nuclear looks like our lowest-risk choice and we think it’s worth spending some money to make sure we hold that place in line,” said Mark Werner, director of Energy Market Operations.
  • Another $10 million request for “other new nuclear project opportunities” will also come to the board Monday. That request summons to mind a March meeting between CPS officials and Exelon Energy reps, followed by a Spurs playoff game. Chicago-based Exelon, currently being sued in Illinois for allegedly releasing millions of gallons of radioactive wastewater beneath an Illinois plant, has its own nuclear ambitions for Texas. South Texas Project The White House champions nuclear, and strong tax breaks and subsidies await those early applicants. Whether CPS qualifies for those millions remains to be seen. We can only hope.
  • CPS has opted for the Super Honkin’ Utility model. Not only that — quivering on the brink of what could be a substantial efficiency program, CPS took a leap into our unflattering past when it announced it hopes to double our nuclear “portfolio” by building two new nuke plants in Matagorda County. The utility joined New Jersey-based NRG Energy in a permit application that could fracture an almost 30-year moratorium on nuclear power plant creation in the U.S.
  • After Unit 1 came online in 1988, it had to be shut down after water-pump shaft seared off in May, showering debris “all over the place,” according to Nucleonics Week. The next month two breakers failed during a test of backup power, leading to an explosion that sheared off a steam-generator pump and shot the shaft into the station yard. After the second unit went online the next year, there were a series of fires and failures leading to a half-million-dollar federal fine in 1993 against Houston Power. Then the plant went offline for 14 months. Not the glorious launch the partnership had hoped for. Today, CPS officials still do not know how much STP has cost the city, though they insist overall it has been a boon worth billions. “It’s not a cut-and-dried analysis. We’re doing what we can to try to put that in terms that someone could share and that’s a chore,” said spokesman McCollough. CPS has appealed numerous Open Records requests by the Current to the state Attorney General. The utility argues that despite being owned by the City they are not required to reveal, for instance, how much it may cost to build a plant or even how much pollution a plant generates, since the electricity market is a competitive field.
  • How do we usher in this new utopia of decentralized power? First, we have to kill CPS and bury it — or the model it is run on, anyway. What we resurrect in its place must have sustainability as its cornerstone, meaning that the efficiency standards the City and the utility have been reaching for must be rapidly eclipsed. Not only are new plants not the solution, they actively misdirect needed dollars away from the answer. Whether we commit $500 million to build a new-fangled “clean-coal” power plant or choose to feed multiple billions into a nuclear quagmire, we’re eliminating the most plausible option we have: rapid decentralization.
  • A 2003 study at the Massachusetts Institute of Technology estimates the cost of nuclear power to exceed that of both coal and natural gas. A U.S. Energy Information Administration report last year found that will still be the case when and if new plants come online in the next decade. If ratepayers don’t pay going in with nuclear, they can bet on paying on the way out, when virtually the entire power plant must be disposed of as costly radioactive waste. The federal government’s inability to develop a repository for the tens of thousands of tons of nuclear waste means reactors across the country are storing spent fuel in onsite holding ponds. It is unclear if the waste’s lethality and tens of thousands of years of radioactivity were factored into NEAT’s glowing analysis.
  • The federal dump choice, Nevada’s Yucca Mountain, is expected to cost taxpayers more than $60 billion. If it opens, Yucca will be full by the time STP 3&4 are finished, requiring another federal dump and another trainload of greenbacks. Just the cost of Yucca’s fence would set you back. Add the price of replacing a chain-link fence around, let’s say, a 100-acre waste site. Now figure you’re gonna do that every 50 years for 10,000 years or more. Security guards cost extra. That is not to say that the city should skip back to the coal mine. Thankfully, we don’t need nukes or coal, according to the American Council for an Energy-Efficient Economy, a D.C.-based non-profit that champions energy efficiency. A collection of reports released this year argue that a combination of ramped-up efficiency programs, construction of numerous “combined heat and power” facilities, and installation of on-site renewable energy resources would allow the state to avoid building new power plants. Texas could save $73 billion in electric generation costs by spending $50 billion between now and 2023 on such programs, according to the research group. The group also claims the efficiency revolution would even be good for the economy, creating 38,300 jobs. If ACEEE is even mostly right, plans to start siphoning millions into a nuclear reservoir look none too inspired.
  • To jump tracks will take a major conversion experience inside CPS and City Hall, a turning from the traditional model of towering plants, reels of transmission line, and jillions of dependent consumers. CPS must “decentralize” itself, as cities as close as Austin and as far away as Seattle are doing. It’s not only economically responsible and environmentally sound, but it is the best way to protect our communities entering what is sure to be a harrowing century. Greening CPS CPS is grudgingly going greener. In 2004, a team of consultants, including Wisconsin-based KEMA Inc., hired to review CPS operations pegged the utility as a “a company in transition.” Executives interviewed didn’t understand efficiency as a business model. Even some managers tapped to implement conservation programs said such programs were about “appearing” concerned, according to KEMA’s findings.
  • While the review exposed some philosophical shortcomings, it also revealed for the first time how efficiency could transform San Antonio. It was technically possible, for instance, for CPS to cut electricity demand by 1,935 megawatts in 10 years through efficiency alone. While that would be accompanied with significant economic strain, a less-stressful scenario could still cut 1,220 megawatts in that period — eliminating 36 percent of 2014’s projected energy use. CPS’s current plans call for investing $96 million to achieve a 225-megawatt reduction by 2016. The utility plans to spend more than four times that much by 2012 upgrading pollution controls at the coal-fired J.T. Deely power plant.
  • In hopes of avoiding the construction of Spruce 2 (now being built, a marvel of cleanliness, we are assured), Citizen Oversight Committee members asked KEMA if it were possible to eliminate 500 megawatts from future demand through energy efficiency alone. KEMA reported back that, yes, indeed it was possible, but would represent an “extreme” operation and may have “unintended consequences.” Such an effort would require $620 million and include covering 90 percent of the cost of efficiency products for customers. But an interesting thing happens under such a model — the savings don’t end in 2012. They stretch on into the future. The 504 megawatts that never had to be generated in 2012 end up saving 62 new megawatts of generation in 2013 and another 53 megawatts in 2014. With a few tweaks on the efficiency model, not only can we avoid new plants, but a metaphorical flip of the switch can turn the entire city into one great big decentralized power generator.
  • Even without good financial data, the Citizen’s Advisory Board has gone along with the plan for expansion. The board would be “pennywise and pound foolish” not to, since the city is already tied to STP 1&2, said at-large member Jeannie O’Sullivan. “Yes, in the past the board of CPS had been a little bit not as for taking on a [greater] percentage of nuclear power. I don’t know what their reasons were, I think probably they didn’t have a dialogue with a lot of different people,” O’Sullivan said.
  • For this, having a City-owned utility offers an amazing opportunity and gives us the flexibility to make most of the needed changes without state or federal backing. “Really, when you start looking, there is a lot more you can do at the local level,” said Neil Elliott of the ACEEE, “because you control building codes. You control zoning. You can control siting. You can make stuff happen at the local level that the state really doesn’t have that much control of.” One of the most empowering options for homeowners is homemade energy provided by a technology like solar. While CPS has expanded into the solar incentives field this year, making it only the second utility in the state to offer rebates on solar water heaters and rooftop panels, the incentives for those programs are limited. Likewise, the $400,000 CPS is investing at the Pearl Brewery in a joint solar “project” is nice as a white tiger at a truck stop, but what is truly needed is to heavily subsidize solar across the city to help kickstart a viable solar industry in the state. The tools of energy generation, as well as the efficient use of that energy, must be spread among the home and business owners.
  • Joel Serface, with bulb-polished pate and heavy gaze, refers to himself as a “product of the oil shock” who first discovered renewables at Texas Tech’s summer “geek camp.” The possibilities stayed with him through his days as a venture capitalist in Silicon Valley and eventually led him to Austin to head the nation’s first clean-energy incubation center. Serface made his pitch at a recent Solar San Antonio breakfast by contrasting Texas with those sun-worshipping Californians. Energy prices, he says, are “going up. They’re not going down again.” That fact makes alternative energies like solar, just starting to crack the 10-cent-per-killowatt barrier, financially viable. “The question we have to solve as an economy is, ‘Do we want to be a leader in that, or do we want to allow other countries [to outpace us] and buy this back from them?’” he asked.
  • To remain an energy leader, Texas must rapidly exploit solar. Already, we are fourth down the list when it comes not only to solar generation, but also patents issued and federal research awards. Not surprisingly, California is kicking silicon dust in our face.
D'coda Dcoda

U.S. nuke regulators weaken safety rules [20Jun11] - 0 views

  • Federal regulators have been working closely with the nuclear power industry to keep the nation's aging reactors operating within safety standards by repeatedly weakening standards or simply failing to enforce them, an investigation by The Associated Press has found.Officials at the U.S. Nuclear Regulatory Commission regularly have decided original regulations were too strict, arguing that safety margins could be eased without peril, according to records and interviews.The result? Rising fears that these accommodations are undermining safety -- and inching the reactors closer to an accident that could harm the public and jeopardize nuclear power's future.
  • Examples abound. When valves leaked, more leakage was allowed -- up to 20 times the original limit. When cracking caused radioactive leaks in steam generator tubing, an easier test was devised so plants could meet standards.Failed cables. Busted seals. Broken nozzles, clogged screens, cracked concrete, dented containers, corroded metals and rusty underground pipes and thousands of other problems linked to aging were uncovered in AP's yearlong investigation. And many of them could escalate dangers during an accident.
  • Despite the problems, not a single official body in government or industry has studied the overall frequency and potential impact on safety of such breakdowns in recent years, even as the NRC has extended dozens of reactor licenses.Industry and government officials defend their actions and insist no chances are being taken. But the AP investigation found that with billions of dollars and 19 percent of America's electricity supply at stake, a cozy relationship prevails between industry and the NRC.Records show a recurring pattern: Reactor parts or systems fall out of compliance. Studies are conducted by industry and government, and all agree existing standards are "unnecessarily conservative."
  • ...14 more annotations...
  • Regulations are loosened, and reactors are back in compliance."That's what they say for everything ...," said Demetrios Basdekas, a retired NRC engineer. "Every time you turn around, they say, 'We have all this built-in conservatism.' "The crisis at the decades-old Fukushima Dai-ichi nuclear facility in Japan has focused attention on nuclear safety and prompted the NRC to look at U.S. reactors. A report is due in July.But the factor of aging goes far beyond issues posed by Fukushima.
  • Commercial nuclear reactors in the United States were designed and licensed for 40 years. When the first were built in the 1960s and 1970s, it was expected that they would be replaced with improved models long before their licenses expired.That never happened. The 1979 accident at Three Mile Island, massive cost overruns, crushing debt and high interest rates halted new construction in the 1980s.Instead, 66 of the 104 operating units have been relicensed for 20 more years. Renewal applications are under review for 16 other reactors.As of today, 82 reactors are more than 25 years old.The AP found proof that aging reactors have been allowed to run less safely to prolong operations.
  • Last year, the NRC weakened the safety margin for acceptable radiation damage to reactor vessels -- for a second time. The standard is based on a reactor vessel's "reference temperature," which predicts when it will become dangerously brittle and vulnerable to failure. Through the years, many plants have violated or come close to violating the standard.As a result, the minimum standard was relaxed first by raising the reference temperature 50 percent, and then 78 percent above the original -- even though a broken vessel could spill radioactive contents."We've seen the pattern," said nuclear safety scientist Dana Powers, who works for Sandia National Laboratories and also sits on an NRC advisory committee. "They're ... trying to get more and more out of these plants."
  • Sharpening the pencilThe AP study collected and analyzed government and industry documents -- some never-before released -- of both reactor types: pressurized water units that keep radioactivity confined to the reactor building and the less common boiling water types like those at Fukushima, which send radioactive water away from the reactor to drive electricity-generating turbines.The Energy Northwest Columbia Generating Station north of Richland is a boiling water design that's a newer generation than the Fukushima plants.Tens of thousands of pages of studies, test results, inspection reports and policy statements filed during four decades were reviewed. Interviews were conducted with scores of managers, regulators, engineers, scientists, whistleblowers, activists and residents living near the reactors at 65 sites, mostly in the East and Midwest.
  • AP reporters toured some of the oldest reactors -- Oyster Creek, N.J., near the Atlantic coast 50 miles east of Philadelphia and two at Indian Point, 25 miles north of New York City on the Hudson River.Called "Oyster Creak" by some critics, this boiling water reactor began running in 1969 and is the country's oldest operating commercial nuclear power plant. Its license was extended in 2009 until 2029, though utility officials announced in December they will shut the reactor 10 years earlier rather than build state-ordered cooling towers. Applications to extend the lives of pressurized water units 2 and 3 at Indian Point, each more than 36 years old, are under NRC review.Unprompted, several nuclear engineers and former regulators used nearly identical terminology to describe how industry and government research has frequently justified loosening safety standards. They call it "sharpening the pencil" or "pencil engineering" -- fudging calculations and assumptions to keep aging plants in compliance.
  • Cracked tubing: The industry has long known of cracking in steel alloy tubing used in the steam generators of pressurized water reactors. Ruptures have been common in these tubes containing radioactive coolant; in 1993 alone, there were seven. As many as 18 reactors still run on old generators.Problems can arise even in a newer metal alloy, according to a report of a 2008 industry-government workshop.
  • Neil Wilmshurst, director of plant technology for the industry's Electric Power Research Institute, acknowledged the industry and NRC often collaborate on research that supports rule changes. But he maintained there's "no kind of misplaced alliance ... to get the right answer."Yet agency staff, plant operators and consultants paint a different picture:* The AP reviewed 226 preliminary notifications -- alerts on emerging safety problems -- NRC has issued since 2005. Wear and tear in the form of clogged lines, cracked parts, leaky seals, rust and other deterioration contributed to at least 26 of the alerts. Other notifications lack detail, but aging was a probable factor in 113 more, or 62 percent in all. For example, the 39-year-old Palisades reactor in Michigan shut Jan. 22 when an electrical cable failed, a fuse blew and a valve stuck shut, expelling steam with low levels of radioactive tritium into the outside air. And a 1-inch crack in a valve weld aborted a restart in February at the LaSalle site west of Chicago.
  • * A 2008 NRC report blamed 70 percent of potentially serious safety problems on "degraded conditions" such as cracked nozzles, loose paint, electrical problems or offline cooling components.* Confronted with worn parts, the industry has repeatedly requested -- and regulators often have allowed -- inspections and repairs to be delayed for months until scheduled refueling outages. Again and again, problems worsened before being fixed. Postponed inspections inside a steam generator at Indian Point allowed tubing to burst, leading to a radioactive release in 2000. Two years later, cracking grew so bad in nozzles on the reactor vessel at the Davis-Besse plant near Toledo, Ohio, that it came within two months of a possible breach, an NRC report said, which could release radiation. Yet inspections failed to catch the same problem on the replacement vessel head until more nozzles were found to be cracked last year.
  • Time crumbles thingsNuclear plants are fundamentally no more immune to aging than our cars or homes: Metals grow weak and rusty, concrete crumbles, paint peels, crud accumulates. Big components like 17-story-tall concrete containment buildings or 800-ton reactor vessels are all but impossible to replace. Smaller parts and systems can be swapped but still pose risks as a result of weak maintenance and lax regulation or hard-to-predict failures.Even mundane deterioration can carry harsh consequences.For example, peeling paint and debris can be swept toward pumps that circulate cooling water in a reactor accident. A properly functioning containment building is needed to create air pressure that helps clear those pumps. But a containment building could fail in a severe accident. Yet the NRC has allowed safety calculations that assume the buildings will hold.
  • In a 2009 letter, Mario V. Bonaca, then-chairman of the NRC's Advisory Committee on Reactor Safeguards, warned that this approach represents "a decrease in the safety margin" and makes a fuel-melting accident more likely.Many photos in NRC archives -- some released in response to AP requests under the federal Freedom of Information Act -- show rust accumulated in a thick crust or paint peeling in long sheets on untended equipment.Four areas stand out:
  • Brittle vessels: For years, operators have rearranged fuel rods to limit gradual radiation damage to the steel vessels protecting the core and keep them strong enough to meet safety standards.But even with last year's weakening of the safety margins, engineers and metal scientists say some plants may be forced to close over these concerns before their licenses run out -- unless, of course, new regulatory compromises are made.
  • Leaky valves: Operators have repeatedly violated leakage standards for valves designed to bottle up radioactive steam in an earthquake or other accident at boiling water reactors.Many plants have found they could not adhere to the general standard allowing main steam isolation valves to leak at a rate of no more than 11.5 cubic feet per hour. In 1999, the NRC decided to allow individual plants to seek amendments of up to 200 cubic feet per hour for all four steam valves combined.But plants have violated even those higher limits. For example, in 2007, Hatch Unit 2, in Baxley, Ga., reported combined leakage of 574 cubic feet per hour.
  • "Many utilities are doing that sort of thing," said engineer Richard T. Lahey Jr., who used to design nuclear safety systems for General Electric Co., which makes boiling water reactors. "I think we need nuclear power, but we can't compromise on safety. I think the vulnerability is on these older plants."Added Paul Blanch, an engineer who left the industry over safety issues, but later returned to work on solving them: "It's a philosophical position that (federal regulators) take that's driven by the industry and by the economics: What do we need to do to let those plants continue to operate?"Publicly, industry and government say that aging is well under control. "I see an effort on the part of this agency to always make sure that we're doing the right things for safety. I'm not sure that I see a pattern of staff simply doing things because there's an interest to reduce requirements -- that's certainly not the case," NRC chairman Gregory Jaczko said in an interview.
  • Corroded piping: Nuclear operators have failed to stop an epidemic of leaks in pipes and other underground equipment in damp settings. Nuclear sites have suffered more than 400 accidental radioactive leaks, the activist Union of Concerned Scientists reported in September.Plant operators have been drilling monitoring wells and patching buried piping and other equipment for several years to control an escalating outbreak.But there have been failures. Between 2000 and 2009, the annual number of leaks from underground piping shot up fivefold, according to an internal industry document.
D'coda Dcoda

IEA - OECD: Nearly 25 Percent Of Global Electricity Could Be Generated From Nuclear Pow... - 0 views

  • The latest reactor designs, now under construction around the world, build on over 50 years of technology development. The roadmap notes that these designs will need to be fully established as reliable and competitive electricity generators over the next few years if they are to become the mainstays of nuclear expansion after 2020
  • Almost one quarter of global electricity could be generated from nuclear power by 2050, making a major contribution to cutting greenhouse gas emissions. This is the central finding of the Nuclear Energy Technology Roadmap, published by the International Energy Agency (IEA) and the OECD Nuclear Energy Agency (NEA). Such an expansion will require nuclear generating capacity to more than triple over the next 40 years, a target the roadmap describes as ambitious but achievable.
  • Speaking from the East Asia Climate Forum in Seoul, IEA Executive Director Nobuo Tanaka said: “Nuclear energy is one of the key low-carbon energy technologies that can contribute, alongside energy efficiency, renewable energies and carbon capture and storage, to the decarbonisation of electricity supply by 2050.” NEA Director General Luis Echávarri stated: “Nuclear is already one of the main sources of low-carbon energy today. If we can address the challenges to its further expansion, nuclear has the potential to play a larger role in cutting CO2 emissions.”
  • ...6 more annotations...
  • Financing the construction of new nuclear plants is expected to be a major challenge in many countries
  • No major technological breakthroughs will be needed to achieve the level of nuclear expansion envisaged, the roadmap finds. However, important policy-related, industrial, financial and public acceptance barriers to the rapid growth of nuclear power remain. The roadmap sets out an action plan with steps that will need to be taken by governments, industry and others to overcome these. A clear and stable policy commitment to nuclear energy as part of overall energy strategy is a pre requisite, as is gaining greater public acceptance for nuclear programmes. Progress in implementing plans for the disposal of high-level radioactive waste will also be vital. The international system of safeguards to prevent proliferation of nuclear technology and materials must be maintained and strengthened where necessary.
  • The latest reactor designs, now under construction around the world, build on over 50 years of technology development. The roadmap notes that these designs will need to be fully established as reliable and competitive electricity generators over the next few years if they are to become the mainstays of nuclear expansion after 2020.
  • For the longer term, the continued development of reactor and fuel cycle technologies will be important for maintaining the competitiveness of nuclear energy
  • The Nuclear Energy Technology Roadmap is the result of joint work by the IEA and the OECD Nuclear Energy Agency (NEA) and is one of a series being prepared by the IEA in co operation with other organisations and industry, at the request of the G8 summit at Aomori (Japan) in June 2008. The overall aim is to advance development and uptake of key low-carbon technologies needed to reach the goal of a 50% reduction in CO2 emissions by 2050.
  • Nuclear generating capacity worldwide is presently 370 gigawatts electrical (GWe), providing 14% of global electricity. In the IEA scenario for a 50% cut in energy-related CO2 emissions by 2050 (known as the “BLUE Map” scenario), on which the roadmap analysis is based, nuclear capacity grows to 1 200 GWe by 2050, providing 24% of global electricity at that time. Total electricity production in the scenario more than doubles, from just under 20 000 TWh in 2007 to around 41 000 TWh in 2050.
D'coda Dcoda

An Inside Look At The Current State Of The Nuclear Industry [29Sep11] - 0 views

  • As I’ve mentioned before, I’m a fan of nuclear energy.  I was able to get an inside look at the current state of the nuclear industry from a friend at Qualitech Solutions named Chris Sewell.  Qualitech Solutions provides mission-critical software to many industries, including the energy industry.  They have customers that are involved in nuclear utilities as well as design engineering firms working on major construction projects.  Qualitech Solutions has been in business for more than a decade.
  • Sewell says, “There is a hesitancy to continue with nuclear construction projects amidst the public concern over nuclear safety.  Society as a whole has become hypersensitive with anything pertaining to nuclear plant issues and safety.  The Fukushima incident not only altered the social climate, but also affected the financial backing of various new construction projects. There is however, a general consensus that due to its low carbon imprint, nuclear energy must be part of our energy future.”
  • The general public fears nuclear energy.  That is understandable considering the information that the public has been given.  The catastrophes and the mistakes are front page news.  But if the general public had more information about how the best nuclear plants are run, the opinion could turn.  This is why I asked Sewell about the success of nuclear energy in France.
  • ...2 more annotations...
  • The French generate approximately 80% of their energy using nuclear power.  They have realized the long-term financial and environmental benefits to nuclear power and have continued supporting the industry and its growth within their country and abroad.  AREVA, the French nuclear engineering firm, continues to work with partner companies to license and construct new nuclear plants and fuel facilities, such as the uranium enrichment plant in Idaho.” But in other countries, “nuclear plants are trying to get by with fewer people,” Sewell explained.  However, the more safety mechanisms that are developed in the industry, the more financial support the nuclear energy industry will receive.  One big safety development is in regard to the nuclear reactors themselves.
  • The newest nuclear reactors (Generation IIIs) have additional layers of safety and technology to stave off a meltdown in the event of a power loss (as happened at Fukushima).  The first of the Generation III reactors is due to come online in 2016 at The Vogtle Electric Generating Plant, located in Georgia,” said Sewell. The more safety measures that are developed, the more proactive the nuclear energy industry can be in addressing problem areas before a catastrophe happens.  I'm sure this won't make everyone feel safe tonight though, will it?
D'coda Dcoda

4 generator failures hit US nuclear plants [09Oct11] - 0 views

  • Four generators that power emergency systems at U.S. nuclear plants have failed when needed since April, an unusual cluster that has attracted the attention of federal inspectors and could prompt the industry to re-examine its maintenance plans. None of these failures has threatened the public. But the diesel generators serve the crucial function of supplying electricity to cooling systems that prevent a nuclear plant’s hot, radioactive fuel from overheating, melting and potentially releasing radiation into the environment. That worst-case scenario happened this year when the Fukushima Dai-ichi nuclear plant in Japan lost all backup power for its cooling systems after an earthquake and tsunami. Three diesel generators failed after tornadoes ripped across Alabama and knocked out electric lines serving the Tennessee Valley Authority’s Browns Ferry nuclear plant in April. Two failed because of mechanical problems and one was unavailable because of planned maintenance.
  • Another generator failed at the North Anna plant in Virginia following an August earthquake. Generators have not worked when needed in at least a dozen other instances since 1997 because of mechanical failures or because they were offline for maintenance, according to an Associated Press review of reports compiled by the U.S. Nuclear Regulatory Commission. “To me it’s not an alarming thing,” said Michael Golay, a professor at the Massachusetts Institute of Technology who studies risk at nuclear plants. “But if this trend were to continue, you’d certainly want to look into it.”
D'coda Dcoda

Nuclear generation rise in 2010 [15Jun11] - 0 views

  • The total amount of electricity generated by nuclear powers plants around the world increased in 2010 following three consecutive years of decline. However, a sharp drop in output is foreseen for 2011 as a result of the Fukushima accident.    Global nuclear electricity generation in 2010 totalled 2630 TWh, according to figures from the International Atomic Energy Agency (IAEA), representing a 2.8% increase from the 2558 TWh generated in 2009 and taking it close to a peak value in 2006. The energy availability factor of the plants operating in 2010 was 81%, up from 79.4% in 2009.
  • New reactors amounting to 3722 MWe net boosted the 2010 figure, including Russia's Rostov 2, India's Rajasthan 6, China's Ling Ao 3 and Qinshan II-3, and South Korea's Shin Kori 1.   Just one small reactor - France's 130 MWe Phenix prototype fast reactor - was officially shut down in 2010, although the unit actually ceased power generation in 2009.
  • Construction of 16 new reactors, with a combined capacity of 15,846 MWe net, started in 2010, according to the IAEA. Ten of these are in China (Ningde units 3 and 4, Taishan 2, Changjiang 1 and 2, Haiyang 2, Fangchenggang 1 and 2, Yangjiang 3 and Fuqing 3). In Russia, the construction of two new units also began (Leningrad II unit 2 and Rostov 4), while two more started construction in India (Kakrapar 3 and 4). In Brazil, work also started on building the Angra 3 unit. Meanwhile, the stalled construction of Japan's 1383 MWe Ohma unit also got back underway in 2010 after re-engineering work for enhanced earthquake protection.
  • ...4 more annotations...
  • Assuming about five years for construction it can be expected that reactors will be coming online around 2012 at double today's rate of five per year, with this to rise to one per month around 2015.
  • Fukushima impact
  • Despite a return to form for nuclear power in 2010, the impact of the Fukushima accident, not only in Japan but around the world, will significantly reduce the amount of electricity generated by nuclear power plants in 2011.
  • According to data released by the Japan Atomic Industry Forum (JAIF), only 17 of Japan's 54 nuclear power reactors were in operation in mid-May. They represented around 15,500 MWe, or 31%, of the country's total nuclear generating capacity.
Dan R.D.

Power Generation from Renewables Surpasses Nuclear [08Jul11] - 0 views

shared by Dan R.D. on 10 Jul 11 - No Cached
  • The latest issue of the Monthly Energy Review published by the US Energy Information Administration, electric power generation from renewable sources has surpassed production from nuclear sources, and is now "closing in on oil," says Ken Bossong Executive Director of the Sun Day Campaign.
  • In the first quarter of 2011 renewable energy sources accounted for 11.73 percent of US domestic energy production. Renewable sources include solar, wind, geothermal, hydro, biomass/biofuel. As of the first quarter of 2011, energy production from these sources was 5.65 percent more than production from nuclear.
  • As Bossing further explains from the report, renewable sources are closing the gap with generation from oil-fired sources, with renewable source equal to 77.15 percent of total oil based generation.
  • ...2 more annotations...
  • For all sectors, including transportation, thermal, and electrical generation, renewable energy production grew just over 15 percent in the first quarter of 2011 compared to the first quarter of 2010, and fully 25 percent over first quarter 2009. In a break-down of renewable sources, biomass/biofuel accounted for a bit more than 48 percent, hydro for 35.41 percent, wind for nearly 13 percent, geothermal 2.45 percent, and solar at 1.16 percent.
  • Looking at just the electrical generation sector, renewable sources, including hydro, accounted for nearly 13 percent of net US electrical generation in the first quarter of 2011, up from 10.31 percent for the same quarter last year. Non-hydro renewable sources accounted for 4.74 percent of net US production.
D'coda Dcoda

Oldbury 1 to shut down in early 2012 [23Oct11] - 0 views

  • After 44 years of operation, unit 1 of the UK's Oldbury nuclear power plant will be permanently shut down in February 2012, ten months earlier than expected, Magnox Ltd announced.
  • The company said that further operation of the 217 MWe Magnox reactor was "no longer economically viable." The decision to shut down the unit - the only operational reactor at the site - was taken "after careful consideration by operators Magnox and the site owners the Nuclear Decommissioning Authority (NDA), in conjunction with independent regulators the Office for Nuclear Regulation (ONR)."   Built in the 1960s and among the first generation of UK reactors, both of the gas-cooled, graphite-moderated first generation reactors at Oldbury were originally scheduled to shut down at the end of 2008. However, the NDA requested permission from the regulator to operate beyond that date, earning revenue to help pay for decommissioning. While unit 2 was eventually shut down in June 2011, unit 1 was expected to close at the end of 2012. To date, the site has generated over 130 terawatt-hours (TWh) of electricity.  
  • Oldbury site director Phil Sprague said, "Oldbury's excellent generation history is a terrific success story, especially as the site was originally planned to close in 2008. As a result of excellent teamwork between Magnox, the NDA and ONR the site's operational life was extended until February 2012, and it is a testament to the skills and dedication of the workforce who have operated and maintained the reactors to such a high standard that it has been able to continue to generate safely."   Magnox Ltd noted that since their originally planned shut down date of 2008, the two units have generated an additional 7 TWh, worth an estimated £300 million ($478 million) to the British taxpayer. This extra generation, it added, also saved some six million tonnes of carbon from being released into the atmosphere.   NDA executive director for delivery Mark Lesinski commented: "The income from electricity sales has provided an important contribution to the funding for our decommissioning program. Magnox and NDA will now work with stakeholders to ensure a smooth transition into the next stage for the site which will involve defueling and subsequent decommissioning."
  • ...1 more annotation...
  • Under current plans, the operation to remove the fuel from both units should be completed in 2013. After most of the structures at Oldbury have been removed, the site will enter the 'care and maintenance' stage of decommissioning around 2027, after which the reactor is left to cool. Final site clearance activities are scheduled between 2092 and 2101.   The last two remaining Magnox reactors currently in operation in the UK are at Wylfa site. The two 490 MWe units there are scheduled to shut down at the end of 2012.   Horizon Nuclear Power - a 50-50 joint venture between RWE nPower and EOn UK - plans to submit a planning application for a new nuclear power plant at Oldbury around 2014. According to the company, "Given the right market conditions, and subject to a final investment decision, preliminary works could begin in 2016, followed by main construction from 2019." Horizon is yet to decide which of the two available reactor designs - Areva's EPR or Westinghouse's AP1000 - it would like to build.
D'coda Dcoda

TVA's Environmental and Energy Future - Relies on Nuclear Power and Less on Coal [17Sep10] - 0 views

  • The Tennessee Valley Authority on Thursday issued a draft of its Integrated Resource Plan, a comprehensive study that will help guide efforts to meet regional electricity needs over the next 20 years. Titled "TVA's Environmental and Energy Future," the study analyzes potential combinations of economic and regulatory trends in the coming years and provides recommendations for addressing them. The plan's main purpose is to help TVA meet the region's future energy challenges in ways that maintain reliable power supplies, competitive prices, improved environmental performance and continued financial strength.
  • TVA's yearlong analysis included input from numerous stakeholders including state agencies, power distributors, environmental groups, universities and the general public. The study yielded several likely probabilities for TVA, including: Nuclear expansion will continue, with the potential to eventually overtake coal as the leading electricity source; TVA may idle a portion of its coal generation fleet, as coal units become older and less economical under tighter regulations; Energy efficiency and demand response, as well as renewable generation, will play an increasing role in future resource options; Natural gas capacity additions will be a viable resource option and a key source of generation flexibility for TVA; The intensity of TVA's carbon dioxide, nitrogen oxide, sulfur dioxide and mercury emissions will continue to decrease.
  • Using the study's methodology, TVA examined seven possible long-term scenarios for the next two decades, based on factors such as economic growth, inflation, fuel prices and the regulatory environment. They are: Dramatic economic recovery Environmental focus becoming a greater national priority Prolonged economic malaise Introduction of game-changing energy-related technology Greater U.S. energy independence Carbon regulation creating an economic downturn Current approach/baseline
  • ...4 more annotations...
  • The Integrated Resource Plan process also developed various possible strategies that TVA might use to meet the region's future power needs. Each strategy was analyzed to create 20-year power generation portfolios -- or combinations of electricity resources -- for TVA to consider. Each portfolio was rated using factors such as cost, risk and environmental impact
  • "TVA's Integrated Resource Plan process is a rigorous one that is supportive of TVA's renewed vision and will guide the corporation as it leads the region and the nation toward a cleaner and more secure energy future, relying more on nuclear power and energy efficiency and less on coal," said Van Wardlaw, TVA's executive vice president of Enterprise Relations, who is leading the Integrated Resource Plan effort
  • The TVA Board of Directors has adopted a renewed vision for the federal corporation to be one of the nation's leading providers of cleaner low-cost energy by 2020, increasing its use of nuclear power and energy efficiency and improving its environmental performance
  • TVA completed its previous Integrated Resource Plan, titled "Energy Vision 2020," in 1995. The new plan will update the earlier study, based upon changes in regulations and legislation, the marketplace for electric generating utilities and customer demand.
D'coda Dcoda

Nuke plants' generator failures draw scrutiny [12Oct11] - 0 views

  • ATLANTA - Four generators that power emergency systems at nuclear plants have failed when needed since April, an unusual cluster that has attracted the attention of federal inspectors and could prompt the industry to re-examine its maintenance plans. None of these failures has threatened the public. But the diesel generators serve the crucial function of supplying electricity to cooling systems that prevent a nuclear plant's hot, radioactive fuel from overheating, melting and potentially releasing radiation into the environment. That worst-case scenario happened this year when the Fukushima Dai-ichi nuclear plant in Japan lost all backup power for its cooling systems after an earthquake and tsunami.
  • hree diesel generators failed after tornadoes ripped across Alabama and knocked out electric lines serving the Tennessee Valley Authority's Browns Ferry nuclear plant in April. Two failed because of mechanical problems and one was unavailable because of planned maintenance. Alabama nuclear plant cited for safety lapses Another generator failed at the North Anna plant in Virginia following an August earthquake. Generators have not worked when needed in at least a dozen other instances since 1997 because of mechanical failures or because they were offline for maintenance, according to an Associated Press review of reports compiled by the U.S. Nuclear Regulatory Commission.
D'coda Dcoda

Economic Aspects of Nuclear Fuel Reprocessing [12Jul05] - 0 views

  • On Tuesday, July 12, the Energy Subcommittee of the House Committee on Science will hold a hearing to examine whether it would be economical for the U.S. to reprocess spent nuclear fuel and what the potential cost implications are for the nuclear power industry and for the Federal Government. This hearing is a follow-up to the June 16 Energy Subcommittee hearing that examined the status of reprocessing technologies and the impact reprocessing would have on energy efficiency, nuclear waste management, and the potential for proliferation of weapons-grade nuclear materials.
  • Dr. Richard K. Lester is the Director of the Industrial Performance Center and a Professor of Nuclear Science and Engineering at the Massachusetts Institute of Technology. He co-authored a 2003 study entitled The Future of Nuclear Power. Dr. Donald W. Jones is Vice President of Marketing and Senior Economist at RCF Economic and Financial Consulting, Inc. in Chicago, Illinois. He co-directed a 2004 study entitled The Economic Future of Nuclear Power. Dr. Steve Fetter is the Dean of the School of Public Policy at the University of Maryland. He co-authored a 2005 paper entitled The Economics of Reprocessing vs. Direct Disposal of Spent Nuclear Fuel. Mr. Marvin Fertel is the Senior Vice President and Chief Nuclear Officer at the Nuclear Energy Institute.
  • 3. Overarching Questions  Under what conditions would reprocessing be economically competitive, compared to both nuclear power that does not include fuel reprocessing, and other sources of electric power? What major assumptions underlie these analyses?  What government subsidies might be necessary to introduce a more advanced nuclear fuel cycle (that includes reprocessing, recycling, and transmutation—''burning'' the most radioactive waste products in an advanced reactor) in the U.S.?
  • ...13 more annotations...
  • 4. Brief Overview of Nuclear Fuel Reprocessing (from June 16 hearing charter)  Nuclear reactors generate about 20 percent of the electricity used in the U.S. No new nuclear plants have been ordered in the U.S. since 1973, but there is renewed interest in nuclear energy both because it could reduce U.S. dependence on foreign oil and because it produces no greenhouse gas emissions.  One of the barriers to increased use of nuclear energy is concern about nuclear waste. Every nuclear power reactor produces approximately 20 tons of highly radioactive nuclear waste every year. Today, that waste is stored on-site at the nuclear reactors in water-filled cooling pools or, at some sites, after sufficient cooling, in dry casks above ground. About 50,000 metric tons of commercial spent fuel is being stored at 73 sites in 33 states. A recent report issued by the National Academy of Sciences concluded that this stored waste could be vulnerable to terrorist attacks.
  • Under the current plan for long-term disposal of nuclear waste, the waste from around the country would be moved to a permanent repository at Yucca Mountain in Nevada, which is now scheduled to open around 2012. The Yucca Mountain facility continues to be a subject of controversy. But even if it opened and functioned as planned, it would have only enough space to store the nuclear waste the U.S. is expected to generate by about 2010.  Consequently, there is growing interest in finding ways to reduce the quantity of nuclear waste. A number of other nations, most notably France and Japan, ''reprocess'' their nuclear waste. Reprocessing involves separating out the various components of nuclear waste so that a portion of the waste can be recycled and used again as nuclear fuel (instead of disposing of all of it). In addition to reducing the quantity of high-level nuclear waste, reprocessing makes it possible to use nuclear fuel more efficiently. With reprocessing, the same amount of nuclear fuel can generate more electricity because some components of it can be used as fuel more than once.
  • The greatest drawback of reprocessing is that current reprocessing technologies produce weapons-grade plutonium (which is one of the components of the spent fuel). Any activity that increases the availability of plutonium increases the risk of nuclear weapons proliferation.  Because of proliferation concerns, the U.S. decided in the 1970s not to engage in reprocessing. (The policy decision was reversed the following decade, but the U.S. still did not move toward reprocessing.) But the Department of Energy (DOE) has continued to fund research and development (R&D) on nuclear reprocessing technologies, including new technologies that their proponents claim would reduce the risk of proliferation from reprocessing.
  • The report accompanying H.R. 2419, the Energy and Water Development Appropriations Act for Fiscal Year 2006, which the House passed in May, directed DOE to focus research in its Advanced Fuel Cycle Initiative program on improving nuclear reprocessing technologies. The report went on to state, ''The Department shall accelerate this research in order to make a specific technology recommendation, not later than the end of fiscal year 2007, to the President and Congress on a particular reprocessing technology that should be implemented in the United States. In addition, the Department shall prepare an integrated spent fuel recycling plan for implementation beginning in fiscal year 2007, including recommendation of an advanced reprocessing technology and a competitive process to select one or more sites to develop integrated spent fuel recycling facilities.''
  • During floor debate on H.R. 2419, the House defeated an amendment that would have cut funding for research on reprocessing. In arguing for the amendment, its sponsor, Mr. Markey, explicitly raised the risks of weapons proliferation. Specifically, the amendment would have cut funding for reprocessing activities and interim storage programs by $15.5 million and shifted the funds to energy efficiency activities, effectively repudiating the report language. The amendment was defeated by a vote of 110–312.
  • But nuclear reprocessing remains controversial, even within the scientific community. In May 2005, the American Physical Society (APS) Panel on Public Affairs, issued a report, Nuclear Power and Proliferation Resistance: Securing Benefits, Limiting Risk. APS, which is the leading organization of the Nation's physicists, is on record as strongly supporting nuclear power. But the APS report takes the opposite tack of the Appropriations report, stating, ''There is no urgent need for the U.S. to initiate reprocessing or to develop additional national repositories. DOE programs should be aligned accordingly: shift the Advanced Fuel Cycle Initiative R&D away from an objective of laying the basis for a near-term reprocessing decision; increase support for proliferation-resistance R&D and technical support for institutional measures for the entire fuel cycle.''  Technological as well as policy questions remain regarding reprocessing. It is not clear whether the new reprocessing technologies that DOE is funding will be developed sufficiently by 2007 to allow the U.S. to select a technology to pursue. There is also debate about the extent to which new technologies can truly reduce the risks of proliferation.
  •  It is also unclear how selecting a reprocessing technology might relate to other pending technology decisions regarding nuclear energy. For example, the U.S. is in the midst of developing new designs for nuclear reactors under DOE's Generation IV program. Some of the potential new reactors would produce types of nuclear waste that could not be reprocessed using some of the technologies now being developed with DOE funding.
  • 5. Brief Overview of Economics of Reprocessing
  • The economics of reprocessing are hard to predict with any certainty because there are few examples around the world on which economists might base a generalized model.  Some of the major factors influencing the economic competitiveness of reprocessing are: the availability and cost of uranium, costs associated with interim storage and long-term disposal in a geologic repository, reprocessing plant construction and operating costs, and costs associated with transmutation, the process by which certain parts of the spent fuel are actively reduced in toxicity to address long-term waste management.
  • Costs associated with reducing greenhouse gas emissions from fossil fuel-powered plants could help make nuclear power, including reprocessing, economically competitive with other sources of electricity in a free market.
  •  It is not clear who would pay for reprocessing in the U.S.
  • Three recent studies have examined the economics of nuclear power. In a study completed at the Massachusetts Institute of Technology in 2003, The Future of Nuclear Power, an interdisciplinary panel, including Professor Richard Lester, looked at all aspects of nuclear power from waste management to economics to public perception. In a study requested by the Department of Energy and conducted at the University of Chicago in 2004, The Economic Future of Nuclear Power, economist Dr. Donald Jones and his colleague compared costs of future nuclear power to other sources, and briefly looked at the incremental costs of an advanced fuel cycle. In a 2003 study conducted by a panel including Matthew Bunn (a witness at the June 16 hearing) and Professor Steve Fetter, The Economics of Reprocessing vs. Direct Disposal of Spent Nuclear Fuel, the authors took a detailed look at the costs associated with an advanced fuel cycle. All three studies seem more or less to agree on cost estimates: the incremental cost of nuclear electricity to the consumer, with reprocessing, could be modest—on the order of 1–2 mills/kWh (0.1–0.2 cents per kilowatt-hour); on the other hand, this increase represents an approximate doubling (at least) of the costs attributable to spent fuel management, compared to the current fuel cycle (no reprocessing). Where they strongly disagree is on how large an impact this incremental cost will have on the competitiveness of nuclear power. The University of Chicago authors conclude that the cost of reprocessing is negligible in the big picture, where capital costs of new plants dominate all economic analyses. The other two studies take a more skeptical view—because new nuclear power would already be facing tough competition in the current market, any additional cost would further hinder the nuclear power industry, or become an unacceptable and unnecessary financial burden on the government.
  • 6. Background
  •  
    Report from the Subcommitte on Energy, Committee on Science for House of Representatives. Didn't highlight the entire article, see site for the rest.
D'coda Dcoda

The feudal lords of power [29Aug11] - 0 views

  • The inherently arrogant nature of the electric power industry in Japan came to light recently when Kyushu Electric Power Co. tried to influence a public hearing on whether to allow the company to resume operation of its Genkai nuclear power stations in Saga Prefecture. Kyushu Electric urged its employees and subcontractors to submit a large number of emails in support of resumption.
  • Observers view this as a typical example of the power industry boasting of its ability to manipulate public opinion. The incident also revealed how naive the industry is, as the utility failed to take any precaution to prevent its tactics from becoming publicly known. One critic drew an analogy between the actions of Kyushu Electric and the plot in "Emperor's New Clothes," Hans Christian Andersen's famous short story.
  • One factor behind such arrogance is the fact that each of the 10 companies of the power utility industry occupies a prominent position in the commerce of its respective region, where it enjoys a monopoly of supplying electric power.
  • ...9 more annotations...
  • Indeed, except in the three metropolitan areas around Tokyo, Osaka and Nagoya, where major companies are concentrated, the utility companies are usually the largest corporations in terms of gross sales in their respective regions. One notable exception is Chugoku Electric Power Co., whose turnover lags that of Mazda Motor Corp. headquartered in Hiroshima.
  • The typical power structure in each of Japan's 47 prefectures is an "iron triangle" composed of the prefectural government, regional banks and local newspapers. Beneath this triangle are groups of corporations, such as general contractors, that are linked to politicians. It is noteworthy that, except in Hokkaido and Okinawa, the regional electric company transcends this powerful triangle because it monopolizes the power supply in two or more prefectures. For example, Tohoku Electric Power Co. covers seven prefectures in northeastern Japan, and even Hokuriku Electric Power Co., with sales of less than ¥500 billion a year, serves three prefectures. This fact has led the utilities to think that they are above the prefectural governments.
  • In prefectures where nuclear power plants are located, tense relationships exist between governors and power companies. Governors often try to prevent power companies from doing as they like concerning the operation of nuclear power plants. At the same time, governors want to avoid confrontations with companies because of their vote-generation potential.
  • A bitter confrontation took place in the gubernatorial election in Fukushima Prefecture in 1988. In his first bid to become prefectural governor, Eisaku Sato (not the former prime minister by the same name) faced a candidate backed by Tokyo Electric Power Co. After Sato won, severe conflicts ensued between him and Tepco, which has nuclear power stations in Fukushima Prefecture that supply electricity to the areas it serves. Sato sought to impose rigid conditions on the operation of the Fukushima Nos. 1 and 2 nuclear power plants and on the use of mixed oxide fuel, which contains plutonium, amid local residents' fears of nuclear power generation.
  • Although Sato also won subsequent elections, he resigned following his arrest in 2006 in a scandal related to dam construction. Tepco did not come out as the ultimate winner either, as its ranking officials were investigated over their alleged involvement in the same scandal. Confrontations between power companies and governors have various roots, but the main one is that the former are far more powerful than the latter. This overwhelming influence stems primarily from the enormous investments that power companies make to build or renew facilities to generate, transform or distribute electricity. Such investments have been necessary to keep up with the growing demand for electricity.
  • During the peak year of 1993, capital investment by Japan's 10 electric power companies exceeded ¥5 trillion, with ¥1.7 trillion coming from Tepco alone. In 2009, Tohoku Electric Power Co., which serves the seven prefectures in the Tohoku region, invested ¥274.7 billion, which accounted for 24.4 percent of total capital investment in the region, according to statistics compiled by the Development Bank of Japan.
  • Comparable figures were 25.5 percent from Kyushu Electric Power, which serves seven prefectures on Kyushu; 22.5 percent from Chugoku Electric Power, serving the five prefectures in the western part of Honshu; and 27.6 percent from Shikoku Electric Power, which supplies power to the four prefectures on Shikoku.
  • Although power companies possess undisputed influence, the way they have accumulated it is unusual in the history of Japan's postwar economic development. By contrast, companies in the steel, oil, electronics, precision-machine, automobile, shipbuilding and other industries have had to battle it out for market share domestically before gaining international competitiveness.
  • Power utilities help politicians by providing them with campaign funds; METI helps maintain the industry's regional monopolies; and the power companies provide high-paying positions into which former METI bureaucrats "parachute." The politicians and the bureaucrats jointly promote nuclear power generation, which helps protect the vested interest of the power companies.
D'coda Dcoda

2 nuclear reactors taken offline after Va. quake [23Aug11] - 0 views

  • Federal officials say two nuclear reactors at the North Anna Power Station in Louisa County, Va., were automatically taken off line by safety systems around the time of the earthquake. The Dominion-operated power plant is being run off three emergency diesel generators, which are supplying power for critical safety equipment. The NRC and Dominion are sending people to inspect the plan
  • A fourth diesel generator failed, but it wasn't considered an emergency because the other generators are working, according to the Nuclear Regulatory Commission. Dominion said it declared an alert at the North Anna facility and the reactors have been shut down safely and no major damage has been reported.
  • The earthquake was felt at the company's other Virginia nuclear power station, Surry Power Station in southeast Virginia, but not as strongly there. Both units at that power station continue to operate safely, Dominion said. The quake also caused Dominion's newest non-nuclear power station, Bear Garden in Buckingham County, to shut down automatically.
  • ...1 more annotation...
  • NRC spokesman Roger Hannah says the agency was not immediately aware of any damage at nuclear power plants in the southeast. Hannah said he knew of no other shut reactor but that unusual events were reported at a dozen other plant sites. Louisa County is about 40 miles northwest of Richmond.
  •  
    an emergency generator also failed
D'coda Dcoda

Fukushima radiation alarms doctors [18Aug11] - 0 views

  • Scientists and doctors are calling for a new national policy in Japan that mandates the testing of food, soil, water, and the air for radioactivity still being emitted from Fukushima's heavily damaged Daiichi nuclear power plant."How much radioactive materials have been released from the plant?" asked Dr Tatsuhiko Kodama, a professor at the Research Centre for Advanced Science and Technology and Director of the University of Tokyo's Radioisotope Centre, in a July 27 speech to the Committee of Health, Labour and Welfare at Japan's House of Representatives. "The government and TEPCO have not reported the total amount of the released radioactivity yet," said Kodama, who believes things are far worse than even the recent detection of extremely high radiation levels at the plant. There is widespread concern in Japan about a general lack of government monitoring for radiation, which has caused people to begin their own independent monitoring, which are also finding disturbingly high levels of radiation. Kodama's centre, using 27 facilities to measure radiation across the country, has been closely monitoring the situation at Fukushima - and their findings are alarming.According to Dr Kodama, the total amount of radiation released over a period of more than five months from the ongoing Fukushima nuclear disaster is the equivalent to more than 29 "Hiroshima-type atomic bombs" and the amount of uranium released "is equivalent to 20" Hiroshima bombs.
  • Kodama, along with other scientists, is concerned about the ongoing crisis resulting from the Fukushima situation, as well as what he believes to be inadequate government reaction, and believes the government needs to begin a large-scale response in order to begin decontaminating affected areas.Distrust of the Japanese government's response to the nuclear disaster is now common among people living in the effected prefectures, and people are concerned about their health.Recent readings taken at the plant are alarming.When on August 2nd readings of 10,000 millisieverts (10 sieverts) of radioactivity per hour were detected at the plant, Japan's science ministry said that level of dose is fatal to humans, and is enough radiation to kill a person within one to two weeks after the exposure. 10,000 millisieverts (mSv) is the equivalent of approximately 100,000 chest x-rays.
  • t is an amount 250 per cent higher than levels recorded at the plant in March after it was heavily damaged by the earthquake and ensuing tsunami. The operator of Japan's crippled Fukushima Daiichi nuclear power plant, Tokyo Electric Power Company (TEPCO), that took the reading, used equipment to measure radiation from a distance, and was unable to ascertain the exact level because the device's maximum reading is only 10,000 mSv. TEPCO also detected 1,000 millisieverts (mSv) per hour in debris outside the plant, as well as finding 4,000 mSv per hour inside one of the reactor buildings.
  • ...35 more annotations...
  • he Fukushima disaster has been rated as a "level seven" on the International Nuclear and Radiological Event Scale (INES). This level, the highest, is the same as the Chernobyl nuclear disaster in 1986, and is defined by the scale as: "[A] major release of radioactive material with widespread health and environmental effects requiring implementation of planned and extended countermeasures."The Fukushima and Chernobyl disasters are the only nuclear accidents to have been rated level seven on the scale, which is intended to be logarithmic, similar to the scale used to describe the comparative magnitude of earthquakes. Each increasing level represents an accident approximately ten times more severe than the previous level.
  • Doctors in Japan are already treating patients suffering health effects they attribute to radiation from the ongoing nuclear disaster."We have begun to see increased nosebleeds, stubborn cases of diarrhoea, and flu-like symptoms in children," Dr Yuko Yanagisawa, a physician at Funabashi Futawa Hospital in Chiba Prefecture, told Al Jazeera.
  • r Helen Caldicott, the founding president of Physicians for Social Responsibility, a group that was awarded the Nobel Peace Prize in 1985, is equally concerned about the health effects from Japan's nuclear disaster."Radioactive elements get into the testicles and ovaries, and these cause genetic disease like diabetes, cystic fibrosis, and mental retardation," she told Al Jazeera. "There are 2,600 of these diseases that get into our genes and are passed from generation to generation, forever."
  • Al Jazeera's Aela Callan, reporting from Japan's Ibaraki prefecture, said of the recently detected high radiation readings: "It is now looking more likely that this area has been this radioactive since the earthquake and tsunami, but no one realised until now."Workers at Fukushima are only allowed to be exposed to 250 mSv of ionising radiation per year.
  • radioactive cesium exceeding the government limit was detected in processed tea made in Tochigi City, about 160km from the troubled Fukushima Daiichi nuclear plant, according to the Tochigi Prefectural Government, who said radioactive cesium was detected in tea processed from leaves harvested in the city in early July. The level is more than 3 times the provisional government limit.
  • anagisawa's hospital is located approximately 200km from Fukushima, so the health problems she is seeing that she attributes to radiation exposure causes her to be concerned by what she believes to be a grossly inadequate response from the government.From her perspective, the only thing the government has done is to, on April 25, raise the acceptable radiation exposure limit for children from 1 mSv/year to 20 mSv/year.
  • This has caused controversy, from the medical point of view," Yanagisawa told Al Jazeera. "This is certainly an issue that involves both personal internal exposures as well as low-dose exposures."Junichi Sato, Greenpeace Japan Executive Director, said: "It is utterly outrageous to raise the exposure levels for children to twenty times the maximum limit for adults."
  • The Japanese government cannot simply increase safety limits for the sake of political convenience or to give the impression of normality."Authoritative current estimates of the health effects of low-dose ionizing radiation are published in the Biological Effects of Ionising Radiation VII (BEIR VII) report from the US National Academy of Sciences.
  • he report reflects the substantial weight of scientific evidence proving there is no exposure to ionizing radiation that is risk-free. The BEIR VII estimates that each 1 mSv of radiation is associated with an increased risk of all forms of cancer other than leukemia of about 1-in-10,000; an increased risk of leukemia of about 1-in-100,000; and a 1-in-17,500 increased risk of cancer death.
  • She attributes the symptoms to radiation exposure, and added: "We are encountering new situations we cannot explain with the body of knowledge we have relied upon up until now.""The situation at the Daiichi Nuclear facility in Fukushima has not yet been fully stabilised, and we can't yet see an end in sight," Yanagisawa said. "Because the nuclear material has not yet been encapsulated, radiation continues to stream into the environment."
  • So far, the only cases of acute radiation exposure have involved TEPCO workers at the stricken plant. Lower doses of radiation, particularly for children, are what many in the medical community are most concerned about, according to Dr Yanagisawa.
  • Humans are not yet capable of accurately measuring the low dose exposure or internal exposure," she explained, "Arguing 'it is safe because it is not yet scientifically proven [to be unsafe]' would be wrong. That fact is that we are not yet collecting enough information to prove the situations scientifically. If that is the case, we can never say it is safe just by increasing the annual 1mSv level twenty fold."
  • Her concern is that the new exposure standards by the Japanese government do not take into account differences between adults and children, since children's sensitivity to radiation exposure is several times higher than that of adults.
  • Al Jazeera contacted Prime Minister Naoto Kan's office for comment on the situation. Speaking on behalf of the Deputy Cabinet Secretary for Public Relations for the Prime Minister's office, Noriyuki Shikata said that the Japanese government "refers to the ICRP [International Commission on Radiological Protection] recommendation in 2007, which says the reference levels of radiological protection in emergency exposure situations is 20-100 mSv per year. The Government of Japan has set planned evacuation zones and specific spots recommended for evacuation where the radiation levels reach 20 mSv/year, in order to avoid excessive radiation exposure."
  • he prime minister's office explained that approximately 23bn yen ($300mn) is planned for decontamination efforts, and the government plans to have a decontamination policy "by around the end of August", with a secondary budget of about 97bn yen ($1.26bn) for health management and monitoring operations in the affected areas. When questioned about the issue of "acute radiation exposure", Shikata pointed to the Japanese government having received a report from TEPCO about six of their workers having been exposed to more than 250 mSv, but did not mention any reports of civilian exposures.
  • Prime Minister Kan's office told Al Jazeera that, for their ongoing response to the Fukushima crisis, "the government of Japan has conducted all the possible countermeasures such as introduction of automatic dose management by ID codes for all workers and 24 hour allocation of doctors. The government of Japan will continue to tackle the issue of further improving the health management including medium and long term measures". Shikata did not comment about Kodama's findings.
  • Nishio Masamichi, director of Japan's Hakkaido Cancer Centre and a radiation treatment specialist, published an article on July 27 titled: "The Problem of Radiation Exposure Countermeasures for the Fukushima Nuclear Accident: Concerns for the Present Situation". In the report, Masamichi said that such a dramatic increase in permitted radiation exposure was akin to "taking the lives of the people lightly". He believes that 20mSv is too high, especially for children who are far more susceptible to radiation.
  • Kodama is an expert in internal exposure to radiation, and is concerned that the government has not implemented a strong response geared towards measuring radioactivity in food. "Although three months have passed since the accident already, why have even such simple things have not been done yet?" he said. "I get very angry and fly into a rage."
  • Radiation has a high risk to embryos in pregnant women, juveniles, and highly proliferative cells of people of growing ages. Even for adults, highly proliferative cells, such as hairs, blood, and intestinal epithelium cells, are sensitive to radiation."
  • Early on in the disaster, Dr Makoto Kondo of the department of radiology of Keio University's School of Medicine warned of "a large difference in radiation effects on adults compared to children".Kondo explained the chances of children developing cancer from radiation exposure was many times higher than adults.
  • Children's bodies are underdeveloped and easily affected by radiation, which could cause cancer or slow body development. It can also affect their brain development," he said.Yanagisawa assumes that the Japanese government's evacuation standards, as well as their raising the permissible exposure limit to 20mSv "can cause hazards to children's health," and therefore "children are at a greater risk".
  • Kodama, who is also a doctor of internal medicine, has been working on decontamination of radioactive materials at radiation facilities in hospitals of the University of Tokyo for the past several decades. "We had rain in Tokyo on March 21 and radiation increased to .2 micosieverts/hour and, since then, the level has been continuously high," said Kodama, who added that his reporting of radiation findings to the government has not been met an adequate reaction. "At that time, the chief cabinet secretary, Mr Edano, told the Japanese people that there would be no immediate harm to their health."
  • n early July, officials with the Japanese Nuclear Safety Commission announced that approximately 45 per cent of children in the Fukushima region had experienced thyroid exposure to radiation, according to a survey carried out in late March. The commission has not carried out any surveys since then.
  • Now the Japanese government is underestimating the effects of low dosage and/or internal exposures and not raising the evacuation level even to the same level adopted in Chernobyl," Yanagisawa said. "People's lives are at stake, especially the lives of children, and it is obvious that the government is not placing top priority on the people's lives in their measures."Caldicott feels the lack of a stronger response to safeguard the health of people in areas where radiation is found is "reprehensible".
  • Millions of people need to be evacuated from those high radiation zones, especially the children."
  • Dr Yanagisawa is concerned about what she calls "late onset disorders" from radiation exposure resulting from the Fukushima disaster, as well as increasing cases of infertility and miscarriages."Incidence of cancer will undoubtedly increase," she said. "In the case of children, thyroid cancer and leukemia can start to appear after several years. In the case of adults, the incidence of various types of cancer will increase over the course of several decades."Yanagisawa said it is "without doubt" that cancer rates among the Fukushima nuclear workers will increase, as will cases of lethargy, atherosclerosis, and other chronic diseases among the general population in the effected areas.
  • Radioactive food and water
  • An August 1 press release from Japan's MHLW said no radioactive materials have been detected in the tap water of Fukushima prefecture, according to a survey conducted by the Japanese government's Nuclear Emergency Response Headquarters. The government defines no detection as "no results exceeding the 'Index values for infants (radioactive iodine)'," and says "in case the level of radioactive iodine in tap water exceeds 100 Bq/kg, to refrain from giving infants formula milk dissolved by tap water, having them intake tap water … "
  • Yet, on June 27, results were published from a study that found 15 residents of Fukushima prefecture had tested positive for radiation in their urine. Dr Nanao Kamada, professor emeritus of radiation biology at Hiroshima University, has been to Fukushima prefecture twice in order to take internal radiation exposure readings and facilitated the study.
  • The risk of internal radiation is more dangerous than external radiation," Dr Kamada told Al Jazeera. "And internal radiation exposure does exist for Fukushima residents."According to the MHLW, distribution of several food products in Fukushima Prefecture remain restricted. This includes raw milk, vegetables including spinach, kakina, and all other leafy vegetables, including cabbage, shiitake mushrooms, bamboo shoots, and beef.
  • he distribution of tealeaves remains restricted in several prefectures, including all of Ibaraki, and parts of Tochigi, Gunma, Chiba, Kanagawa Prefectures.Iwate prefecture suspended all beef exports because of caesium contamination on August 1, making it the fourth prefecture to do so.
  • yunichi Tokuyama, an expert with the Iwate Prefecture Agricultural and Fisheries Department, told Al Jazeera he did not know how to deal with the crisis. He was surprised because he did not expect radioactive hot spots in his prefecture, 300km from the Fukushima nuclear plant."The biggest cause of this contamination is the rice straw being fed to the cows, which was highly radioactive," Tokuyama told Al Jazeera.
  • Kamada feels the Japanese government is acting too slowly in response to the Fukushima disaster, and that the government needs to check radiation exposure levels "in each town and village" in Fukushima prefecture."They have to make a general map of radiation doses," he said. "Then they have to be concerned about human health levels, and radiation exposures to humans. They have to make the exposure dose map of Fukushima prefecture. Fukushima is not enough. Probably there are hot spots outside of Fukushima. So they also need to check ground exposure levels."
  • Radiation that continues to be released has global consequences.More than 11,000 tonnes of radioactive water has been released into the ocean from the stricken plant.
  • Those radioactive elements bio-concentrate in the algae, then the crustaceans eat that, which are eaten by small then big fish," Caldicott said. "That's why big fish have high concentrations of radioactivity and humans are at the top of the food chain, so we get the most radiation, ultimately."
D'coda Dcoda

Hiroshima to Fukushima, Finishing the Job | Veterans Today [18Aug11] - 0 views

  • (San Francisco) Two 10,000 lb (4,545 kg) uranium poison gas “dirty” bombs with small nuclear  dispersion devises set Japan on the road to extinction on August 6, 1945 and August 9, 1945 at Hiroshima and Nagasaki, Japan. A row of six modified and enlarged US Navy submarine reactors pioneered by US Navy Admiral Hyman Rickover and manufactured by the US based General Electric Corp (GE) finished the kill March 11, 2011. Thanks to the US Navy designed and GE built atomic reactors, the Japanese people are dying, the country of Japan is no more and the land is permanently uninhabitable.
  • Lethal nuclear vapors created by the destroyed Navy/GE reactors and thousands of tons of garbaged and burning old reactor cores are spreading invisible radioactive death and sickness all over the world. What’s more: the atomic reactors spilled their burning guts into the basements and there is evidence the melted reactor cores are still “reacting” 160 days out. Shutting them down is mostly just plain impossible. The burning, radioactive gates of hell are still open wide. Breathe deep everyone. Breathe your own poisoned Fuku tainted air.
  • The Total Fertility Rate (TFR) The best measure of population growth or shrinkage is a country’s Total Fertility Rate (TFR). It is, simply put, the average number of children women have in a society over their child bearing years. Two kids per woman is the “replacement value” for one woman and one male. Two kids per woman means the man and woman replace themselves and the next generation will be the same size as their preceding generation.
  • ...8 more annotations...
  • The higher the TFR number, the more the population will grow and expand. On the other hand, a TFR number below 2 kids per woman means the population is shrinking for the next generation. Nuclear weaponeers who know about these things say it is impossible for a society to recover, or grow again, with a TFR below 1.3 kids per woman. In short, that society is doomed. Japan’s TFR plummeted to 1.2 since the detonation of the two 10,000 lb sperm and ovary destroying uranium poison gas bombs in August, 1945.
  • A few weeks after the atomic bombing, Australian journalist George Weller managed to sneak into occupied Japan and nuked Nagasaki in spite of US Army General Douglas MacArthur’s prohibition. Weller, an experienced war correspondent, was utterly stunned at the extent of the other worldly devastation and killing of the Atomic Bomb. Mr. Weller coined the term “Atomic Plague” which then swept around the world on a wave of revulsion at what the Americans had done. Diplomats and other people politically or militarily in-the-know knew the Japanese were eager to surrender and that President Truman lied in his bull shit speech about the Atomic Bomb “saving American lives” that would be forfeit if the US were to invade Japan.
  • What’s more, the dominant owners of the NYT, the Sultzberger family, like it that way. The family has had a slash and burn radiation policy ever since Hiroshima in 1945. No Lie was too Big, in fact, the Bigger and more Bizarre the better. Germany’s WWII Fuhrer Adolph Hitler may have coined the concept “The Big Lie;” but, the New York Times spun it out to a degree that would make even Hitler proud.
  • The Radiation Warfare Committee controlled Manhattan Project to build the Atomic Bomb got its name from its organizer, the Manhattan Engineering District of the US Army Corps of Engineers. The Sultzbergers’ NY Times was only too eager to help the fledgling CIA and the US War Department lie about the nuke bombing of Hiroshima and Nagasaki, Japan that incinerated hundreds of thousands of people. Many were literally vaporized into nothingness. The Big Lie Lives On with the NY Times
  • The coming Fuku Kid Disaster and Fuku Kill Off First and foremost will be the ever nasty New York Times (NYT.) When it comes to something really, vitally important to all our futures, our families and friends, we can always count on the NYT to lie through their teeth for the nuclear industry criminals and mass murderers. That is nothing new for the Times, they always have.
  • The six devastated US Navy/GE reactors at Fukushima Daiichi finished the Kill Truman ordered 65 years, 7 months, and 6 days later on March 3, 2011. Sayonara, Japan, you are history. “Who’s Next?” Good question. There are 438 big reactors, just stationary nuclear weapons really, in the world. 104 big nuke reactors are in America and many, like the Fuku reactors,  are by the sea due to the exorbitant, one billion gallons a day water demand of the reactors. Even the inland reactors are exquisitely vulnerable to becoming another Fukushima. If any lose electricity and off site feeds, a Fuku type meltdown is guaranteed.
  • The people in the Japanese NHK TV video below live in Northern Japan. They must evacuate and many are dying. Many won’t leave, preferring Denial as the better course to reality and Evacuation. After all, you can’t see, feel, hear or taste radiation as it liquefies your insides. Any of us could be next.
  • The US Military and probably Russia’s Military, the former Soviet Union, possess weapons that can accomplish this kind of devastation. They should, at least the US has devoted billions to controlling what the DOD calls “earth processes” for 60 years. That would be your basic hurricanes, tornadoes, rain, drought, earthquakes, tsunamis, rogue waves and volcanoes. Even a medium sized tropical storm, not even big enough to be a hurricane or typhoon, contains as much energy as 10,000 Hiroshima sized Atomic Bombs. If the War Department, later renamed to the Department of Defense to confuse the do-gooders, could control the weather or “Earth Processes” they would control the world. That’s the long held dream of Psychos and control freaks everywhere.
  •  
    only a partial clipping so read article for more
D'coda Dcoda

First Large Scale 24/7 Solar Power Plant to be Constructed in U.S [29Sep11] - 0 views

  • The Obama administration provided a loan guarantee of $737 million to SolarReserve on Thursday to construct the first large-scale solar power plant that stores energy and provides electricity 24 hours a day, 7 days a week. The solar power project will be constructed in Nevada. (Note that BrightSource Energy is at a similar stage in the development of a larger solar thermal power plant in the Mojave Desert, receiving a DOE loan guarantee of $1.37 billion in February 2010 and $168 million from Google this April.)
  • The SolarReserve power plant utilizes what is called thermal energy storage to store heat collected from the sun, which is then utilized by the power plant to boil water and produce steam. The steam then turns a steam turbine which generates electricity. This is a how a solar thermal power plant generally works, but keep in mind that there are different types of solar thermal power plants, some of which are not steam.
  • This type collects heat and stores it in molten salt which is then circulated to the boiler. The boiler… boils water into steam which then rushes through a steam turbine.17,500 heliostats* focus or concentrate sunlight onto the collector at the top of a 640-foot tall tower until it reaches a temperature of 1,050 degrees Fahrenheit.
  • ...1 more annotation...
  • The power plant’s electricity generation capacity (basically, how much it can generate) is 110-MW, which makes it one of the larger-scale solar power plants out there today.You might have guessed by now that this type of power plant is able to provide electricity at night, and all week, because it stores heat in the form of salt that is released in the evening so that the plant can continue to generate electricity when it is dark, cloudy, or stormy.
Dan R.D.

Statement to World Association of Nuclear Operators Biennial General Meeting [24Oct11] - 0 views

  • by IAEA Director General Yukiya Amano
  • I greatly value the experience and expertise of the World Association of Nuclear Operators and I welcome your decision to devote this biennial general meeting to the accident at the Fukushima Daiichi Nuclear Power Plant in Japan. Together, WANO and the IAEA will play a key role in ensuring that the right lessons are learned from the accident and that the necessary improvements in nuclear operating safety are actually put into practice everywhere.
  • We have been good partners since WANO was created in 1989. In the aftermath of Fukushima Daiichi, I believe our partnership must be deepened and intensified.
  • ...4 more annotations...
  • Since the Fukushima Daiichi accident, the IAEA has worked hard to help Japan bring the situation at the site under control and to mitigate the consequences of the accident. The Agency's view is that all of the crippled reactors are now generally stable. The Japanese authorities are doing their utmost to achieve cold shutdown of all of them by the end of the year. I visited Japan a number of times for consultations with the Prime Minister and government ministers and went to the site of the accident in July. I dispatched international expert teams to assist in areas such as radiological monitoring and food safety. The Agency helped to channel international technical assistance to Japan and we also provided independent and factual reports on the situation to our Member States. We conducted a number of fact-finding missions, most recently on environmental remediation and related waste management issues.
  • 12-point IAEA Action Plan on Nuclear Safety, which was endorsed by all Member States at our General Conference last month.
  • Key elements of the Action Plan include an agreement that all Member States with nuclear power programmes will promptly undertake what have become known as "stress tests" of their nuclear power plants. The framework for IAEA peer reviews is being strengthened. The effectiveness of national and international emergency preparedness and response arrangements, IAEA safety standards and the international legal framework is also being reviewed.
  • Despite the Fukushima Daiichi accident, we will continue to see significant growth in the use of nuclear power in the next two decades. The latest IAEA projections suggest that growth will be slower than we had anticipated before the accident. Nevertheless, we expect the number of operating nuclear reactors in the world to continue to increase steadily in the coming decades.
1 - 20 of 346 Next › Last »
Showing 20 items per page