Skip to main content

Home/ OARS funding Systems/ Group items tagged science

Rss Feed Group items tagged

MiamiOH OARS

Software Infrastructure for Sustained Innovation - S2I2 - 0 views

  •  
    SoftwareInfrastructure for Sustained Innovation (SI2) is a long-term investment focused on realizing a portion of the Cyberinfrastructure Framework for 21st Century Science and Engineering (CIF21, http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=504730) vision and catalyzing new thinking, paradigms and practices in science and engineering. CIF21 envisions a linked cyberinfrastructure architecture that integrates large-scale computing, high-speed networks, massive data archives, instruments and major facilities, observatories, experiments, and embedded sensors and actuators, across the nation and the world, and that enables research at unprecedented scales, complexity, resolution, and accuracy by integrating computation, data, and experiments in novel ways. Software is a primary modality through which CIF21 innovation and discovery will be realized. It permeates all aspects and layers of cyberinfrastructure (from application codes and frameworks, programming systems, libraries and system software, to middleware, operating systems, networking and the low-level drivers). The CIF21 software infrastructure must address the complexity of this cyberinfrastructure, accommodating: disruptive hardware trends; ever-increasing data volumes; data integrity, privacy, and confidentiality; security; complex application structures and behaviors; and emerging concerns such as fault-tolerance and energy efficiency. The programs must focus on building robust, reliable and sustainable software that will support and advance sustained scientific innovation and discovery.
 The Division of Advanced Cyberinfrastructure in the Computer & Information Science & Engineering Directorate (CISE/ACI) is partnering with Directorates and Offices across the NSF to support SI2, a long-term comprehensive program focused on realizing a sustained software infrastructure that is an integral part of CIF21.
MiamiOH OARS

Cyber-Physical Systems - 0 views

  •  
    Cyber-physical systems (CPS) are engineered systems that are built from, and depend upon, the seamless integration of computational algorithms and physical components. Advances in CPS will enable capability, adaptability, scalability, resiliency, safety, security, and usability that will far exceed the simple embedded systems of today. CPS technology will transform the way people interact with engineered systems -- just as the Internet has transformed the way people interact with information. New smart CPS will drive innovation and competition in sectors such as agriculture, energy, transportation, building design and automation, healthcare, and manufacturing. The December 2010 report of the President's Council of Advisors on Science and Technology (PCAST) titled Designing a Digital Future: Federally Funded Research and Development in Networking and Information Technologycalls for continued investment in CPS research because of its scientific and technological importance as well as its potential impact on grand challenges in a number of sectors critical to U.S. security and competitiveness such as the ones noted above. These challenges and technology gaps are further described in aCPS Vision Statementpublished in 2012 by the federal Networking and Information Technology Research and Development (NITRD) CPS Senior Steering Group. Tremendous progress has been made in advancing CPS technology over the last five-plus years. We have explored foundational technologies that have spanned an ever-growing set of application domains, enabling breakthrough achievements in many of these fields. At the same time, the demand for innovation in these domains continues to grow, and is driving the need to accelerate fundamental research to
MiamiOH OARS

Harnessing the Data Revolution (HDR): Institutes for Data-Intensive Research in Science... - 0 views

  •  
    NSF's Harnessing the Data Revolution (HDR) Big Idea is a national-scale activity to enable new modes of data-driven discovery that will allow fundamental questions to be asked and answered at the frontiers of science and engineering. Through this NSF-wide activity, HDR will generate new knowledge and understanding, and accelerate discovery and innovation. The HDR vision is realized through an interrelated set of efforts in: Foundations of data science; Algorithms and systems for data science; Data-intensive science and engineering; Data cyberinfrastructure; and Education and workforce development. Each of these efforts is designed to amplify the intrinsically multidisciplinary nature of the emerging field of data science. The HDR Big Idea will establish theoretical, technical, and ethical frameworks that will be applied to tackle data-intensive problems in science and engineering, contributing to data-driven decision-making that impacts society.
MiamiOH OARS

Harnessing the Data Revolution: Transdisciplinary Research in Principles of Data Scienc... - 0 views

  •  
    NSF's Harnessing the Data Revolution (HDR) Big Idea is a national-scale activity to enable new modes of data-driven discovery that will allow fundamental questions to be asked and answered at the frontiers of science and engineering. Through this NSF-wide activity, HDR will generate new knowledge and understanding, and accelerate discovery and innovation. The HDR vision is realized through an interrelated set of efforts in: Foundations of data science; Algorithms and systems for data science; Data-intensive science and engineering; Data cyberinfrastructure; and Education and workforce development. Each of these efforts is designed to amplify the intrinsically multidisciplinary nature of the emerging field of data science. The HDR Big Idea will establish theoretical, technical, and ethical frameworks that will be applied to tackle data-intensive problems in science and engineering, contributing to data-driven decision-making that impacts society.
MiamiOH OARS

Computational Materials Sciences - 0 views

  •  
    The Office of Basic Energy Sciences (BES) of the U.S. Department of Energy (DOE) announces its interest in receiving applications in Computational Materials Sciences proposing integrated, multidisciplinary teams that will perform research to develop validated community codes and data bases for predictive design of functional materials, excluding structural materials. Computational Materials Sciences Teams could also involve new approaches to enhance the use of large data sets derived from advanced characterization of materials, materials synthesis, processing, and properties assessments and the parallel data that are generated by large scale computational efforts that model materials phenomena. Computational Materials Sciences will support the Materials Genome Initiative for Global Competitiveness (MGI) that was announced by the President in June 2011. The goal of the MGI is to reduce the time from discovery to deployment of new materials by a factor of two and is tied to advancement of American manufacturing capability. This funding opportunity continues the BES commitment to the MGI and the development of open source codes that can take full advantage of today's petascale and future exascale leadership computing facilities.
  •  
    The Office of Basic Energy Sciences (BES) of the U.S. Department of Energy (DOE) announces its interest in receiving applications in Computational Materials Sciences proposing integrated, multidisciplinary teams that will perform research to develop validated community codes and data bases for predictive design of functional materials, excluding structural materials. Computational Materials Sciences Teams could also involve new approaches to enhance the use of large data sets derived from advanced characterization of materials, materials synthesis, processing, and properties assessments and the parallel data that are generated by large scale computational efforts that model materials phenomena. Computational Materials Sciences will support the Materials Genome Initiative for Global Competitiveness (MGI) that was announced by the President in June 2011. The goal of the MGI is to reduce the time from discovery to deployment of new materials by a factor of two and is tied to advancement of American manufacturing capability. This funding opportunity continues the BES commitment to the MGI and the development of open source codes that can take full advantage of today's petascale and future exascale leadership computing facilities.
MiamiOH OARS

NNH14ZDA001N-LCLUC ROSES 2014: Land Cover / Land Use Change: Multi-Source Land Imaging ... - 0 views

  •  
    This ROSES-2014 NRA (NNH14ZDA001N) solicits basic and applied research in support of NASA's Science Mission Directorate (SMD). This NRA covers all aspects of basic and applied supporting research and technology in space and Earth sciences, including, but not limited to: theory, modeling, and analysis of SMD science data; aircraft, scientific balloon, sounding rocket, International Space Station, CubeSat, and suborbital reusable launch vehicle investigations; development of experiment techniques suitable for future SMD space missions; development of concepts for future SMD space missions; development of advanced technologies relevant to SMD missions; development of techniques for and the laboratory analysis of both extraterrestrial samples returned by spacecraft, as well as terrestrial samples that support or otherwise help verify observations from SMD Earth system science missions; determination of atomic and composition parameters needed to analyze space data, as well as returned samples from the Earth or space; Earth surface observations and field campaigns that support SMD science missions; development of integrated Earth system models; development of systems for applying Earth science research data to societal needs; and development of applied information systems applicable to SMD objectives and data
MiamiOH OARS

Systems Science - 0 views

  •  
    The System Science (SYS) program funds fundamental research on engineered systems that will support the creation of a mathematically sound framework for systems engineering. The System Science program invites proposals that address fundamental systems issues including system performance prediction, uncertainty quantification in the systems context, theoretical foundations for aggregation in systems, decision-making in the systems context, and operation and maintenance in the systems context.

 The System Science program does not fund development projects. Proposals that have system science or system engineering relevance, but for which the predominant research contribution is within an existing program in CMMI, should be submitted to the appropriate disciplinary program, with the System Science program identified as a secondary program.
MiamiOH OARS

View Opportunity | GRANTS.GOV - 0 views

  •  
    Quantum Leap Challenge Institutes are large-scale interdisciplinary research projects that aim to advance the frontiers of quantum information science and engineering. Research at these Institutes will span the focus areas of quantum computation, quantum communication, quantum simulation and/or quantum sensing. The institutes are expected to foster multidisciplinary approaches to specific scientific, technological, educational workforce development goals in these fields. Two types of awards will be supported under this program: (i) 12-month Conceptualization Grants (CGs) to support teams envisioning subsequent Institute proposals and (ii) 5-year Challenge Institute (CI) awards to establish and operate Quantum Leap Challenge Institutes. This activity is part of the Quantum Leap, one of the research Big Ideas promoted by the National Science Foundation (NSF). The NSF Quantum Leap Challenge Institutes program is consistent with the scope of NSF multidisciplinary centers for quantum research and education as described in the National Quantum Initiative Act[1]. In 2016, the NSF unveiled a set of "Big Ideas," ten bold, long-term research and process ideas that identify areas for future investment at the frontiers of science and engineering (seehttps://www.nsf.gov/news/special_reports/big_ideas/index.jsp). The Big Ideas represent unique opportunities to position our nation at the cutting edge of global science and engineering leadership by bringing together diverse disciplinary perspectives to support convergence research. Although proposals responding to this solicitation must be submitted tothe Office of Multidisciplinary Activities (OMA) in the Directorate of Mathematical and Physical Sciences (MPS),they will subsequently be managed by a cross-disciplinary team of NSF Program Directors.
MiamiOH OARS

Enhancing Access to the Radio Spectrum (EARS) (nsf16537) | NSF - National Science Found... - 0 views

  •  
    The National Science Foundation's Directorates for Computer and Information Science and Engineering (CISE), Engineering (ENG), and Mathematical and Physical Sciences (MPS) are coordinating efforts to identify bold new concepts with the potential to contribute towards significant improvements in the efficiency of radio spectrum utilization, protection of passive sensing services, and the ability for traditionally underserved Americans to benefit from current and future wireless-enabled goods and services. This EARS program solicitation seeks to fund innovative collaborative research addressing large-scale challenges that transcend the traditional boundaries of existing programs.
  •  
    The National Science Foundation's Directorates for Computer and Information Science and Engineering (CISE), Engineering (ENG), and Mathematical and Physical Sciences (MPS) are coordinating efforts to identify bold new concepts with the potential to contribute towards significant improvements in the efficiency of radio spectrum utilization, protection of passive sensing services, and the ability for traditionally underserved Americans to benefit from current and future wireless-enabled goods and services. This EARS program solicitation seeks to fund innovative collaborative research addressing large-scale challenges that transcend the traditional boundaries of existing programs.
MiamiOH OARS

Transdisciplinary Research in Principles of Data Science - 0 views

  •  
    Transdisciplinary Research In Principles Of Data Science (TRIPODS) aims to bring together the statistics, mathematics, and theoretical computer science communities to develop the theoretical foundations of data science through integrated research and training activities. Phase I, described in this solicitation, will support the development of small collaborative Institutes. Phase II (to be described in an anticipated future solicitation, subject to availability of funds) will support a smaller number of larger Institutes, selected from the Phase I Institutes via a second competitive proposal process. All TRIPODSInstitutes must involve significant and integral participation by all three of the aforementioned communities.
  •  
    Transdisciplinary Research In Principles Of Data Science (TRIPODS) aims to bring together the statistics, mathematics, and theoretical computer science communities to develop the theoretical foundations of data science through integrated research and training activities. Phase I, described in this solicitation, will support the development of small collaborative Institutes. Phase II (to be described in an anticipated future solicitation, subject to availability of funds) will support a smaller number of larger Institutes, selected from the Phase I Institutes via a second competitive proposal process. All TRIPODSInstitutes must involve significant and integral participation by all three of the aforementioned communities.
MiamiOH OARS

Designing Materials to Revolutionize and Engineer our Future (DMREF) (nsf16613) | NSF -... - 0 views

  •  
    DMREF is the primary program by which NSF participates in the Materials Genome Initiative (MGI) for Global Competitiveness. MGI recognizes the importance of materials science and engineering to the well-being and advancement of society and aims to "deploy advanced materials at least twice as fast as possible today, at a fraction of the cost." MGI integrates materials discovery, development, property optimization, and systems design with a shared computational framework. This framework facilitates collaboration and coordination of research activities, analytical tools, experimental results, and critical evaluation in pursuit of the MGI goals. The MGI Strategic Plan highlights four sets of goals: -Leading a culture shift in materials science research to encourage and facilitate an integrated team approach; -Integrating experimentation, computation, and theory and equipping the materials community with advanced tools and techniques; -Making digital data accessible; and -Creating a world-class materials science and engineering workforce that is trained for careers in academia or industry.
  •  
    DMREF is the primary program by which NSF participates in the Materials Genome Initiative (MGI) for Global Competitiveness. MGI recognizes the importance of materials science and engineering to the well-being and advancement of society and aims to "deploy advanced materials at least twice as fast as possible today, at a fraction of the cost." MGI integrates materials discovery, development, property optimization, and systems design with a shared computational framework. This framework facilitates collaboration and coordination of research activities, analytical tools, experimental results, and critical evaluation in pursuit of the MGI goals. The MGI Strategic Plan highlights four sets of goals: -Leading a culture shift in materials science research to encourage and facilitate an integrated team approach; -Integrating experimentation, computation, and theory and equipping the materials community with advanced tools and techniques; -Making digital data accessible; and -Creating a world-class materials science and engineering workforce that is trained for careers in academia or industry.
MiamiOH OARS

Young Faculty Award (YFA) - Federal Business Opportunities: Opportunities - 0 views

  •  
    The Defense Advanced Research Projects Agency (DARPA) is soliciting innovative research proposals in the areas of physical sciences, engineering, materials, mathematics, biology, computing, informatics, social science, and manufacturing of interest to DARPA's Defense Sciences Office (DSO), Microsystems Technology Office (MTO), and Biological Technologies Office (BTO).
  •  
    The Defense Advanced Research Projects Agency (DARPA) is soliciting innovative research proposals in the areas of physical sciences, engineering, materials, mathematics, biology, computing, informatics, social science, and manufacturing of interest to DARPA's Defense Sciences Office (DSO), Microsystems Technology Office (MTO), and Biological Technologies Office (BTO).
MiamiOH OARS

Semiconductor Synthetic Biology for Information Storage and Retrieval ... - 0 views

  •  
    The National Science Foundation (NSF), through its Divisions of Electrical, Communications and Cyber Systems (ECCS), Computing and Communication Foundations (CCF), Molecular and Cellular Biosciences (MCB), and Materials Research (DMR) announces a follow-up solicitation on the Semiconductor Synthetic Biology for Information Storage and Retrieval Program (SemiSynBio-II). Future ultra-low energy storage-based computing systems can be built on principles derived from organic systems that are at the intersection of physics, chemistry, biology, computer science and engineering. Next-generation information storage technologies can be envisioned that are driven by biological principles and use biomaterials in the fabrication of devices and systems that can store data for more than 100 years with storage capacity 1,000 times more than current storage technologies. Such a research effort can have a significant impact on the future of information storage and retrieval technologies. This focused solicitation seeks high-risk/high-return interdisciplinary research on novel concepts and enabling technologies that will address the fundamental scientific issues and technological challenges associated with the underpinnings of synthetic biology integrated with semiconductor technology. This research will foster interactions among various disciplines including biology, physics, chemistry, materials science, computer science and engineering that will enable in heretofore unanticipated breakthroughs.
MiamiOH OARS

IUSE / Professional Formation of Engineers: REvolutionizing engineering and computer sc... - 0 views

  •  
    This funding opportunity enables engineering and computer science departments to lead the nation by successfully achieving significant sustainable changes necessary to overcome longstanding issues in their undergraduate programs and educate inclusive communities of engineering and computer science students prepared to solve 21st century challenges.
  •  
    This funding opportunity enables engineering and computer science departments to lead the nation by successfully achieving significant sustainable changes necessary to overcome longstanding issues in their undergraduate programs and educate inclusive communities of engineering and computer science students prepared to solve 21st century challenges.
MiamiOH OARS

Spectrum Efficiency, Energy Efficiency, and Security: Enabling Spectrum for All (nsf166... - 0 views

  •  
    The National Science Foundation's Directorates for Engineering (ENG) and Computer and Information Science and Engineering (CISE) are coordinating efforts to identify bold new concepts to significantly improve the efficiency of radio spectrum utilization while addressing new challenges in energy efficiency and security, thus enabling spectrum access for all users and devices, and allowing traditionally underserved Americans to benefit from wireless-enabled goods and services. The SpecEES program solicitation (pronounced "SpecEase") seeks to fund innovative collaborative research that transcends the traditional boundaries of existing programs.
  •  
    The National Science Foundation's Directorates for Engineering (ENG) and Computer and Information Science and Engineering (CISE) are coordinating efforts to identify bold new concepts to significantly improve the efficiency of radio spectrum utilization while addressing new challenges in energy efficiency and security, thus enabling spectrum access for all users and devices, and allowing traditionally underserved Americans to benefit from wireless-enabled goods and services. The SpecEES program solicitation (pronounced "SpecEase") seeks to fund innovative collaborative research that transcends the traditional boundaries of existing programs.
MiamiOH OARS

Petascale Computing Resource Allocations (PRAC) (nsf17542) | NSF - National Science Fou... - 0 views

  •  
    The goal of this project and system is to open up new possibilities in science and engineering by providing computational capability that makes it possible for investigators to tackle much larger and more complex research challenges across a wide spectrum of domains. The purpose of this solicitation is to invite research groups to submit requests for allocations of resources on the Blue Waters system. Proposers must show compelling science or engineering challenges that require petascale computing resources. Proposers must also be prepared to demonstrate that they have science or engineering research problems that require and can effectively exploit the petascale computing capabilities offered by Blue Waters. Proposals from or including junior researchers are encouraged, as one of the goals of this solicitation is to build a community capable of using petascale computing.
MiamiOH OARS

EHR Core Research: Production Engineering Education and Research (ECR: PEER) (nsf19557)... - 0 views

  •  
    The National Science Foundation (NSF) and The Boeing Company are supporting a new initiative, managed and administered by NSF through its EHR Core Research (ECR) program, to accelerate training in critical skill areas for the Nation's engineering and advanced manufacturing workforce. The EHR Core Research: Production Engineering Education and Research (ECR: PEER) initiative supports foundational research arising from the design, development, and deployment of creative online curricula that provide learners at various levels with skills in five focal areas: model-based systems engineering, software engineering, mechatronics, data science, and artificial intelligence. ECR: PEER invites proposals to design, develop, deploy, and study the effectiveness of online courses in any one of these focal areas using the theories and tools of the learning sciences. Proposals for these ECR: PEER Course, Curriculum, and Evaluation projects may request a maximum of $2,000,000 support for a duration of up to three years. Additionally, ECR: PEER welcomes proposals to convene experts in the academic, for-profit, and non-profit sectors to imagine the future of production engineering education for one of the five focal areas. Proposals for these ECR: PEER Workforce Development Workshops may request a maximum of $100,000 support for a duration of up to one year.
MiamiOH OARS

Science of Atomic Vapors for New Technology (SAVaNT) - 0 views

  •  
    The Defense Sciences Office (DSO) at the Defense Advanced Research Projects Agency (DARPA) is soliciting innovative research proposals that significantly advance the performance of atomic vapors for electric field sensing and imaging, magnetic field sensing, and quantum information science (QIS). Proposed research should investigate innovative approaches that enable revolutionary advances in science, devices, systems, or novel applications of atomic vapors. Specifically excluded is research that primarily results in evolutionary improvements to the existing state of practice.
MiamiOH OARS

nsf.gov - Funding - Cyberinfrastructure Framework for 21st Century Science and Engineer... - 0 views

  •  
    Researchers in all fields of science and engineering are being challenged in two key directions.  The first challenge is to push beyond the current boundaries of knowledge to provide ever-deeper insights through fundamental disciplinary research by addressing increasingly complex questions, which often requires extremely sophisticated integration of theoretical, experimental, observational and simulation and modeling results.   These efforts, which have relied heavily on observing platforms and other data collection efforts, computing facilities, software, advanced networking, analytics, visualization and models have led to important breakthroughs in all areas of science and engineering and represent a very strong bottom-up approach to the necessary research infrastructure.  The second, and more extensive challenge, is to synthesize these fundamental ground breaking efforts across multiple fields to transform scientific research into an endeavor that integrates the deep knowledge and research capabilities developed within the universities, industry and government labs. Individuals, teams and communities need to be able work together; likewise, instruments, facilities (including MREFCs), datasets, and cyber-services must be integrated from the group to campus to national scale. One can imagine secure, geographically distributed infrastructure components including advanced computing facilities, scientific instruments, software environments, advanced networks, data storage capabilities, and the critically important human capital and expertise. Greater understanding is also needed of how scientific and research communities will evolve in the presence of new cyberinfrastructure. 
MiamiOH OARS

Young Faculty Award - 0 views

  •  
    This Research Announcement (RA) solicits ground-breaking single-investigator proposals from junior faculty for research and development in the areas of physical sciences, engineering, materials, mathematics, biology, computing, informatics, and manufacturing of interest to DARPA's Biological Technologies Office (BTO), Defense Sciences Office (DSO) and Microsystems Technology Office (MTO).
  •  
    This Research Announcement (RA) solicits ground-breaking single-investigator proposals from junior faculty for research and development in the areas of physical sciences, engineering, materials, mathematics, biology, computing, informatics, and manufacturing of interest to DARPA's Biological Technologies Office (BTO), Defense Sciences Office (DSO) and Microsystems Technology Office (MTO).
1 - 20 of 113 Next › Last »
Showing 20 items per page