Skip to main content

Home/ Open Intelligence / Energy/ Group items tagged building

Rss Feed Group items tagged

D'coda Dcoda

#Fukushima I Nuke Plant: 450 Tonnes of Groundwater Per Day Seeping into Reactor/Turbine... - 0 views

  • Since the end of June when the contaminated water treatment system started the operation, total 50,000 tonnes of groundwater have seeped into the reactor buildings and turbine buildings at Fukushima I Nuke Plant. Now, the total amount of contaminated water (highly contaminated water plus not-so-highly contaminated, treated water) at the plant has grown from 127,000 tonnes at the end of June to 175,000 tonnes as of October 18, according to Asahi Shinbun.Does TEPCO have any plan to stop the flow of groundwater into the reactor buildings and turbine buildings, which just adds to the amount of highly contaminated water to be treated and stored? TEPCO is fast running out of storage space, even with cutting down more trees to make room for the storage tanks.Other than spraying the low-contamination, treated water on the premise, the answer is no. No plan, as TEPCO is running out of money that it is willing to spend on Fukushima I Nuke Plant.From Asahi Shinbun (10/19/2011):
  • It has been discovered that the contaminated water has increased by 40% in 4 months inside the reactor buildings and turbine buildings at Fukushima I Nuclear Power Plant, with the inflow of ground water of about 50,000 tonnes. The flow still continues. TEPCO may run out of storage space for the treated, still-contaminated, water. There is also a possibility of the highly contaminated water overflowing from the buildings if a problem at the water treatment facility and a heavy rain coincide.
  • According to the calculation done by Asahi Shinbun based on the data published by TEPCO, about 450 tonnes of ground water per day have been flowing into the buildings of Reactors 1 through 4 since the end of June when the contaminated water treatment facility started the operation. It is considered that there are damages in the walls of the buildings.
  • ...7 more annotations...
  • The amount of groundwater into the buildings fluctuates with the rainfall. At the end of September when it rained heavily because of a typhoon, the amount of ground water doubled, and about 7,700 tonnes of water seeped into the buildings in that week.
  • The groundwater would mix with the contaminated water in the basement of the buildings, and this highly contaminated water is being sent to the water treatment facility. After the density of radioactive materials in the water is lowered and salt removed, the treated water is being used for cooling the reactors.
  • When the circulatory water injection and cooling system started in late June, there were 127,000 tonnes of contaminated water (highly contaminated water plus the treated water with low contamination). However, as the result of the groundwater inflow, there are now 175,000 tonnes of contaminated water, a 40% increase, as of October 18. None of the water could be released outside the plant.
  • Concentrated, highly saline waste water after the desalination process is stored in the special tanks. As more water is processed, more tanks are needed. TEPCO is installing 20,000 tonnes storage tanks every month. To secure the space for the tanks the company has been cutting down the trees in the plant compound. There is a system to evaporate water to reduce the amount of waste water, but it is not currently used.
  • The water level in the turbine buildings where the highly contaminated water after the reactor cooling accumulates is 1 meter below the level at which there is a danger of overflowing. It is not the level that would cause immediate overflow after a heavy rain. However, if the heavy rain is coupled with a trouble at the water treatment system that hampers the water circulation, the water level could rise very rapidly.
  • The treatment capacity of the water treatment facility is 1,400 tonnes per day. TEPCO emphasizes that the facility is running smoothly and the circulatory water injection system is stable. However, if the current situation continues where groundwater keeps coming into the buildings that needs to be treated, the water treatment facility will be taxed with excess load, which may cause a problem.
  • It is difficult to stop the inflow of groundwater completely, and TEPCO is not planning any countermeasure construction. Regarding the continued inflow of groundwater into the buildings, TEPCO's Junichi Matsumoto says, "We have to come up with a more compact water treatment system in which we can circulate water without using the basements of the buildings. Otherwise we would be stuck in a situation where we have to treat the groundwater coming into the basements." However, there is no prospect of fundamentally solving the problem.And there will be no such prospect, as TEPCO is now proven to be very good at looking the other way. Over 10 sieverts/hour ultra-hot spot? Not a problem, we will just cordon off the area. What is causing 10 sieverts/hour radiation? Why it's not our problem. How much over 10 sieverts/hour? We don't know because we don't measure such things. High hydrogen concentration in the pipe? Not a problem, we will just blow nitrogen gas. What is causing the high hydrogen concentration? It's not our problem. A worker died after 1 week of work at the plant. Why? It's not our problem, it's the subcontractor's problem...
D'coda Dcoda

German Nuclear Decommissioning and Renewables Build-Out [23Oct11] - 0 views

  • Germany will be redirecting its economy towards renewable energy, because of the political decision to decommission its nuclear plants, triggered by the Fukushima event in Japan and subsequent public opposition to nuclear energy. Germany's decision would make achieving its 2020 CO2 emission reduction targets more difficult.   To achieve the CO2 emissions reduction targets and replace nuclear energy, renewable energy would need to scale up from 17% in 2010 to 57% of total electricity generation of 603 TWh in 2020, according to a study by The Breakthrough Institute. As electricity generation was 603 TWh in 2010, increased energy efficiency measures will be required to flat-line electricity production during the next 9 years.   Germany has 23 nuclear reactors (21.4 GW), 8 are permanently shut down (8.2 GW) and 15 (13.2 GW) will be shut down by 2022. Germany will be adding a net of 5 GW of coal plants, 5 GW of new CCGT plants and 1.4 GW of new biomass plants in future years. The CCGT plants will reduce the shortage of quick-ramping generation capacity for accommodating variable wind and solar energy to the grid.
  • Germany is planning a $14 billion build-out of transmission systems for onshore and future offshore wind energy in northern Germany and for augmented transmission with France for CO2-free hydro and nuclear energy imports to avoid any shortages.    Germany had fallen behind on transmission system construction in the north because of public opposition and is using the nuclear plant shutdown as leverage to reduce public opposition. Not only do people have to look at a multitude of 450-ft tall wind turbines, but also at thousands of 80 to 135 ft high steel structures and wires of the transmission facilities.   The $14 billion is just a minor down payment on the major grid reorganization required due to the decommissioning of the nuclear plants and the widely-dispersed build-outs of renewables. The exisitng grid is mostly large-central-plant based. 
  • This article includes the estimated capital costs of shutting down Germany's nuclear plants, reorganizing the grids of Germany and its neighbors, and building out renewables to replace the nuclear energy.    Germany’s Renewable Energy Act (EEG) in 2000, guarantees investors above-market fees for solar power for 20 years from the point of installation. In 2010, German investments in  renewables was about $41.2 billion, of which about $36.1 billion in 7,400 MW of solar systems ($4,878/kW). In 2010, German incentives for all renewables was about $17.9 billion, of which about half was for solar systems.   The average subsidy in 2010 was about ($9 billion x 1 euro/1.4 $)/12 TWh = 53.6 eurocents/kWh; no wonder solar energy is so popular in Germany. These subsidies are rolled into electric rates as fees or taxes, and will ultimately make Germany less competitive in world markets.   http://thebreakthrough.org/blog//2011/06/analysis_germanys_plan_to_phas-print.html http://mobile.bloomberg.com/news/2011-05-31/merkel-faces-achilles-heel-in-grids-to-unplug-german-nuclear.html http://www.theecologist.org/News/news_analysis/829664/revealed_how_your_country_compares_on_renewable_investment.html http://en.wikipedia.org/wiki/Solar_power_in_Germany  
  • ...12 more annotations...
  • SUMMARY OF ESTIMATED CAPITAL AND OTHER COSTS   The estimated capital costs and other costs for decommissioning the nuclear plants, restoring the sites, building out renewables, wind and solar energy balancing plants, and reorganizing electric grids over 9 years are summarized below.    The capital cost and subsidy cost for the increased energy efficiency measures was not estimated, but will likely need to be well over $180 billion over 9 years, or $20 billion/yr, or $20 b/($3286 b in 2010) x 100% = 0.6% of GDP, or $250 per person per yr.     Decommission nuclear plants, restore sites: 23 @ $1 billion/plant = $23 billion Wind turbines, offshore: 53,300 MW @ $4,000,000/MW = $213.2 billion   Wind turbines, onshore: 27,900 MW @ $2,000,000/MW = $55.8 billion Wind feed-in tariff extra costs rolled into electric rates over 9 years: $200 billion  Solar systems: 82,000 MW @ $4,500,000/MW = $369 billion Solar feed-in tariff extra costs rolled into electric rates over 9 years = $250 billion. Wind and solar energy balancing plants: 25,000 MW of CCGTs @ $1,250,000/MW = $31.3 billion Reorganizing European elecric grids tied to German grids: $150 billion
  • RENEWABLE ENERGY AND ENERGY EFFICIENCY TARGETS   In September 2010 the German government announced the following targets:   Renewable electricity - 35% by 2020 and 80% by 2050 Renewable energy - 18% by 2020, 30% by 2030, and 60% by 2050 Energy efficiency - Reducing the national electricity consumption 50% below 2008 levels by 2050.  http://en.wikipedia.org/wiki/Renewable_energy_in_Germany   Germany has a target to reduce its nation-wide CO2 emissions from all sources by 40% below 1990 levels by 2020 and 80-85% below 1990 levels by 2050. That goal could be achieved, if 100% of electricity is generated by renewables, according to Mr. Flasbarth. Germany is aiming to convince the rest of Europe to follow its lead.
  • Biomass: At the end of 2010, about 5,200 MW of biomass was installed at a capital cost of about $18 billion. Biomass energy produced was 33.5 TWh, or 5.5% of production. Plans are to add 1,400 MW of biomass plants in future years which, when fully implemented, would produce about 8.6 TWh/yr.   Solar: At the end of 2010, about 17,320 MW of PV solar was installed in Germany at a capital cost of about $100 billion. PV solar energy produced was 12 TWh, or 2% of total production. The excess cost of the feed-in-tariff energy bought by utilities and rolled into the electricity costs of rate payers was about $80 billion during the past 11 years.   Most solar panels are in southern Germany (nation-wide solar CF 0.095). When skies are clear, the solar production peaks at about 7 to 10 GW. Because of insufficient capacity of transmission and quick-ramping gas turbine plants, and because curtailment is not possible, part of the solar energy, produced at a cost to the German economy of about 30 to 50 eurocent/kWh is “sold” at European spot prices of about 5 eurocent/kWh to France which has significant hydro capacity for balancing the variable solar energy. http://theenergycollective.com/willem-post/46142/impact-pv-solar-feed-tariffs-germany  
  • Wind: At the end of 2010, about 27,200 MW of onshore and offshore wind turbines was installed in Germany at a capital cost of about $50 billion. Wind energy produced was 37.5 TWh, or 6.2% of total production. The excess cost of the feed-in-tariff energy bought by utilities and rolled into electricity costs of rate payers was about $50 billion during the past 11 years.   Most wind turbines are in northern Germany. When wind speeds are higher wind curtailment of 15 to 20 percent takes place because of insufficient transmission capacity and quick-ramping gas turbine plants. The onshore wind costs the Germany economy about 12 eurocent/kWh and the offshore wind about 24 eurocent/kWh. The owners of the wind turbines are compensated for lost production.   The alternative to curtailment is to “sell” the energy at European spot prices of about 5 eurocent/kWh to Norway and Sweden which have significant hydro capacity for balancing the variable wind energy; Denmark has been doing it for about 20 years.   As Germany is very marginal for onshore wind energy (nation-wide onshore wind CF 0.167) and nearly all of the best onshore wind sites have been used up, or are off-limits due to noise/visual/environmental impacts, most of the additional wind energy will have to come from OFFSHORE facilities which produce wind energy at about 2 to 3 times the cost of onshore wind energy. http://theenergycollective.com/willem-post/61774/wind-energy-expensive
  • A 2009 study by EUtech, engineering consultants, concluded Germany will not achieve its nation-wide CO2 emissions target; the actual reduction will be less than 30%. The head of Germany's Federal Environment Agency (UBA), Jochen Flasbarth, is calling for the government to improve CO2 reduction programs to achieve targets. http://www.spiegel.de/international/germany/0,1518,644677,00.html   GERMAN RENEWABLE ENERGY TO-DATE   Germany announced it had 17% of its electrical energy from renewables in 2010; it was 6.3% in 2000. The sources were 6.2% wind, 5.5% biomass, 3.2% hydro and 2.0% solar. Electricity consumption in 2010 was 603 TWh (production) - 60 TWh (assumed losses) = 543 TWh http://www.volker-quaschning.de/datserv/ren-Strom-D/index_e.php  
  • Hydro: At the end of 2010, about 4,700 MW of hydro was installed. Hydro energy produced was 19.5 TWh, or 3.2% of production. Hydro growth has been stagnant during the past 20 years. See below website.   As it took about $150 billion of direct investment, plus about $130 billion excess energy cost during the past 11 years to achieve 8.2% of total production from solar and wind energy, and assuming hydro will continue to have little growth, as was the case during the past 20 years (almost all hydro sites have been used up), then nearly all of the renewables growth by 2020 will be mostly from wind, with the remainder from solar and biomass. http://www.renewableenergyworld.com/rea/news/article/2011/03/new-record-for-german-renewable-energy-in-2010??cmpid=WNL-Wednesday-March30-2011   Wind and Solar Energy Depend on Gas: Wind and solar energy is variable and intermittent. This requires quick-ramping gas turbine plants to operate at part-load and quickly ramp up with wind energy ebbs and quickly ramp down with wind energy surges; this happens about 100 to 200 times a day resulting in increased wear and tear. Such operation is very inefficient for gas turbines causing them to use extra fuel/kWh and emit extra CO2/kWh that mostly offset the claimed fuel and CO2 reductions due to wind energy. http://theenergycollective.com/willem-post/64492/wind-energy-reduces-co2-emissions-few-percent  
  • Wind energy is often sold to the public as making a nation energy independent, but Germany will be buying gas mostly from Russia supplied via the newly constructed pipeline under the Baltic Sea from St. Petersburg to Germany, bypassing Poland.   GERMANY WITHOUT NUCLEAR ENERGY   A study performed by The Breakthrough Institute concluded to achieve the 40% CO2 emissions reduction target and the decommissioning of 21,400 MW of nuclear power plants by 2022, Germany’s electrical energy mix would have to change from 60% fossil, 23% nuclear and 17% renewables in 2010 to 43% fossil and 57% renewables by 2020. This will require a build-out of renewables, reorganization of Europe’s electric grids (Europe’s concurrence will be needed) and acceleration of energy efficiency measures.   According to The Breakthrough Institite, Germany would have to reduce its total electricity consumption by about 22% of current 2020 projections AND achieve its target for 35% electricity generated from renewables by 2020. This would require increased energy efficiency measures to effect an average annual decrease of the electricity consumption/GDP ratio of 3.92% per year, significantly greater than the 1.47% per year decrease assumed by the IEA's BAU forecasts which is based on projected German GDP growth and current German efficiency policies.
  • The Breakthrough Institute projections are based on electricity consumption of 544  and 532 TWh  in 2008 and 2020, respectively; the corresponding production is 604 TWh in 2008 and 592 TWh in 2020.   http://thebreakthrough.org/blog//2011/06/analysis_germanys_plan_to_phas-print.html http://www.iea.org/textbase/nppdf/free/2007/germany2007.pdf   Build-out of Wind Energy: If it is assumed the current wind to solar energy ratio is maintained at 3 to 1, the wind energy build-out will be 80% offshore and 20% onshore, and the electricity production will be 592 TWh, then the estimated capital cost of the offshore wind turbines will be [{0.57 (all renewables) - 0.11 (assumed biomass + hydro)} x 592 TWh x 3/4] x 0.8 offshore/(8,760 hr/yr x average CF 0.35) = 0.0533 TW offshore wind turbines @ $4 trillion/TW = $213 billion and of the onshore wind turbines will be [{0.57 (all renewables) - 0.11 (assumed biomass + hydro)} x 592 TWh x 3/4] x 0.2 onshore/(8,760 hr/yr x average CF 0.167) = 0.279 TW of wind turbines @ $2 trillion/TW = $56 billion, for a total of $272 billion. The feed in tariff subsidy for 9 years, if maintained similar to existing subsidies to attract adequate capital, will be about $150 billion offshore + $50 billion onshore, for a total of $200 billion.    
  • Note: The onshore build-out will at least double Germany’s existing onshore wind turbine capacity, plus required transmission systems; i.e., significant niose, environmental and visual impacts over large areas.   Recent studies, based on measured, real-time, 1/4-hour grid operations data sets of the Irish, Colorado and Texas grids, show wind energy does little to reduce CO2 emissions. Such data sets became available during the past 2 to 3 years. Prior studies, based on assumptions, estimates, modeling scenarios, and statistics, etc., significantly overstate CO2 reductions.  http://theenergycollective.com/willem-post/64492/wind-energy-reduces-co2-emissions-few-percent   Build-out of PV Solar Energy: The estimated capital cost of the PV solar capacity will be [{0.57 (all renewables) - 0.11 (assumed biomass + hydro)} x 592 TWh x 1/4]/(8,760 hr/yr x average CF 0.095) = 0.082 TW @ $4.5 trillion/TW = $369 billion. The feed in tariff subsidy, if maintained similar to existing subsidies to attract adequate capital, will be about $250 billion.   Reorganizating Electric Grids: For GW reasons, a self-balancing grid system is needed to minimize CO2 emissions from gas-fired CCGT balancing plants. One way to implement it is to enhance the interconnections of the national grids with European-wide HVDC overlay systems (owning+O&M costs, including transmission losses), and with European-wide selective curtailment of wind energy, and with European-wide demand management and with pumped hydro storage capacity. These measures will reduce, but not eliminate, the need for balancing energy, at greater wind energy penetrations during high-windspeed weather conditions, as frequently occur in Iberia (Spain/Portugal).  
  • European-wide agreement is needed, the capital cost will be in excess of $150 billion and the adverse impacts on quality of life (noise, visuals, psychological), property values and the environment will be significant over large areas.    Other Capital Costs: The capacity of the quick-ramping CCGT balancing plants was estimated at 25,000 MW; their capital cost is about 25,000 MW x $1,250,000/MW = $31.3 billion. The capital costs of decommissioning and restoring the sites of the 23 nuclear plants will be about $23 billion.   Increased Energy Efficiency: Increased energy efficiency would be more attractive than major build-outs of renewables, because it provides the quickest and biggest "bang for the buck", AND it is invisible, AND it does not make noise, AND it has minimal environmental impact, AND it usually reduces at least 3 times the CO2 per invested dollar, AND it usually creates at least 3 times the jobs per invested dollar, AND it usually creates at least 3 times the energy reduction per invested dollar, AND it does all this without public resistance and controversy.   Rebound, i.e., people going back to old habits of wasting energy, is a concept fostered by the PR of proponents of conspicuous consumption who make money on such consumption. People with little money love their cars getting 35-40 mpg, love getting small electric and heating bills. The rebound is mostly among people who do not care about such bills.
  • A MORE RATIONAL APPROACH   Global warming is a given for many decades, because the fast-growing large economies of the non-OECD nations will have energy consumption growth far outpacing the energy consumption growth of the slow-growing economies of the OECD nations, no matter what these OECD nations do regarding reducing CO2 emissions of their economies.   It is best to PREPARE for the inevitable additional GW by requiring people to move away from flood-prone areas (unless these areas are effectively protected, as in the Netherlands), requiring new  houses and other buildings to be constructed to a standard such as the Passivhaus standard* (such buildings stay cool in summer and warm in winter and use 80 to 90 percent less energy than standard buildings), and requiring the use of new cars that get at least 50 mpg, and rearranging the world's societies for minimal energy consumption; making them walking/bicycling-friendly would be a good start.   If a nation, such as the US, does not do this, the (owning + O&M) costs of its economy will become so excessive (rising resource prices, increased damage and disruptions from weather events) that its goods and services will become less competitive and an increasing percentage of its population will not be able to afford a decent living standard in such a society.   For example: In the US, the median annual household income (inflation-adjusted) was $49,445, a decline of 7% since 2000. As the world’s population increases to about 10 billion by 2050, a triage-style rationing of resources will become more prevalent. http://www.usatoday.com/news/nation/story/2011-09-13/census-household-income/50383882/1
  • * A 2-year-old addition to my house is built to near-Passivhaus standards; its heating system consists of a thermostatically-controlled 1 kW electric heater, set at 500 W, that cycles on/off on the coldest days for less than 100 hours/yr. The addition looks inside and out entirely like standard construction. http://theenergycollective.com/willem-post/46652/reducing-energy-use-houses
  •  
    Excellent, lengthy article , lots of data
D'coda Dcoda

CPS must die [24Oct07} - 0 views

  • Collectively, Texas eats more energy than any other state, according to the U.S. Department of Energy. We’re fifth in the country when it comes to our per-capita energy intake — about 532 million British Thermal Units per year. A British Thermal Unit, or Btu, is like a little “bite” of energy. Imagine a wooden match burning and you’ve got a Btu on a stick. Of course, the consumption is with reason. Texas, home to a quarter of the U.S. domestic oil reserves, is also bulging with the second-highest population and a serious petrochemical industry. In recent years, we managed to turn ourselves into the country’s top producer of wind energy. Despite all the chest-thumping that goes on in these parts about those West Texas wind farms (hoist that foam finger!), we are still among the worst in how we use that energy. Though not technically “Southern,” Texans guzzle energy like true rednecks. Each of our homes use, on average, about 14,400 kilowatt hours per year, according to the U.S. Energy Information Administration. It doesn’t all have to do with the A/C, either. Arizonans, generally agreed to be sharing the heat, typically use about 12,000 kWh a year; New Mexicans cruise in at an annual 7,200 kWh. Don’t even get me started on California’s mere 6,000 kWh/year figure.
  • Let’s break down that kilowatt-hour thing. A watt is the energy of one candle burning down. (You didn’t put those matches away, did you?) A kilowatt is a thousand burnin’ candles. And a kilowatt hour? I think you can take it from there. We’re wide about the middle in Bexar, too. The average CPS customer used 1,538 kilowatt hours this June when the state average was 1,149 kWh, according to ERCOT. Compare that with Austin residents’ 1,175 kWh and San Marcos residents’ 1,130 kWh, and you start to see something is wrong. So, we’re wasteful. So what? For one, we can’t afford to be. Maybe back when James Dean was lusting under a fountain of crude we had if not reason, an excuse. But in the 1990s Texas became a net importer of energy for the first time. It’s become a habit, putting us behind the curve when it comes to preparing for that tightening energy crush. We all know what happens when growing demand meets an increasingly scarce resource … costs go up. As the pressure drop hits San Anto, there are exactly two ways forward. One is to build another massively expensive power plant. The other is to transform the whole frickin’ city into a de-facto power plant, where energy is used as efficiently as possible and blackouts simply don’t occur.
  • Consider, South Texas Project Plants 1&2, which send us almost 40 percent of our power, were supposed to cost $974 million. The final cost on that pair ended up at $5.5 billion. If the planned STP expansion follows the same inflationary trajectory, the price tag would wind up over $30 billion. Applications for the Matagorda County plants were first filed with the Atomic Energy Commission in 1974. Building began two years later. However, in 1983 there was still no plant, and Austin, a minority partner in the project, sued Houston Power & Lighting for mismanagement in an attempt to get out of the deal. (Though they tried to sell their share several years ago, the city of Austin remains a 16-percent partner, though they have chosen not to commit to current expansion plans).
  • ...17 more annotations...
  • CPS didn’t just pull nukes out of a hat when it went looking for energy options. CEO Milton Lee may be intellectually lazy, but he’s not stupid. Seeking to fulfill the cheap power mandate in San Antonio and beyond (CPS territory covers 1,566 square miles, reaching past Bexar County into Atascosa, Bandera, Comal, Guadalupe, Kendall, Medina, and Wilson counties), staff laid natural gas, coal, renewables and conservation, and nuclear side-by-side and proclaimed nukes triumphant. Coal is cheap upfront, but it’s helplessly foul; natural gas, approaching the price of whiskey, is out; and green solutions just aren’t ready, we’re told. The 42-member Nuclear Expansion Analysis Team, or NEAT, proclaimed “nuclear is the lowest overall risk considering possible costs and risks associated with it as compared to the alternatives.” Hear those crickets chirping?
  • NEAT members would hold more than a half-dozen closed-door meetings before the San Antonio City Council got a private briefing in September. When the CPS board assembled October 1 to vote the NRG partnership up or down, CPS executives had already joined the application pending with the U.S. Nuclear Regulatory Commission. A Supplemental Participation Agreement allowed NRG to move quickly in hopes of cashing in on federal incentives while giving San Antonio time to gather its thoughts. That proved not too difficult. Staff spoke of “overwhelming support” from the Citizen’s Advisory Board and easy relations with City staff. “So far, we haven’t seen any fatal flaws in our analysis,” said Mike Kotera, executive vice president of energy development for CPS. With boardmember and Mayor Phil Hardberger still in China inspecting things presumably Chinese, the vote was reset for October 29.
  • No one at the meeting asked about cost, though the board did request a month-by-month analysis of the fiasco that has been the South Texas Project 1&2 to be delivered at Monday’s meeting. When asked privately about cost, several CPS officers said they did not know what the plants would run, and the figure — if it were known — would not be public since it is the subject of contract negotiations. “We don’t know yet,” said Bob McCullough, director of CPS’s corporate communications. “We are not making the commitment to build the plant. We’re not sure at this point we really understand what it’s going to cost.” The $206 million outlay the board will consider on Monday is not to build the pair of 1,300-megawatt, Westinghouse Advanced Boiling Water Reactors. It is also not a contract to purchase power, McCullough said. It is merely to hold a place in line for that power.
  • It’s likely that we would come on a recurring basis back to the board to keep them apprised of where we are and also the decision of whether or not we think it makes sense for us to go forward,” said Larry Blaylock, director of CPS’s Nuclear Oversight & Development. So, at what point will the total cost of the new plants become transparent to taxpayers? CPS doesn’t have that answer. “At this point, it looks like in order to meet our load growth, nuclear looks like our lowest-risk choice and we think it’s worth spending some money to make sure we hold that place in line,” said Mark Werner, director of Energy Market Operations.
  • Another $10 million request for “other new nuclear project opportunities” will also come to the board Monday. That request summons to mind a March meeting between CPS officials and Exelon Energy reps, followed by a Spurs playoff game. Chicago-based Exelon, currently being sued in Illinois for allegedly releasing millions of gallons of radioactive wastewater beneath an Illinois plant, has its own nuclear ambitions for Texas. South Texas Project The White House champions nuclear, and strong tax breaks and subsidies await those early applicants. Whether CPS qualifies for those millions remains to be seen. We can only hope.
  • CPS has opted for the Super Honkin’ Utility model. Not only that — quivering on the brink of what could be a substantial efficiency program, CPS took a leap into our unflattering past when it announced it hopes to double our nuclear “portfolio” by building two new nuke plants in Matagorda County. The utility joined New Jersey-based NRG Energy in a permit application that could fracture an almost 30-year moratorium on nuclear power plant creation in the U.S.
  • After Unit 1 came online in 1988, it had to be shut down after water-pump shaft seared off in May, showering debris “all over the place,” according to Nucleonics Week. The next month two breakers failed during a test of backup power, leading to an explosion that sheared off a steam-generator pump and shot the shaft into the station yard. After the second unit went online the next year, there were a series of fires and failures leading to a half-million-dollar federal fine in 1993 against Houston Power. Then the plant went offline for 14 months. Not the glorious launch the partnership had hoped for. Today, CPS officials still do not know how much STP has cost the city, though they insist overall it has been a boon worth billions. “It’s not a cut-and-dried analysis. We’re doing what we can to try to put that in terms that someone could share and that’s a chore,” said spokesman McCollough. CPS has appealed numerous Open Records requests by the Current to the state Attorney General. The utility argues that despite being owned by the City they are not required to reveal, for instance, how much it may cost to build a plant or even how much pollution a plant generates, since the electricity market is a competitive field.
  • How do we usher in this new utopia of decentralized power? First, we have to kill CPS and bury it — or the model it is run on, anyway. What we resurrect in its place must have sustainability as its cornerstone, meaning that the efficiency standards the City and the utility have been reaching for must be rapidly eclipsed. Not only are new plants not the solution, they actively misdirect needed dollars away from the answer. Whether we commit $500 million to build a new-fangled “clean-coal” power plant or choose to feed multiple billions into a nuclear quagmire, we’re eliminating the most plausible option we have: rapid decentralization.
  • A 2003 study at the Massachusetts Institute of Technology estimates the cost of nuclear power to exceed that of both coal and natural gas. A U.S. Energy Information Administration report last year found that will still be the case when and if new plants come online in the next decade. If ratepayers don’t pay going in with nuclear, they can bet on paying on the way out, when virtually the entire power plant must be disposed of as costly radioactive waste. The federal government’s inability to develop a repository for the tens of thousands of tons of nuclear waste means reactors across the country are storing spent fuel in onsite holding ponds. It is unclear if the waste’s lethality and tens of thousands of years of radioactivity were factored into NEAT’s glowing analysis.
  • The federal dump choice, Nevada’s Yucca Mountain, is expected to cost taxpayers more than $60 billion. If it opens, Yucca will be full by the time STP 3&4 are finished, requiring another federal dump and another trainload of greenbacks. Just the cost of Yucca’s fence would set you back. Add the price of replacing a chain-link fence around, let’s say, a 100-acre waste site. Now figure you’re gonna do that every 50 years for 10,000 years or more. Security guards cost extra. That is not to say that the city should skip back to the coal mine. Thankfully, we don’t need nukes or coal, according to the American Council for an Energy-Efficient Economy, a D.C.-based non-profit that champions energy efficiency. A collection of reports released this year argue that a combination of ramped-up efficiency programs, construction of numerous “combined heat and power” facilities, and installation of on-site renewable energy resources would allow the state to avoid building new power plants. Texas could save $73 billion in electric generation costs by spending $50 billion between now and 2023 on such programs, according to the research group. The group also claims the efficiency revolution would even be good for the economy, creating 38,300 jobs. If ACEEE is even mostly right, plans to start siphoning millions into a nuclear reservoir look none too inspired.
  • To jump tracks will take a major conversion experience inside CPS and City Hall, a turning from the traditional model of towering plants, reels of transmission line, and jillions of dependent consumers. CPS must “decentralize” itself, as cities as close as Austin and as far away as Seattle are doing. It’s not only economically responsible and environmentally sound, but it is the best way to protect our communities entering what is sure to be a harrowing century. Greening CPS CPS is grudgingly going greener. In 2004, a team of consultants, including Wisconsin-based KEMA Inc., hired to review CPS operations pegged the utility as a “a company in transition.” Executives interviewed didn’t understand efficiency as a business model. Even some managers tapped to implement conservation programs said such programs were about “appearing” concerned, according to KEMA’s findings.
  • While the review exposed some philosophical shortcomings, it also revealed for the first time how efficiency could transform San Antonio. It was technically possible, for instance, for CPS to cut electricity demand by 1,935 megawatts in 10 years through efficiency alone. While that would be accompanied with significant economic strain, a less-stressful scenario could still cut 1,220 megawatts in that period — eliminating 36 percent of 2014’s projected energy use. CPS’s current plans call for investing $96 million to achieve a 225-megawatt reduction by 2016. The utility plans to spend more than four times that much by 2012 upgrading pollution controls at the coal-fired J.T. Deely power plant.
  • In hopes of avoiding the construction of Spruce 2 (now being built, a marvel of cleanliness, we are assured), Citizen Oversight Committee members asked KEMA if it were possible to eliminate 500 megawatts from future demand through energy efficiency alone. KEMA reported back that, yes, indeed it was possible, but would represent an “extreme” operation and may have “unintended consequences.” Such an effort would require $620 million and include covering 90 percent of the cost of efficiency products for customers. But an interesting thing happens under such a model — the savings don’t end in 2012. They stretch on into the future. The 504 megawatts that never had to be generated in 2012 end up saving 62 new megawatts of generation in 2013 and another 53 megawatts in 2014. With a few tweaks on the efficiency model, not only can we avoid new plants, but a metaphorical flip of the switch can turn the entire city into one great big decentralized power generator.
  • Even without good financial data, the Citizen’s Advisory Board has gone along with the plan for expansion. The board would be “pennywise and pound foolish” not to, since the city is already tied to STP 1&2, said at-large member Jeannie O’Sullivan. “Yes, in the past the board of CPS had been a little bit not as for taking on a [greater] percentage of nuclear power. I don’t know what their reasons were, I think probably they didn’t have a dialogue with a lot of different people,” O’Sullivan said.
  • For this, having a City-owned utility offers an amazing opportunity and gives us the flexibility to make most of the needed changes without state or federal backing. “Really, when you start looking, there is a lot more you can do at the local level,” said Neil Elliott of the ACEEE, “because you control building codes. You control zoning. You can control siting. You can make stuff happen at the local level that the state really doesn’t have that much control of.” One of the most empowering options for homeowners is homemade energy provided by a technology like solar. While CPS has expanded into the solar incentives field this year, making it only the second utility in the state to offer rebates on solar water heaters and rooftop panels, the incentives for those programs are limited. Likewise, the $400,000 CPS is investing at the Pearl Brewery in a joint solar “project” is nice as a white tiger at a truck stop, but what is truly needed is to heavily subsidize solar across the city to help kickstart a viable solar industry in the state. The tools of energy generation, as well as the efficient use of that energy, must be spread among the home and business owners.
  • Joel Serface, with bulb-polished pate and heavy gaze, refers to himself as a “product of the oil shock” who first discovered renewables at Texas Tech’s summer “geek camp.” The possibilities stayed with him through his days as a venture capitalist in Silicon Valley and eventually led him to Austin to head the nation’s first clean-energy incubation center. Serface made his pitch at a recent Solar San Antonio breakfast by contrasting Texas with those sun-worshipping Californians. Energy prices, he says, are “going up. They’re not going down again.” That fact makes alternative energies like solar, just starting to crack the 10-cent-per-killowatt barrier, financially viable. “The question we have to solve as an economy is, ‘Do we want to be a leader in that, or do we want to allow other countries [to outpace us] and buy this back from them?’” he asked.
  • To remain an energy leader, Texas must rapidly exploit solar. Already, we are fourth down the list when it comes not only to solar generation, but also patents issued and federal research awards. Not surprisingly, California is kicking silicon dust in our face.
D'coda Dcoda

Press gain access to Fukushima plant / Media get firsthand look at devastation caused b... - 0 views

  • Joining the first press tour to the power plant, eight months after the Great East Japan Earthquake, I headed to the site aboard a bus from J-Village about 20 kilometers south. Originally a sports facility, J-Village is currently used as the base for workers at the crippled plant. Wearing protective gear along with cotton and rubber gloves on each hand, I began to sweat even before being told to put on a full-face mask about three kilometers from the plant. We had to wear the masks to prevent internal radiation exposure, but I had difficulty breathing because the mask stuck to my face every time I inhaled. I imagined it would be quite hard to work in this clothing. Guards in the same outfits stood at the main gate of the plant, keeping an eye on comings and goings.
  • Aboard the bus was a worker tasked with checking radiation, who constantly read out radiation levels. Tension on the bus spiked when he said, "It's 20 microsieverts per hour." I realized how devastating the accident was when we arrived on a hill about 34 meters above sea level to take in a wider view of the site. From the hill, we could see the 45-meter-high No. 4 reactor building in the foreground, which had been severely damaged with only its steel framework remaining. I also spotted a large green crane used to pull nuclear fuel from the pressure vessel--it should not have been visible as it is supposed to be inside the building. Behind the No. 4 reactor building was the No. 3 building, which showed much more severe damage with bent steel beams clearly visible.
  • The reactor buildings, which are the last line of defense to prevent radioactive materials from leaking, have one-meter-thick concrete walls. I was overwhelmed to see the devastating power of the explosions that destroyed such solid walls.
  • ...2 more annotations...
  • It's 40 microsieverts [per hour]," we were told when the bus arrived near the coast, about 10 meters above sea level
  • There were several large trailers stuck in the ground near the No. 3 and No. 4 turbine buildings, and a nearby cafeteria building's first floor was destroyed. The lower part of the turbine buildings, on the other hand, showed almost no damage as they were sturdy enough to withstand the power of the tsunami, but could not prevent the water from leaking in through small openings. Had the emergency generators not been in the basements of the turbine buildings, they would not have been submerged and could have prevented the nuclear crisis from developing.
D'coda Dcoda

Bloomberg: Crack in reactor containment structure at quake-hit Virginia nuke plant - Pr... - 0 views

  • Dominion Says Crack Found at North Anna Containment Building, Bloomberg, September 2, 2011:
  • Dominion Resources Inc. found a small crack on a wall with “no safety significance” in a room of a containment building at the North Anna nuclear plant [...] Dominion discovered a “cosmetic” crack in a horizontal construction joint on a wall that is in the containment building, [Dan Stoddard, the Dominion's senior vice president for nuclear operations] said. [...] Dominion invited reporters to tour the plant’s control room, transformer and generator areas. Company officials didn’t take the group into the reactor containment structure or the building that houses a cooling pool for spent fuel because that would have been “more complex and more time-consuming,” Stoddard said. [...]
D'coda Dcoda

Japan casts doubt on Israeli nuclear energy [13Mar11] - 0 views

  • Friday's 8.9 magnitude earthquake in Japan, which damaged four nuclear power plants, will make it harder for Minister of National Infrastructures Uzi Landau to realize his dream of a nuclear power plant in Israel, which is also in a seismic zone. The problem is not only the increased public awareness about safe risks of nuclear power plants, but also skyrocketing costs to build them.
  • Landau and other ministry officials have said that they want to build a nuclear power plant at Shivta in the Negev. Israel Electric Corporation (IEC) (TASE: ELEC.B22) is an enthusiastic supporter of the plan, and is financing a department of nuclear engineering at Ben Gurion University. The IEC workers committee has obtained a Ministry of Finance promise for the company to build the plant, known as Project E, involving two 1,200-megawatt power plants to generate 10% of Israel's electricity needs, in 2025-35. The advantages of large nuclear power plants equal their disadvantages, however. It is easy to store the nuclear fuel, which can operate the plant for decades. There are no emissions of greenhouse gases, and nuclear power is considered a cleaner fuel than natural gas. The new fourth generation of reactors is intended to provide almost perfect solutions to the operational safety risks.
  • The biggest obstacle facing Israel's building of a nuclear power plant is the fact that Israel is not a signatory of the Non-Proliferation Treaty (NPT). The government believes that it is possible to get around this obstacle through diplomatic means, using the precedent set by India. Another problem is the government's inability to realize strategic infrastructure projects on schedule. For example, just a few months ago, a collection of environmental organizations and local authorities blocked the construction of a terminal for the Tamar gas field at Dor Beach near Hadera. Without thorough reform of planning and building procedures, the government has no chance of passing a plan to build a nuclear power plant.
  • ...2 more annotations...
  • These obstacles, however, are likely to become insignificant in the face of spiraling costs to build nuclear power plants. Recent studies estimate the cost of building nuclear power plants at $3,600 per kilowatt installed, which translates into $4-5 billion for a 1,200-megawatt power station.
  • Friday's earthquake in Japan, which shut down several power plants, and has resulted in a crisis and possible core meltdown at the Fukushima Daiichi Nuclear Power Station, will undoubtedly further boost these costs to meet even tougher safety requirements.
D'coda Dcoda

Problems Plague Cleanup at Hanford Nuclear Waste Site [19Jan12] - 0 views

  • Seven decades after scientists came here during World War II to create plutonium for the first atomic bomb, a new generation is struggling with an even more daunting task: cleaning up the radioactive mess.The U.S. government is building a treatment plant to stabilize and contain 56 million gallons of waste left from a half-century of nuclear weapons production. The radioactive sludge is so dangerous that a few hours of exposure could be fatal. A major leak could contaminate water supplies serving millions across the Northwest. The cleanup is the most complex and costly environmental restoration ever attempted.And the project is not going well.
  • A USA TODAY investigation has found that the troubled, 10-year effort to build the treatment plant faces enormous problems just as it reaches what was supposed to be its final stage.In exclusive interviews, several senior engineers cited design problems that could bring the plant's operations to a halt before much of the waste is treated. Their reports have spurred new technical reviews and raised official concerns about the risk of a hydrogen explosion or uncontrolled nuclear reaction inside the plant. Either could damage critical equipment, shut the facility down or, worst case, allow radiation to escape.The plant's $12.3 billion price tag, already triple original estimates, is well short of what it will cost to address the problems and finish the project. And the plant's start-up date, originally slated for last year and pushed back to its current target of 2019, is likely to slip further.
  • "We're continuing with a failed design," said Donald Alexander, a senior U.S. government scientist on the project."There's a lot of pressure … from Congress, from the state, from the community to make progress," he added. As a result, "the design processes are cut short, the safety analyses are cut short, and the oversight is cut short. … We have to stop now and figure out how to do this right, before we move any further."
  • ...5 more annotations...
  • The "design-build" approach "is good if you're building a McDonald's," said Gene Aloise, the GAO's director of nuclear non-proliferation and security. "It's not good if you're building a one-of-a-kind, high-risk nuclear waste facility."The Defense Nuclear Facilities Safety Board, an independent federal panel that oversees public health and safety at nuclear weapons sites, is urging Energy Secretary Steven Chu to require more extensive testing of designs for some of the plant's most critical components."Design and construction of the project continue despite there being unresolved technical issues, and there is a lot of risk associated with that," said Peter Winokur, the board's chairman. The waste at Hanford, stored in 177 deteriorating underground tanks, "is a real risk to the public and the environment. It is essential that this plant work and work well."
  • Documents obtained by USA TODAY show at least three federal investigations are underway to examine the project, which is funded and supervised by the Department of Energy, owner of Hanford Site. Bechtel National is the prime contractor.In November, the Energy Department's independent oversight office notified Bechtel that it is investigating "potential nuclear safety non-compliances" in the design and installation of plant systems and components. And the department's inspector general is in the final stages of a separate probe focused on whether Bechtel installed critical equipment that didn't meet quality-control standards.Meanwhile, Congress' Government Accountability Office has launched a sweeping review of everything from cost and schedule overruns to the risks associated with the Energy Department's decision to proceed with construction before completing and verifying the design of key components.
  • Everything about the waste treatment plant at Hanford is unprecedented — and urgent.The volume of waste, its complex mix of highly radioactive and toxic material, the size of the processing facilities — all present technical challenges with no proven solution. The plant is as big as the task: a sprawling, 65-acre compound of four giant buildings, each longer than a football field and as tall as 12 stories high.The plant will separate the waste's high- and low-level radioactive materials, then blend them with compounds that are superheated to create a molten glass composite — a process called "vitrification." The mix is poured into giant steel cylinders, where it cools to a solid form that is safe and stable for long-term storage — tens of thousands of glass tubes in steel coffins.
  • Once the plant starts running, it could take 30 years or more to finish its cleanup work.The 177 underground tanks at Hanford hold detritus from 45 years of plutonium production at the site, which had up to nine nuclear reactors before it closed in 1989. Some of the tanks, with capacities ranging from 55,000 gallons to more than 1 million gallons, date to the mid-1940s, when Hanford's earliest reactor made plutonium for the first atomic bomb ever detonated: the "Trinity" test at Alamagordo, N.M. It also produced the plutonium for the bomb dropped on Nagasaki, Japan, in World War II.
  • More than 60 of the tanks are thought to have leaked, losing a million gallons of waste into soil and groundwater. So far, the contamination remains within the boundaries of the barren, 586-square-mile site, but it poses an ongoing threat to the nearby Columbia River, a water source for communities stretching southwest to Portland, Ore. And, while the liquid most likely to escape from the older tanks has been moved to newer, double-walled tanks, the risk of more leaks compounds that threat.
D'coda Dcoda

U.S. nuke regulators weaken safety rules [20Jun11] - 0 views

  • Federal regulators have been working closely with the nuclear power industry to keep the nation's aging reactors operating within safety standards by repeatedly weakening standards or simply failing to enforce them, an investigation by The Associated Press has found.Officials at the U.S. Nuclear Regulatory Commission regularly have decided original regulations were too strict, arguing that safety margins could be eased without peril, according to records and interviews.The result? Rising fears that these accommodations are undermining safety -- and inching the reactors closer to an accident that could harm the public and jeopardize nuclear power's future.
  • Examples abound. When valves leaked, more leakage was allowed -- up to 20 times the original limit. When cracking caused radioactive leaks in steam generator tubing, an easier test was devised so plants could meet standards.Failed cables. Busted seals. Broken nozzles, clogged screens, cracked concrete, dented containers, corroded metals and rusty underground pipes and thousands of other problems linked to aging were uncovered in AP's yearlong investigation. And many of them could escalate dangers during an accident.
  • Despite the problems, not a single official body in government or industry has studied the overall frequency and potential impact on safety of such breakdowns in recent years, even as the NRC has extended dozens of reactor licenses.Industry and government officials defend their actions and insist no chances are being taken. But the AP investigation found that with billions of dollars and 19 percent of America's electricity supply at stake, a cozy relationship prevails between industry and the NRC.Records show a recurring pattern: Reactor parts or systems fall out of compliance. Studies are conducted by industry and government, and all agree existing standards are "unnecessarily conservative."
  • ...14 more annotations...
  • Regulations are loosened, and reactors are back in compliance."That's what they say for everything ...," said Demetrios Basdekas, a retired NRC engineer. "Every time you turn around, they say, 'We have all this built-in conservatism.' "The crisis at the decades-old Fukushima Dai-ichi nuclear facility in Japan has focused attention on nuclear safety and prompted the NRC to look at U.S. reactors. A report is due in July.But the factor of aging goes far beyond issues posed by Fukushima.
  • Commercial nuclear reactors in the United States were designed and licensed for 40 years. When the first were built in the 1960s and 1970s, it was expected that they would be replaced with improved models long before their licenses expired.That never happened. The 1979 accident at Three Mile Island, massive cost overruns, crushing debt and high interest rates halted new construction in the 1980s.Instead, 66 of the 104 operating units have been relicensed for 20 more years. Renewal applications are under review for 16 other reactors.As of today, 82 reactors are more than 25 years old.The AP found proof that aging reactors have been allowed to run less safely to prolong operations.
  • Last year, the NRC weakened the safety margin for acceptable radiation damage to reactor vessels -- for a second time. The standard is based on a reactor vessel's "reference temperature," which predicts when it will become dangerously brittle and vulnerable to failure. Through the years, many plants have violated or come close to violating the standard.As a result, the minimum standard was relaxed first by raising the reference temperature 50 percent, and then 78 percent above the original -- even though a broken vessel could spill radioactive contents."We've seen the pattern," said nuclear safety scientist Dana Powers, who works for Sandia National Laboratories and also sits on an NRC advisory committee. "They're ... trying to get more and more out of these plants."
  • Sharpening the pencilThe AP study collected and analyzed government and industry documents -- some never-before released -- of both reactor types: pressurized water units that keep radioactivity confined to the reactor building and the less common boiling water types like those at Fukushima, which send radioactive water away from the reactor to drive electricity-generating turbines.The Energy Northwest Columbia Generating Station north of Richland is a boiling water design that's a newer generation than the Fukushima plants.Tens of thousands of pages of studies, test results, inspection reports and policy statements filed during four decades were reviewed. Interviews were conducted with scores of managers, regulators, engineers, scientists, whistleblowers, activists and residents living near the reactors at 65 sites, mostly in the East and Midwest.
  • AP reporters toured some of the oldest reactors -- Oyster Creek, N.J., near the Atlantic coast 50 miles east of Philadelphia and two at Indian Point, 25 miles north of New York City on the Hudson River.Called "Oyster Creak" by some critics, this boiling water reactor began running in 1969 and is the country's oldest operating commercial nuclear power plant. Its license was extended in 2009 until 2029, though utility officials announced in December they will shut the reactor 10 years earlier rather than build state-ordered cooling towers. Applications to extend the lives of pressurized water units 2 and 3 at Indian Point, each more than 36 years old, are under NRC review.Unprompted, several nuclear engineers and former regulators used nearly identical terminology to describe how industry and government research has frequently justified loosening safety standards. They call it "sharpening the pencil" or "pencil engineering" -- fudging calculations and assumptions to keep aging plants in compliance.
  • Cracked tubing: The industry has long known of cracking in steel alloy tubing used in the steam generators of pressurized water reactors. Ruptures have been common in these tubes containing radioactive coolant; in 1993 alone, there were seven. As many as 18 reactors still run on old generators.Problems can arise even in a newer metal alloy, according to a report of a 2008 industry-government workshop.
  • Neil Wilmshurst, director of plant technology for the industry's Electric Power Research Institute, acknowledged the industry and NRC often collaborate on research that supports rule changes. But he maintained there's "no kind of misplaced alliance ... to get the right answer."Yet agency staff, plant operators and consultants paint a different picture:* The AP reviewed 226 preliminary notifications -- alerts on emerging safety problems -- NRC has issued since 2005. Wear and tear in the form of clogged lines, cracked parts, leaky seals, rust and other deterioration contributed to at least 26 of the alerts. Other notifications lack detail, but aging was a probable factor in 113 more, or 62 percent in all. For example, the 39-year-old Palisades reactor in Michigan shut Jan. 22 when an electrical cable failed, a fuse blew and a valve stuck shut, expelling steam with low levels of radioactive tritium into the outside air. And a 1-inch crack in a valve weld aborted a restart in February at the LaSalle site west of Chicago.
  • * A 2008 NRC report blamed 70 percent of potentially serious safety problems on "degraded conditions" such as cracked nozzles, loose paint, electrical problems or offline cooling components.* Confronted with worn parts, the industry has repeatedly requested -- and regulators often have allowed -- inspections and repairs to be delayed for months until scheduled refueling outages. Again and again, problems worsened before being fixed. Postponed inspections inside a steam generator at Indian Point allowed tubing to burst, leading to a radioactive release in 2000. Two years later, cracking grew so bad in nozzles on the reactor vessel at the Davis-Besse plant near Toledo, Ohio, that it came within two months of a possible breach, an NRC report said, which could release radiation. Yet inspections failed to catch the same problem on the replacement vessel head until more nozzles were found to be cracked last year.
  • Time crumbles thingsNuclear plants are fundamentally no more immune to aging than our cars or homes: Metals grow weak and rusty, concrete crumbles, paint peels, crud accumulates. Big components like 17-story-tall concrete containment buildings or 800-ton reactor vessels are all but impossible to replace. Smaller parts and systems can be swapped but still pose risks as a result of weak maintenance and lax regulation or hard-to-predict failures.Even mundane deterioration can carry harsh consequences.For example, peeling paint and debris can be swept toward pumps that circulate cooling water in a reactor accident. A properly functioning containment building is needed to create air pressure that helps clear those pumps. But a containment building could fail in a severe accident. Yet the NRC has allowed safety calculations that assume the buildings will hold.
  • In a 2009 letter, Mario V. Bonaca, then-chairman of the NRC's Advisory Committee on Reactor Safeguards, warned that this approach represents "a decrease in the safety margin" and makes a fuel-melting accident more likely.Many photos in NRC archives -- some released in response to AP requests under the federal Freedom of Information Act -- show rust accumulated in a thick crust or paint peeling in long sheets on untended equipment.Four areas stand out:
  • Brittle vessels: For years, operators have rearranged fuel rods to limit gradual radiation damage to the steel vessels protecting the core and keep them strong enough to meet safety standards.But even with last year's weakening of the safety margins, engineers and metal scientists say some plants may be forced to close over these concerns before their licenses run out -- unless, of course, new regulatory compromises are made.
  • Leaky valves: Operators have repeatedly violated leakage standards for valves designed to bottle up radioactive steam in an earthquake or other accident at boiling water reactors.Many plants have found they could not adhere to the general standard allowing main steam isolation valves to leak at a rate of no more than 11.5 cubic feet per hour. In 1999, the NRC decided to allow individual plants to seek amendments of up to 200 cubic feet per hour for all four steam valves combined.But plants have violated even those higher limits. For example, in 2007, Hatch Unit 2, in Baxley, Ga., reported combined leakage of 574 cubic feet per hour.
  • "Many utilities are doing that sort of thing," said engineer Richard T. Lahey Jr., who used to design nuclear safety systems for General Electric Co., which makes boiling water reactors. "I think we need nuclear power, but we can't compromise on safety. I think the vulnerability is on these older plants."Added Paul Blanch, an engineer who left the industry over safety issues, but later returned to work on solving them: "It's a philosophical position that (federal regulators) take that's driven by the industry and by the economics: What do we need to do to let those plants continue to operate?"Publicly, industry and government say that aging is well under control. "I see an effort on the part of this agency to always make sure that we're doing the right things for safety. I'm not sure that I see a pattern of staff simply doing things because there's an interest to reduce requirements -- that's certainly not the case," NRC chairman Gregory Jaczko said in an interview.
  • Corroded piping: Nuclear operators have failed to stop an epidemic of leaks in pipes and other underground equipment in damp settings. Nuclear sites have suffered more than 400 accidental radioactive leaks, the activist Union of Concerned Scientists reported in September.Plant operators have been drilling monitoring wells and patching buried piping and other equipment for several years to control an escalating outbreak.But there have been failures. Between 2000 and 2009, the annual number of leaks from underground piping shot up fivefold, according to an internal industry document.
D'coda Dcoda

700 Tons of Radiactive Water Found in New Bldg at Fukushima [02Aug11] - 0 views

  • Highly radioactive water has been found in the basement of a building at the Fukushima Daiichi nuclear power plant near the storage facility for contaminated water. Tokyo Electric Power Company said on Monday that it discovered about 700 tons of contaminated water on Saturday in the basement of an on-site building. The utility said the water contained 19,000 becquerels of radioactive cesium 134 per cubic centimeter, and 22,000 becquerels of cesium 137 --- both very high levels.
  • Highly radioactive water has been found in the basement of a building at the Fukushima Daiichi nuclear power plant near the storage facility for contaminated water. Tokyo Electric Power Company said on Monday that it discovered about 700 tons of contaminated water on Saturday in the basement of an on-site building.
  • Highly radioactive water has been found in the basement of a building at the Fukushima Daiichi nuclear power plant near the storage facility for contaminated water. Tokyo Electric Power Company said on Monday that it discovered about 700 tons of contaminated water on Saturday in the basement of an on-site building. The utility said the water contained 19,000 becquerels of radioactive cesium 134 per cubic centimeter, and 22,000 becquerels of cesium 137 --- both very high levels.
  •  
    This won't highlight so you'll need to visit the page. It says that highly radioactive water was discovered in another building's basement and they don't know how it got there.
D'coda Dcoda

Build baby build - new nuclear power plants[25Jul11] - 0 views

  • CBS News aired a short piece titled US heat wave causes new look at nuclear energy that is worth a look. Though it includes the obligatory appearance of a professional antinuclear activist – in this case, Dr. Edwin Lyman of the Union of Concerned Scientists – the story provides some encouraging clips of the massive quantities of dirt being moved by thousands of workers who are making preparations for Vogtle Units 3 and 4 in eastern Georgia.
  • The story also reminds people why some of us are so interested in building new nuclear power plants – we know how vital reliable electricity is. That knowledge is reinforced when power grids are stressed and when people die due to complications associated with heat exposure. We know that nuclear plants have a far better chance of being available when needed than the wind turbines that were AWOL during the heat wave because, darn it, when the heat domes hover, the air is still and muggy. If there was a reliable breeze we would not be so dependent on our air conditioners!
  • a comment that I provided to CBS regarding their story:Nuclear power plants have proven that they are safe neighbors. In more than 50 years of commercial operation, the total number of deaths from exposure to radiation from nuclear power plants around the entire world is less than 100. In contrast, thousands of people die every year from exposure to the hazardous waste products that fossil fuel plants dump into our atmosphere as a routine part of their operation.I like having the ability to use electricity on demand. I like having clean air. I like the idea that building new nuclear plants that can operate reliably for 60-80 years is resulting in new jobs for thousands of American mechanics, electricians, construction workers, engineers and procedure writers. (Disclosure: I fall into that last category and am currently part of a large team that is designing another version of a reactor that can keep itself under control for at least three days without any sources of electricity.)
  • ...1 more annotation...
  • Dr. Lyman is a professional antinuclear activist who has never actually operated a plant. He has a PhD in nuclear physics, but that does not mean that he ever studied anything about engineering or operations. It might not even mean that he studied anything about nuclear fuel.
D'coda Dcoda

India's nuclear future put on hold [06Oct11] - 1 views

  • An increase in anti-nuclear sentiment after the Fukushima disaster in Japan in March has stalled India's ambitious plan for nuclear expansion. The plan, pushed forward by Prime Minister Manmohan Singh, aims to use reactors imported from the United States, France and Russia to increase the country's nuclear-power capacity from the present 4,780 megawatts to 60,000 megawatts by 2035, and to provide one-quarter of the country's energy by 2050. But now there are doubts that the targets will ever be met if safety fears persist.
  • Officials say that safety precautions are sufficient to make the proposed reactors, some of which are to be sited along the coasts, immune to natural disasters. But protesters are not listening. In April, violent protests halted construction in Jaitapur in the western state of Maharashtra, where Parisian company Areva is expected to build six 1,650-megawatt European Pressurized Reactors. In August, West Bengal state refused permission for a proposed 6,000-megawatt 'nuclear park' near the town of Haripur, which was slated to host six Russian reactors. The state government said that the area is densely populated, and the hot water discharged from the plants would affect local fishing.
  • On 19 September, following hunger strikes by activists from the People's Movement Against Nuclear Technology, the chief minister of Tamil Nadu state asked Prime Minister Singh to halt work at Koodankulam, about 650 kilometres south of Chennai, where Russia's Atomstroyexport is building two reactors and plans to build four more.
  • ...3 more annotations...
  • The opposition has focused mainly on imported reactors, the designs of which are untried. "The French reactor offered to India is not working anywhere in the world and the Russian reactor had to undergo several design changes before we accepted it," says Annaswamy Prasad, retired director of the Bhabha Atomic Research Centre in Mumbai. "If any accident happens in India it will be in imported reactor and not in our home-made pressurized heavy water reactors" (PHWRs), he adds.
  • Ideally, says Prasad, India should boost its nuclear capacity by building more PHWRs fuelled by natural uranium, instead of importing reactors that require enriched uranium. Although the foreign vendors have agreed to supply fuel for the lifetime of their reactors, overreliance on imports will derail India's home-grown programme, the Bhabha scheme, he warns.
  • The Bhabha scheme involves building PHWRs, which would produce enough plutonium as a by-product to fuel fast-breeder reactors that would in turn convert thorium — which is abundantly available in India — into fissile uranium-233. In the third and final phase, India hopes to run its reactors using the 233U–Th cycle without any need for new uranium. Gopalakrishnan says that building indigenous reactors is not enough: the country must also invest in renewable energy sources, such as wind and solar power. But a survey by Subhas Sukhatme, a former chairman of the Atomic Energy Regulatory Board, warns that India's renewable energy sources, even stretched to their full potential, can at best supply 36.1% of the country's total energy needs by the year 2070. The balance would have to come from fossil fuels and nuclear energy. 
D'coda Dcoda

Nuclear energy ~ Think again [22Oct11] - 0 views

  • It is fashionable among green groups and others who have utopian visions of a low tech post industrial society to say that nuclear energy is finished as a result of the Fukushima crisis. This is dead wrong. Charles D. Ferguson, President of the Federation of American Scientists, has an important essay in Foreign Policy Magazine on the subject. In an article titled, "Think Again: Nuclear Power," he writes that while Japan has "melted down, that doesn't mean the end of the atomic age."His point is that the fashionable approach to the nuclear fuel cycle is sometimes wrong.Also, there is other positive news about nuclear energy. The NRC is making headway with the final design certification of the Westinghouse AP1000. South Africa will try again to get financing and build new nuclear reactors instead of more coal plants.
  • Here's a quick summary of Ferguson's essay.First, Fukushima did not kill the nuclear renaissance. Germany already had a significant anti-nuclear political constituency well before March 11, 2011. Fukushima simply accelerated a process that was already underway. Meanwhile, China, India, and South Korea are moving ahead with their plans to rely on nuclear energy.Second, nuclear energy is not "an accident waiting to happen." The accidents which have happened are mostly the result of issues with organizational culture, and not technology failures.
  • Third, the expense of building nuclear power plants is offset by the low cost of running them. Once you factor in the benefits of stopping carbon emissions and the issue of climate change, nuclear energy looks like a bargain. While nuclear energy has been good for highly industrialized countries, it doesn't have nearly the same potential in the developing world for two reasons – cost and lack of robust electrical grids. Ferguson doesn't address small modular reactors which could find a niche in these markets.Fourth, commercial nuclear development does not necessarily lead to bomb making. Most of the 30 or so countries that use nuclear power have not built their own enrichment plants nor reprocessing centers.
  • ...5 more annotations...
  • Firth, management of radioactive waste and spent fuel are solvable problems. Dry cask storage works and deep geologic repositories are feasible once you get the politics right.Sixth, windmills will not replace reactors nor will solar nor anytime soon. These are intermittent and niche technologies which require massive government subsidies to get their electricity to market. Smart grids will improve the use of these technologies, but claimed improvements in energy storage technologies contain some starry eyed projections.The FAS describes itself as being focused on national and international security issues connected to applied science and technology. 
  • NRC progress with AP1000The Nuclear Regulatory Commission's technical staff has recommended to the full commission that it approve final design certification of the Westinghouse AP1000. According to agency officials, the commission will vote on the matter by the end of the year. Eight new reactors in the southeast have referenced the AP1000 design. Construction of four units is already underway in China.The NRC rejected a petition by anti-nuclear groups to stop all new licensing until safety improvements related to the Fukushima crisis are issued as regulatory requirements. The commission said that the Part 52 licensing process allows for new safety measures to be added to licenses as the commission approves them.
  • The first U.S. utility to break ground for twin AP1000s is Southern at its Vogtle site in Georgia. Southern says it expects a combined construction and operating license sometime in the first months of 2012. At that time it will also ink the final term sheet of its $8.3 billion loan guarantee with the Department of Energy.Other utilities which plan to build twin AP1000s include Scana (2 at V.C. Summer site in South Carolina, Florida Power & Light at Turkey Point and Progress at Levy County. Both sites are in Florida.
  • South Africa new buildThe South African government, which tried to offer a tender for 12 new nuclear reactors in 2008, but failed to arrange the financing for them, is making a second attempt. Energy Minister Dipuo Peters told financial wire services Oct 19 a tender for 9.6 GWe is under review by the government.The reactors would be built over a period of two decades. The bid process could begin as early as winter 2012.
  • The value at $4,000/kw could be in the range of $38 billion for the reactors, but as much as three times that amount in total for turbines, upgrades to the grid, including lines and substations, first fuel loads, and spent fuel management.A critical issue remains which is how the government will finance the new build. The country has suffered through a series of power crisis because in prior years the government failed to raise rates or diverted money from Eskom, the state owned utility, to social welfare purposes. As a result, the country's overall GDP suffered as manufacturing plants and mines had to close periodically or reduce operations due to problems with electricity supply.Since then the government has imposed rate increases, but faces some political opposition because of chronically high unemployment officially measured at 25% of the workforce. New coal plants are being built along with wind and solar plants.An interesting note is that China's Guangdong Nuclear Power Group has indicated interest in providing the financing in return for the right to build and operating the plants. Other bidders include the major developed country vendors.
D'coda Dcoda

Reporters at damaged reactor plant told to stay in the bus [14Nov11] - 0 views

  • The most striking feature at this crippled plant was not the blasted-out reactor buildings, or makeshift tsunami walls, but the chaotic mess. The ground around the four hulking reactor buildings was littered with mangled trucks, twisted metal beams and broken building frames, left mostly as they were after Japan's March 11 earthquake and tsunami.
  • The media tour of the site, the first since disaster struck on March 11, appeared to be Tokyo Electric Power Co's way of declaring its confidence that it is close to stabilising the plant. That message was driven home by the minister supervising the government's response to the nuclear accident, Goshi Hosono, who visited the plant at the same time as the journalists
  • Speaking to hundreds of workers, Mr Hosono praised their hard work in difficult and dangerous conditions. But the hopeful talk skims over more troubling truths. Two weeks ago, TEPCO announced it found signs one of the reactor cores may have had a burst of fission, a frightening sign the company might not be as close to a stable shutdown as it said. While no one died in the nuclear accident, the environmental and human costs were clear during the 20 kilometre drive to the plant through the evacuation zone.
  • ...1 more annotation...
  • The dosimeters of the journalists on the bus buzzed constantly, recording levels that ticked up with each passing kilometre: 0.7 microsieverts in Naraha, at the edge of the evacuation zone; 1.5 at Tomioka, where the welcome centre for Fukushima Daiichi told Japanese visitors that nuclear power was safe. Saturday's level was 13 times the recommended maximum annual dosage for civilians. At the plant, journalists, outfitted in full contamination suits, were kept aboard the bus in recognition of the much higher radiation levels there. One worker, Hiroyuki Shida, 57, said ''radiation levels aren't so high outside the buildings. But they are still high within the reactor buildings''.
D'coda Dcoda

Japan's Nukes Following Earthquake - 1 views

  • TEPCO has just released "diaries" from early in the accident giving us a better view of the sequence of events from the operators point of view.
  • The bulk of the materials, distributed on discs with digital files, show reams of raw numerical data. They include photos of broadsheet computer printouts and other formatted charts with thousands of data points for measurements of reactor heat, pressure, water levels, fuel rod positions and the status of cooling pumps, among other functions. Tokyo Electric, or Tepco, also released a smaller batch of more recent documents highlighting its various efforts to restore electric power to each of the reactors, a task that was achieved on April 26. But a series of what Tepco terms reactor "diaries" from the first 48 hours after the quake include the most visually arresting materials. These feature snapshots of whiteboards on which plant employees—11 of whom remained in each of the plant's three control rooms—jotted down status updates on the progress of the reactor shutdowns and steadily increasing radiation levels around the facility.
  • Using red, black or blue ink markers, the plant operators appear to have scribbled down the notes quickly. Many are smudged or illegible. Others depict complex diagrams and are peppered with technical jargon or acronyms such as SBO for "station blackout." http://online.wsj.com/article/SB10001424052748704281504576329011846064194.html
  • ...11 more annotations...
  • So helpless were the plant's engineers that, as dusk fell after Japan's devastating March 11 quake and tsunami, they were forced to scavenge flashlights from nearby homes. They pulled batteries from cars not washed away by the tsunami in a desperate effort to revive reactor gauges that weren't working properly. The plant's complete power loss contributed to a failure of relief vents on a dangerously overheating reactor, forcing workers to open valves by hand.And in a significant miscalculation: At first, engineers weren't aware that the plant's emergency batteries were barely working, the investigation found—giving them a false impression that they had more time to make repairs. As a result, nuclear fuel began melting down hours earlier than previously assumed. This week Tokyo Electric Power Co., or Tepco, confirmed that one of the plant's six reactors suffered a substantial meltdown early in Day 1. http://online.wsj.com/article/SB10001424052748704322804576302553455643510.html
  • Lots of interesting information in this paper from TEPCO:http://www.tepco.co.jp/en/nu/fukushima-np/images/handouts_110525_01-e.pdfUnits 1-4 did not have RCIC.  They had isolation condensers.  Not only that, the isolation condensers were water cooled with 8 hours of water in the condenser reservoir. 
  • HPCI required DC power to operate.  The turbine lube oil pump was DC; it didn't have a shaft oil pump.  I think this may be common here too, anyone willing to verify that?That's why they had trouble so quick:  8 hours later and without AC power they had no way to get water to the pressure vessel.  About the same time the instruments died from a lack of battery power is about the time they lost the isolation condenser from a lack of water.They also verify that they didn't have the hardened vent modification.
  • Fukushima may have a group that could tackle the nuclear crisis looming over Japan. The Skilled Veterans Corps, retired engineers and professionals, want to volunteer to work in the dangerous conditions instead of putting younger generations at risk. More than 200 Japanese retirees are seeking to replace younger workers at Fukushima while the plant is being stabilized. http://www.digitaljournal.com/article/307378
  • The Nuclear and Industrial Safety Agency (NISA) on June 6 revised the level of radioactivity of materials emitted from the crisis hit Fukushima No. 1 Nuclear Power Plant from 370,000 terabecquerels to 850,000 terabecquerels. (from 10,000,000 curies to 22,972,972.97 curies)http://mdn.mainichi.jp/mdnnews/news/20110606p2a00m0na009000c.html
  • The following article focus's on US spent fuel storage safety, Several members of Congress are calling for the fuel to be moved from the pools into dry casks at a faster clip, noting that the casks are thought to be capable of withstanding an earthquake or a plane crash, they have no moving parts and they require no electricity. but there is a reference to Fukishima's dry storage casks farther into the article.But Robert Alvarez, a former senior adviser to the secretary of energy and expert on nuclear power, points out that unlike the fuel pools, dry casks survived the tsunami at Fukushima unscathed. “They don’t get much attention because they didn’t fail,” he said.http://www.nytimes.com/2011/07/06/business/energy-environment/06cask.html?_r=2&pagewanted=1&ref=science
  • In 1967, Tepco chopped 25 meters off the 35-meter natural seawall where the reactors were to be located, according to documents filed at the time with Japanese authorities. That little-noticed action was taken to make it easier to ferry equipment to the site and pump seawater to the reactors. It was also seen as an efficient way to build the complex atop the solid base of bedrock needed to better protect the plant from earthquakes.But the razing of the cliff also placed the reactors five meters below the level of 14- to 15-meter tsunami hitting the plant March 11, triggering a major nuclear disaster resulting in the meltdown of three reactor cores.http://online.wsj.com/article/SB10001424052702303982504576425312941820794.html
  • Toyota was a key executive who was involved in the Fukushima No. 1 plant construction.It is actually common practice to build primary nuclear plant facilities directly on bedrock because of the temblor factor.Toyota also cited two other reasons for Tepco clearing away the bluff — seawater pumps used to provide coolant water needed to be set up on the ground up to 10 meters from the sea, and extremely heavy equipment, including the 500-ton reator pressure vessels, were expected to be brought in by boat.In fact, Tepco decided to build the plant on low ground based on a cost-benefit calculation of the operating costs of the seawater pumps, according to two research papers separately written by senior Tepco engineers in the 1960s.
  • If the seawater pumps were placed on high ground, their operating costs would be accordingly higher."We decided to build the plant at ground level after comparing the ground construction costs and operating costs of the circulation water pumps," wrote Hiroshi Kaburaki, then deputy head of the Tepco's construction office at the Fukushima No. 1 plant, in the January 1969 edition of Hatsuden Suiryoku, a technical magazine on power plants.Still, Tepco believed ground level was "high enough to sufficiently secure safety against tsunami and typhoon waves," wrote Seiji Saeki, then civil engineering section head of Tepco's construction office, in his research paper published in October 1967.
  • Engineers at Tohoku Electric Power Co., on the other hand, had a different take on the tsunami threat when the Onagawa nuclear plant was built in Miyagi Prefecture in the 1980s.Like Fukushima, the plant was built along the Tohoku coast and was hit by tsunami as high as 13 meters on March 11.Before building the plant, Tohoku Electric, examining historic records of tsunami reported in the region, conducted computer simulations and concluded the local coast could face tsumani of up to 9.1 meters.Tohoku Electric had set the construction ground level at 14.8 meters above sea level — which barely spared the Onagawa plant from major damage from 13-meter-high tsunami that hit in March.
  • Former Tepco worker Naganuma said many locals now feel they have been duped by Tepco's long-running propaganda on the safety of its nuclear facilities, despite the huge economic benefits the plant brought to his hometown of Okuma, which hosts the Fukushima No. 1 plant.
  •  
    from a nuclear worker's forum so the dates run from May 20, 2011 to July 15, 2011...these are the points these nuclear workers thought important about Fukushima
D'coda Dcoda

Some countries make progress on nuclear energy despite Fukushima fears [25Sep11] - 0 views

  • Germany’s decision to close its reactors rejected as unrealistic
  • Since the March 11 earthquake and tsunami hit the six TEPCO reactors at Fukushima Japan, anti-nuclear groups have been on a roll.  Germany’s panic attack which will result in closing 17 reactors accounting for a quarter of its electricity is widely touted as a bellwether example for other countries.   The goal of post-industrial visionaries is to get the mainstream media and the public to accept a scenario of the inevitable end to the use of nuclear energy in as many places as possible. But is this trend really taking place?  Recent developments indicate it is not.  Here are some examples.
  • China to lift ban on new projects By early 2012 China will resume approving the start of new nuclear energy projects following completion of a national nuclear safety plan.  According to wire services, the China Securities Journal is reporting that in August the government completed the inspection of its existing fleet of nuclear reactors which provide about 11 Gwe of power.  It said that plants under construction, including four from Westinghouse and two from Areva, were also part of the review.  In an unexpected move, the Journal said the government would offer greater transparency on nuclear safety issues by making the results of the safety reviews available for public inspection.
  • ...5 more annotations...
  • Czech Industry & Trade Minister Martin Kocourek (right) told the Bloomberg wire service  September 8 the country will not give in to anti-nuclear influences from Austria or Germany. “Czech doesn’t need ideology.  What it needs is a rational update of its energy strategy.  The current ideology-driven policies of some countries is one thing; our reality is another.” If state-owned Czech utility CEZ builds all five reactors, worth about $28 billion, it will export electricity to Germany and Poland.  CEZ is expected to release documents related to the bid process next month.  The bidders are Areva, Westinghouse, and Rosatom.  An award for the first two new reactors to be built at Temelin is expected in 2013.
  • Czech utility CEZ plans Europe’s largest reactor complexes The Czech government is planning a significant expansion of nuclear energy now that Germany has moved to shutter its 17 reactors by 2020.  A national energy strategy would call for building two or more new reactors at Temelin and three more at Dukovany. The two sites house a total of six existing reactors and grid infrastructure. 
  • On September 15 CEZ named Daniel Benes, 41, as its new CEO with a mandate to execute a national energy strategy that includes building new nuclear reactors.  On September 20 Benes told financial wire services it will be his top priority linked to the goal of energy security for the Czech Republic.
  • On September 23 Czech President Vaclav Klaus (left) spoke at the United Nations in support of nuclear energy.  According to English language Czech news media, Klaus said: . . . “We consider what happened in Fukushima did not by any means question the arguments for nuclear energy.  These arguments are strong, economically rational and convincing.” He called Germany’s decision to close its reactors an “irrational populist event.”  In a parallel statement trade minister Kocourek said that CEZ would not expand renewable energy sources beyond 13% because it is unrealistic to expect to run a modern country on them.  He added CEZ “has big doubts” about biomass.
  • South Korea to invest in Romanian nuclear plant A South Korean nuclear energy consortium may invest in a project to build a third and a fourth reactor at Cernovoda in southeast Romania. The consortium replaces an investor group which pulled out of the project earlier this year.  The project manager for the new reactors is EnergoNuclear.  Right now Romania’s state owned electric utility holds an 85% share in the project and Italy’s ENEL holds another 9%. If the deal goes through, the South Korean group could take up to a 45 % stake in the project which is estimated to cost $5.7 billion.  Romania has two CANDU reactors at the site near the country’s Black Sea coast.  South Korea has experience with the CANDU design so it is plausible it may reference it in a proposal to build the next two units. This would be a huge win for AECL which recently was split up with its reactor division sold off for peanuts to SNC Lavalin.  AECL has marketed itself in eastern Europe hoping for this kind of development.
D'coda Dcoda

The nuclear power plans that have survived Fukushima [28Sep11] - 0 views

  • SciDev.Net reporters from around the world tell us which countries are set on developing nuclear energy despite the Fukushima accident. The quest for energy independence, rising power needs and a desire for political weight all mean that few developing countries with nuclear ambitions have abandoned them in the light of the Fukushima accident. Jordan's planned nuclear plant is part of a strategy to deal with acute water and energy shortages.
  • The Jordan Atomic Energy Commission (JAEC) wants Jordan to get 60 per cent of its energy from nuclear by 2035. Currently, obtaining energy from neighbouring Arab countries costs Jordan about a fifth of its gross domestic product. The country is also one of the world's most water-poor nations. Jordan plans to desalinate sea water from the Gulf of Aqaba to the south, then pump it to population centres in Amman, Irbid, and Zarqa, using its nuclear-derived energy. After the Fukushima disaster, Jordan started re-evaluating safety procedures for its nuclear reactor, scheduled to begin construction in 2013. The country also considered more safety procedures for construction and in ongoing geological and environmental investigations.
  • The government would not reverse its decision to build nuclear reactors in Jordan because of the Fukushima disaster," says Abdel-Halim Wreikat, vice Chairman of the JAEC. "Our plant type is a third-generation pressurised water reactor, and it is safer than the Fukushima boiling water reactor." Wreikat argues that "the nuclear option for Jordan at the moment is better than renewable energy options such as solar and wind, as they are still of high cost." But some Jordanian researchers disagree. "The cost of electricity generated from solar plants comes down each year by about five per cent, while the cost of producing electricity from nuclear power is rising year after year," says Ahmed Al-Salaymeh, director of the Energy Centre at the University of Jordan. He called for more economic feasibility studies of the nuclear option.
  • ...20 more annotations...
  • And Ahmad Al-Malabeh, a professor in the Earth and Environmental Sciences department of Hashemite University, adds: "Jordan is rich not only in solar and wind resources, but also in oil shale rock, from which we can extract oil that can cover Jordan's energy needs in the coming years, starting between 2016 and 2017 ... this could give us more time to have more economically feasible renewable energy."
  • Finance, rather than Fukushima, may delay South Africa's nuclear plans, which were approved just five days after the Japanese disaster. South Africa remains resolute in its plans to build six new nuclear reactors by 2030. Katse Maphoto, the director of Nuclear Safety, Liabilities and Emergency Management at the Department of Energy, says that the government conducted a safety review of its two nuclear reactors in Cape Town, following the Fukushima event.
  • Vietnam's nuclear energy targets remain ambitious despite scientists' warning of a tsunami risk. Vietnam's plan to power 10 per cent of its electricity grid with nuclear energy within 20 years is the most ambitious nuclear energy plan in South-East Asia. The country's first nuclear plant, Ninh Thuan, is to be built with support from a state-owned Russian energy company and completed by 2020. Le Huy Minh, director of the Earthquake and Tsunami Warning Centre at Vietnam's Institute of Geophysics, has warned that Vietnam's coast would be affected by tsunamis in the adjacent South China Sea.
  • Larkin says nuclear energy is the only alternative to coal for generating adequate electricity. "What other alternative do we have? Renewables are barely going to do anything," he said. He argues that nuclear is capable of supplying 85 per cent of the base load, or constantly needed, power supply, while solar energy can only produce between 17 and 25 per cent. But, despite government confidence, Larkin says that a shortage of money may delay the country's nuclear plans.
  • The government has said yes but hasn't said how it will pay for it. This is going to end up delaying by 15 years any plans to build a nuclear station."
  • The Ninh Thuan nuclear plant would sit 80 to 100 kilometres from a fault line on the Vietnamese coast, potentially exposing it to tsunamis, according to state media. But Vuong Huu Tan, president of the state-owned Vietnam Atomic Energy Commission, told state media in March, however, that lessons from the Fukushima accident will help Vietnam develop safe technologies. And John Morris, an Australia-based energy consultant who has worked as a geologist in Vietnam, says the seismic risk for nuclear power plants in the country would not be "a major issue" as long as the plants were built properly. Japan's nuclear plants are "a lot more earthquake prone" than Vietnam's would be, he adds.
  • Undeterred by Fukushima, Nigeria is forging ahead with nuclear collaborations. There is no need to panic because of the Fukushima accident, says Shamsideen Elegba, chair of the Forum of Nuclear Regulatory Bodies in Africa. Nigeria has the necessary regulatory system to keep nuclear activities safe. "The Nigerian Nuclear Regulatory Authority [NNRA] has established itself as a credible organisation for regulatory oversight on all uses of ionising radiation, nuclear materials and radioactive sources," says Elegba who was, until recently, the NNRA's director general.
  • Vietnam is unlikely to experience much in the way of anti-nuclear protests, unlike neighbouring Indonesia and the Philippines, where civil society groups have had more influence, says Kevin Punzalan, an energy expert at De La Salle University in the Philippines. Warnings from the Vietnamese scientific community may force the country's ruling communist party to choose alternative locations for nuclear reactors, or to modify reactor designs, but probably will not cause extreme shifts in the one-party state's nuclear energy strategy, Punzalan tells SciDev.Net.
  • Will the Philippines' plans to rehabilitate a never-used nuclear power plant survive the Fukushima accident? The Philippines is under a 25-year moratorium on the use of nuclear energy which expires in 2022. The government says it remains open to harnessing nuclear energy as a long-term solution to growing electricity demand, and its Department of Science and Technology has been making public pronouncements in favour of pursuing nuclear energy since the Fukushima accident. Privately, however, DOST officials acknowledge that the accident has put back their job of winning the public over to nuclear by four or five years.
  • In the meantime, the government is trying to build capacity. The country lacks, for example, the technical expertise. Carmencita Bariso, assistant director of the Department of Energy's planning bureau, says that, despite the Fukushima accident, her organisation has continued with a study on the viability, safety and social acceptability of nuclear energy. Bariso says the study would include a proposal for "a way forward" for the Bataan Nuclear Power Plant, the first nuclear reactor in South East Asia at the time of its completion in 1985. The $2.3-billion Westinghouse light water reactor, about 60 miles north of the capital, Manila, was never used, though it has the potential to generate 621 megawatts of power. President Benigno Aquino III, whose mother, President Corazon Aquino, halted work on the facility in 1986 because of corruption and safety issues, has said it will never be used as a nuclear reactor but could be privatised and redeveloped as a conventional power plant.
  • But Mark Cojuangco, former lawmaker, authored a bill in 2008 seeking to start commercial nuclear operations at the Bataan reactor. His bill was not passed before Congress adjourned last year and he acknowledges that the Fukushima accident has made his struggle more difficult. "To go nuclear is still the right thing to do," he says. "But this requires a societal decision. We are going to spark public debates with a vengeance as soon as the reports from Fukushima are out." Amended bills seeking both to restart the reactor, and to close the issue by allowing either conversion or permanent closure, are pending in both the House and the Senate. Greenpeace, which campaigns against nuclear power, believes the Fukushima accident has dimmed the chances of commissioning the Bataan plant because of "increased awareness of what radioactivity can do to a place". Many parts of the country are prone to earthquakes and other natural disasters, which critics say makes it unsuitable both for the siting of nuclear power stations and the disposal of radioactive waste.
  • In Kenya, nuclear proponents argue for a geothermal – nuclear mix In the same month as the Fukushima accident, inspectors from the International Atomic Energy Agency approved Kenya's application for its first nuclear power station (31 March), a 35,000 megawatt facility to be built at a cost of Sh950 billion (US$9.8 billion) on a 200-acre plot on the Athi Plains, about 50km from Nairobi
  • The plant, with construction driven by Kenya's Nuclear Electricity Project Committee, should be commissioned in 2022. The government claims it could satisfy all of Kenya's energy needs until 2040. The demand for electricity is overwhelming in Kenya. Less than half of residents in the capital, Nairobi, have grid electricity, while the rural rate is two per cent. James Rege, Chairman of the Parliamentary Committee on Energy, Communication and Information, takes a broader view than the official government line, saying that geothermal energy, from the Rift Valley project is the most promising option. It has a high production cost but remains the country's "best hope". Nuclear should be included as "backup". "We are viewing nuclear energy as an alternative source of power. The cost of fossil fuel keeps escalating and ordinary Kenyans can't afford it," Rege tells SciDev.Net.
  • Hydropower is limited by rivers running dry, he says. And switching the country's arable land to biofuel production would threaten food supplies. David Otwoma, secretary to the Energy Ministry's Nuclear Electricity Development Project, agrees that Kenya will not be able to industrialise without diversifying its energy mix to include more geothermal, nuclear and coal. Otwoma believes the expense of generating nuclear energy could one day be met through shared regional projects but, until then, Kenya has to move forward on its own. According to Rege, much as the nuclear energy alternative is promising, it is extremely important to take into consideration the Fukushima accident. "Data is available and it must be one step at a time without rushing things," he says. Otwoma says the new nuclear Kenya can develop a good nuclear safety culture from the outset, "but to do this we need to be willing to learn all the lessons and embrace them, not forget them and assume that won't happen to us".
  • But the government adopted its Integrated Resource Plan (IRP) for 2010-2030 five days after the Fukushima accident. Elliot Mulane, communications manager for the South African Nuclear Energy Corporation, (NECSA) a public company established under the 1999 Nuclear Energy Act that promotes nuclear research, said the timing of the decision indicated "the confidence that the government has in nuclear technologies". And Dipuo Peters, energy minister, reiterated the commitment in her budget announcement earlier this year (26 May), saying: "We are still convinced that nuclear power is a necessary part of our strategy that seeks to reduce our greenhouse gas emissions through a diversified portfolio, comprising some fossil-based, renewable and energy efficiency technologies". James Larkin, director of the Radiation and Health Physics Unit at the University of the Witwatersrand, believes South Africa is likely to go for the relatively cheap, South Korean generation three reactor.
  • It is not only that we say so: an international audit came here in 2006 to assess our procedure and processes and confirmed the same. Elegba is firmly of the view that blame for the Fukushima accident should be allocated to nature rather than human error. "Japan is one of the leaders not only in that industry, but in terms of regulatory oversight. They have a very rigorous system of licensing. We have to make a distinction between a natural event, or series of natural events and engineering infrastructure, regulatory infrastructure, and safety oversight." Erepamo Osaisai, Director General of the Nigeria Atomic Energy Commission (NAEC), has said there is "no going back" on Nigeria's nuclear energy project after Fukushima.
  • Nigeria is likely to recruit the Russian State Corporation for Atomic Energy, ROSATOM, to build its first proposed nuclear plant. A delegation visited Nigeria (26- 28 July) and a bilateral document is to be finalised before December. Nikolay Spassy, director general of the corporation, said during the visit: "The peaceful use of nuclear power is the bedrock of development, and achieving [Nigeria's] goal of being one of the twenty most developed countries by the year 2020 would depend heavily on developing nuclear power plants." ROSATOM points out that the International Atomic Energy Agency monitors and regulates power plant construction in previously non-nuclear countries. But Nnimmo Bassey, executive director of the Environmental Rights Action/Friends of the Earth Nigeria (ERA/FoEN), said "We cannot see the logic behind the government's support for a technology that former promoters in Europe, and other technologically advanced nations, are now applying brakes to. "What Nigeria needs now is investment in safe alternatives that will not harm the environment and the people. We cannot accept the nuclear option."
  • Thirsty for electricity, and desirous of political clout, Egypt is determined that neither Fukushima ― nor revolution ― will derail its nuclear plans. Egypt was the first country in the Middle East and North Africa to own a nuclear programme, launching a research reactor in 1961. In 2007 Egypt 'unfroze' a nuclear programme that had stalled in the aftermath of the Chernobyl disaster. After the Egyptian uprising in early 2011, and the Fukushima accident, the government postponed an international tender for the construction of its first plant.
  • Yassin Ibrahim, chairman of the Nuclear Power Plants Authority, told SciDev.Net: "We put additional procedures in place to avoid any states of emergency but, because of the uprising, the tender will be postponed until we have political stability after the presidential and parliamentary election at the end of 2011". Ibrahim denies the nuclear programme could be cancelled, saying: "The design specifications for the Egyptian nuclear plant take into account resistance to earthquakes and tsunamis, including those greater in magnitude than any that have happened in the region for the last four thousand years. "The reactor type is of the third generation of pressurised water reactors, which have not resulted in any adverse effects to the environment since they began operation in the early sixties."
  • Ibrahim El-Osery, a consultant in nuclear affairs and energy at the country's Nuclear Power Plants Authority, points out that Egypt's limited resources of oil and natural gas will run out in 20 years. "Then we will have to import electricity, and we can't rely on renewable energy as it is still not economic yet — Egypt in 2010 produced only two per cent of its needs through it." But there are other motives for going nuclear, says Nadia Sharara, professor of mineralogy at Assiut University. "Owning nuclear plants is a political decision in the first place, especially in our region. And any state that has acquired nuclear technology has political weight in the international community," she says. "Egypt has the potential to own this power as Egypt's Nuclear Materials Authority estimates there are 15,000 tons of untapped uranium in Egypt." And she points out it is about staying ahead with technology too. "If Egypt freezes its programme now because of the Fukushima nuclear disaster it will fall behind in many science research fields for at least the next 50 years," she warned.
Jan Wyllie

The Disastrous Status Of Fukushima Daiich - 0 views

shared by Jan Wyllie on 08 Dec 12 - No Cached
  • Workers can't work in Buildings 1, 2 and 3 because the radiation is too intense. Steel is corroding from saltwater, threatening pipes and pumps which cool the remains of three destroyed reactors. Radiation is crumbling concrete onto dust. Zirconium cladding is so corroded from seawater that it is doubtful that SFP 1, 2, 3 and 4 can ever be emptied. Corium under Building 4 has cracked the foundation and the building is sinking unevenly. Ground water contacting corium in the mudrock below Buildings1, 2 and 3 becomes highly contaminated, and flows directly into the Pacific Ocean, killing the Pacific Seafood Industry. Hawaii milk is so comtaminated that farmers are feeding boron to their cows. Two US cities on RadiationNetwork.com right now measure over 60cpm of radiation in the air. TEPCO seems to have lost track of the corium from 3 nuclear plants. And then there are the two earthquakes of 6.2 and 7.3 which hit just offshore since midnight...
D'coda Dcoda

Rising water, falling journalism | Bulletin of the Atomic Scientists [17Jun11] - 0 views

  • at the Fort Calhoun Nuclear Power Station near Blair, Nebraska, the river is already lapping at the Aqua Dams -- giant plastic tubes filled with water -- that form a stockade around the plant's buildings. The plant has become an island.
  • The Nuclear Regulatory Commission (NRC) issued a "yellow finding PDF" (indicating a safety significance somewhere between moderate and high) for the plant last October, after determining that the Omaha Public Power District (OPPD) "did not adequately prescribe steps to mitigate external flood conditions in the auxiliary building and intake structure" in the event of a worst-case Missouri River flood. The auxiliary building -- which surrounds the reactor building like a horseshoe flung around a stake -- is where the plant's spent-fuel pool and emergency generators are located.
  • OPPD has since taken corrective measures, including sealing potential floodwater-penetration points, installing emergency flood panels, and revising sandbagging procedures. It's extremely unlikely that this year's flood, no matter how historic, will turn into a worst-case scenario: That would happen only if an upstream dam were to instantaneously disintegrate. Nevertheless, in March of this year the NRC identified Fort Calhoun as one of three nuclear plants requiring the agency's highest level of oversight. In the meantime, the water continues to rise
  • ...4 more annotations...
  • On June 7, there was a fire -- apparently unrelated to the flooding -- in an electrical switchgear room at Fort Calhoun. For about 90 minutes, the pool where spent fuel is stored had no power for cooling. OPPD reported that "offsite power remained available, as well as the emergency diesel generators if needed." But the incident was yet another reminder of the plant's potential vulnerability
  • And so, Fort Calhoun remains on emergency alert because of the flood -- which is expected to worsen by early next week. On June 9, the Army Corps of Engineers announced PDF that the Missouri River would crest at least two feet higher in Blair than previously anticipated
  • The Fort Calhoun plant has never experienced a flood like this before
  • this spring, heavy rains and high snowpack levels in Montana, northern Wyoming, and the western Dakotas have filled reservoirs to capacity, and unprecedented releases from the dams are now reaching Omaha and other cities in the Missouri River valley. Floodgates that haven't been opened in 50 years are spilling 150,000 cubic feet per second -- enough water to fill more than a hundred Olympic-size swimming pools in one minute. And Fort Calhoun isn't the only power plant affected by flooding on the Missouri: The much larger Cooper Nuclear Station in Brownville, Nebraska, sits below the Missouri's confluence with the Platte River -- which is also flooding. Workers at Cooper have constructed barriers and stockpiled fuel for the plant's three diesel generators while, like their colleagues at Fort Calhoun, they wait for the inevitable.
  •  
    about the risk to the Ft. Calhoun Nuclear Plant due to Missouri River flooding and other nuclear facilities in the area
D'coda Dcoda

Heavy Rain Increases Contaminated water at Fukushima Plant [21Jul11] - 0 views

  • Heavy rain brought by a tropical storm has increased the level of radioactive contaminated water at the basements of the crippled Fukushima Daiichi nuclear power plant. Typhoon Ma-on moved east off the southern coast of Japan's main island of Honshu. 115 millimeters of precipitation was recorded in Namie Town, north of the plant, between Tuesday and Thursday. Rain has been gathering in the buildings housing the reactors because the roofs were severely damaged by hydrogen explosions that occurred after the initial March 11th disaster. Tokyo Electric Power Company or TEPCO, the plant's operator, says that at 7 AM local time on Thursday, the level of contaminated water pooled at the basement of the building of the No. 1 reactor was 44 centimeters up from the previous day. Officials at the utility say that there is no immediate danger of the contaminated water spilling out. But it is likely that the level of water will continue to rise for the time being. TEPCO says they are monitoring the situation.
  • Heavy rain brought by a tropical storm has increased the level of radioactive contaminated water at the basements of the crippled Fukushima Daiichi nuclear power plant. Typhoon Ma-on moved east off the southern coast of Japan's main island of Honshu. 115 millimeters of precipitation was recorded in Namie Town, north of the plant, between Tuesday and Thursday. Rain has been gathering in the buildings housing the reactors because the roofs were severely damaged by hydrogen explosions that occurred after the initial March 11th disaster. Tokyo Electric Power Company or TEPCO, the plant's operator, says that at 7 AM local time on Thursday, the level of contaminated water pooled at the basement of the building of the No. 1 reactor was 44 centimeters up from the previous day. Officials at the utility say that there is no immediate danger of the contaminated water spilling out. But it is likely that the level of water will continue to rise for the time being. TEPCO says they are monitoring the situation.
  • Heavy rain brought by a tropical storm has increased the level of radioactive contaminated water at the basements of the crippled Fukushima Daiichi nuclear power plant. Typhoon Ma-on moved east off the southern coast of Japan's main island of Honshu. 115 millimeters of precipitation was recorded in Namie Town, north of the plant, between Tuesday and Thursday.
  • ...1 more annotation...
  • Heavy rain brought by a tropical storm has increased the level of radioactive contaminated water at the basements of the crippled Fukushima Daiichi nuclear power plant. Typhoon Ma-on moved east off the southern coast of Japan's main island of Honshu. 115 millimeters of precipitation was recorded in Namie Town, north of the plant, between Tuesday and Thursday.
  •  
    this article won't highlight
D'coda Dcoda

Idaho Samizdat: Nuke Notes: Scots drop out of UK nuclear new build [29Sep11] - 0 views

  • Scottish & Southern Energy (LON:SSE) has taken its ball and glove and marched off the field leaving an alliance, called NuGen, with GDF Suez and Iberdrola to build new nuclear reactors in the U.K. The other two investors bought out Scottish & Southern's shares, worth 25% of the project, for an undisclosed price increasing their respective stakes to 50% each. SSE said would now focus on renewable energy projects and with natural gas plants fueled by North Sea fields to keep the transmission lines humming when the wind doesn't blow. This may be the utility's real comfort zone and some question whether it ever really had its heart in the effort to invest in the nuclear field.
  • According to a Bloomberg wire service report for Sept 22, Investec analyst Angelos Anastasiou said, "Renewables are their favored area and where they see themselves in the forefront. The nuclear side was always half-hearted." Cheers from the post-industrial greens
  • Meanwhile, in Scotland, post-industrial visionary green groups cheered SSE's decision. In widely reported rhetoric, Dan Barlow, a key figure at Scotland's World Wildlife Fund (WWF), said his organization welcomed SSE's abandonment of the nuclear project. And he went further calling on the remaining investors to give up their nuclear plans as well. The government in Scotland, like Germany, has a delusional vision that it can provide up to 80% of its electricity needs with offshore wind power. Scotland's energy minister Fergus Ewing echoed the statements of the WWF signaling perhaps a closer than expected relationship between green groups and the government. It raises the question of whether SSE made its decision to pull out based solely on financial risk or whether it was pushed into a retreat. Ewing claims that the decision by SSE to pull out of a consortium to build a nuclear reactors is a "vindication" of one of the Scottish Government's policies to promote renewable energy.
  • ...1 more annotation...
  • Alistair Phillips-Davies, a spokesman for SSE, told financial wire services is was the money, and not politics, that drove the decision. "We have concluded, that for the time being, our resources are better deployed on business activities and technologies where we have the greatest knowledge and experience." SSE had put money on the table to get into the nuclear game. With its two partners at NuGen, in 2009 the alliance bought the government approved site for the planned reactors for £70 million ($109 million). At a 25% share, that works out to a commitment of about £18 million or around $27 million. This may sound like a lot of money, but SSE has a market cap of just over £12 billion which makes the site acquisition costs a sneeze on a summer day.
1 - 20 of 316 Next › Last »
Showing 20 items per page