Skip to main content

Home/ OARS funding Systems/ Group items tagged machine learning

Rss Feed Group items tagged

MiamiOH OARS

Real-Time Machine Learning | NSF - National Science Foundation - 0 views

  •  
    A grand challenge in computing is the creation of machines that can proactively interpret and learn from data in real time, solve unfamiliar problems using what they have learned, and operate with the energy efficiency of the human brain. While complex machine-learning algorithms and advanced electronic hardware (henceforth referred to as 'hardware') that can support large-scale learning have been realized in recent years and support applications such as speech recognition and computer vision, emerging computing challenges require real-time learning, prediction, and automated decision-making in diverse domains such as autonomous vehicles, military applications, healthcare informatics and business analytics.
MiamiOH OARS

Real-Time Machine Learning (RTML) | NSF - National Science Foundation (nsf19566) - 0 views

  •  
    The need to process large data sets arising in many practical problems require real-time learning from data streams makes high-performance hardware necessary, and yet the very nature of these problems, along with currently known algorithms for addressing them, imposes significant hardware challenges. Current versions of deep-learning algorithms operate by using millions of parameters whose optimal values need to be determined for good performance in real time on high-performance hardware. Conversely, the availability of fast hardware implementations can enable fuller use of Bayesian techniques, attractive for their ability to quantify prediction uncertainty and thus give estimates of reliability and prediction breakdown. The abilities of ML systems to self-assess for reliability and predict their own breakdowns (and also recover without significant ill effects) constitute critical areas for algorithm development as autonomous systems become widely deployed in both decision support and embodied AI agents. Only with attention to these challenges can we construct systems that are robust when they encounter novel situations or degradation and failure of sensors.
MiamiOH OARS

Smart and Connected Health | NSF - National Science Foundation - 0 views

  •  
    The purpose of this program is to develop next generation health care solutions and encourage existing and new research communities to focus on breakthrough ideas in a variety of areas of value to health, such as sensor technology, networking, information and machine learning technology, decision support systems, modeling of behavioral and cognitive processes, as well as system and process modeling. Effective solutions must satisfy a multitude of constraints arising from clinical/medical needs, social interactions, cognitive limitations, barriers to behavioral change, heterogeneity of data, semantic mismatch and limitations of current cyberphysical systems. Such solutions demand multidisciplinary teams ready to address technical, behavioral and clinical issues ranging from fundamental science to clinical practice.
  •  
    The purpose of this program is to develop next generation health care solutions and encourage existing and new research communities to focus on breakthrough ideas in a variety of areas of value to health, such as sensor technology, networking, information and machine learning technology, decision support systems, modeling of behavioral and cognitive processes, as well as system and process modeling. Effective solutions must satisfy a multitude of constraints arising from clinical/medical needs, social interactions, cognitive limitations, barriers to behavioral change, heterogeneity of data, semantic mismatch and limitations of current cyberphysical systems. Such solutions demand multidisciplinary teams ready to address technical, behavioral and clinical issues ranging from fundamental science to clinical practice.
MiamiOH OARS

NSF/Intel Partnership on Computer Assisted Programming for Heterogeneous Architectures ... - 0 views

  •  
    The NSF/Intel Partnership on Computer Assisted Programming for Heterogeneous Architectures (CAPA) aims to address the problem of effective software development for diverse hardware architectures through groundbreaking university research that will lead to a significant, measurable leap in software development productivity by partially or fully automating software development tasks that are currently performed by humans. The main research objectives for CAPA include programmer effectiveness, performance portability, and performance predictability. In order to address these objectives, CAPA seeks research proposals that explore (1) programming abstractions and/or methodologies that separate performance-related aspects of program design from how they are implemented; (2) program synthesis and machine learning approaches for automatic software construction that are demonstrably correct; (3) advanced hardware-based cost models and abstractions to support multi-target code generation and performance predictability for specified heterogeneous hardware architectures; and (4) integration of research results into principled software development practices.
MiamiOH OARS

Algorithms in the Field (AitF) (nsf16603) | NSF - National Science Foundation - 0 views

  •  
    Algorithms in the Field encourages closer collaboration between two groups of researchers: (i) theoretical computer science researchers, who focus on the design and analysis of provably efficient and provably accurate algorithms for various computational models; and (ii) other computing and information researchers including a combination of systems and domain experts (very broadly construed - including but not limited to researchers in computer architecture, programming languages and systems, computer networks, cyber-physical systems, cyber-human systems, machine learning, artificial intelligence and its applications, database and data analytics, etc.) who focus on the particular design constraints of applications and/or computing devices. Each proposal must have at least one co-PI interested in theoretical computer science and one interested in any of the other areas typically supported by CISE. Proposals are expected to address the dissemination of both the algorithmic contributions and the resulting applications, tools, languages, compilers, libraries, architectures, systems, data, etc.
MiamiOH OARS

nsf.gov - Funding - Smart and Connected Health - US National Science Foundation (NSF) - 0 views

  •  
    The goal of the Smart and Connected Health (SCH) Program is to accelerate the development and use of innovative approaches that would support the much needed transformation of healthcare from reactive and hospital-centered to preventive, proactive, evidence-based, person-centered and focused on well-being rather than disease. Approaches that partner technology-based solutions with biobehavioral health research are supported by multiple agencies of the federal government including the National Science Foundation (NSF) and the National Institutes of Health (NIH). The purpose of this program is to develop next generation health care solutions and encourage existing and new research communities to focus on breakthrough ideas in a variety of areas of value to health, such as sensor technology, networking, information and machine learning technology, decision support systems, modeling of behavioral and cognitive processes, as well as system and process modeling.
MiamiOH OARS

Algorithms in the Field (AitF) (nsf15515) - 0 views

  •  
    Algorithms in the Field encourages closer collaboration between two groups of researchers: (i) theoretical computer science researchers, who focus on the design and analysis of provably efficient and provably accurate algorithms for various computational models; and (ii) applied researchers including a combination of systems and domain experts (very broadly construed - including but not limited to researchers in computer architecture, programming languages and systems, computer networks, cyber-physical systems, cyber-human systems, machine learning, database and data analytics, etc.) who focus on the particular design constraints of applications and/or computing devices. Each proposal must have at least one co-PI interested in theoretical computer science and one interested in any of the other areas typically supported by CISE. Proposals are expected to address the dissemination of the algorithmic contributions and resulting applications, tools, languages, compilers, libraries, architectures, systems, data, etc.
MiamiOH OARS

Principles and Practice of Scalable Systems (PPoSS) ... - 0 views

  •  
    A key focus of the design of modern computing systems is performance and scalability, particularly in light of the limits of Moore's Law and Dennard scaling. To this end, systems are increasingly being implemented by composing heterogeneous computing components and continually changing memory systems as novel, performant hardware surfaces. Applications fueled by rapid strides in machine learning, data analysis, and extreme-scale simulation are becoming more domain-specific and highly distributed. In this scenario, traditional boundaries between hardware-oriented and software-oriented disciplines increasingly are blurred. Achieving scalability of systems and applications will therefore require coordinated progress in multiple disciplines such as computer architecture, high-performance computing (HPC), programming languages and compilers, security and privacy, systems, theory, and algorithms. Cross-cutting concerns such as performance (including, but not limited to, time, space, and communication resource usage and energy efficiency), correctness and accuracy (including, but not limited to, emerging techniques for program analysis, testing, debugging, probabilistic reasoning and inference, and verification), security and privacy, robustness and reliability, domain-specific design, and heterogeneity must be taken into account from the outset in all aspects of systems and application design and implementation.
MiamiOH OARS

Addressing Systems Challenges through Engineering Teams | NSF - National Science Founda... - 0 views

  •  
    The Electrical, Communications and Cyber Systems Division (ECCS) supports enabling and transformative engineering research at the nano, micro, and macro scales that fuels progress in engineering system applications with high societal impact. This includes fundamental engineering research underlying advanced devices and components and their seamless penetration in power, controls, networking, communications or cyber systems. The research is envisioned to be empowered by cutting-edge computation, synthesis, evaluation, and analysis technologies and is to result in significant impact for a variety of application domains in healthcare, homeland security, disaster mitigation, telecommunications, energy, environment, transportation, manufacturing, and other systems-related areas. ECCS also supports new and emerging research areas encompassing 5G and Beyond Spectrum and Wireless Technologies, Quantum Information Science, Artificial Intelligence, Machine Learning, and Big Data.
MiamiOH OARS

Principles and Practice of Scalable Systems (PPoSS) (nsf21513) | NSF - National Science... - 0 views

  •  
    A key focus of the design of modern computing systems is performance and scalability, particularly in light of the limits of Moore's Law and Dennard scaling. To this end, systems are increasingly being implemented by composing heterogeneous computing components and continually changing memory systems as novel, performant hardware surfaces. Applications fueled by rapid strides in machine learning, data analysis, and extreme-scale simulation are becoming more domain-specific and highly distributed. In this scenario, traditional boundaries between hardware-oriented and software-oriented disciplines increasingly are blurred. Achieving scalability of systems and applications will therefore require coordinated progress in multiple disciplines such as computer architecture, high-performance computing (HPC), programming languages and compilers, security and privacy, systems, theory, and algorithms. Cross-cutting concerns such as performance (including, but not limited to, time, space, and communication resource usage and energy efficiency), correctness and accuracy (including, but not limited to, emerging techniques for program analysis, testing, debugging, probabilistic reasoning and inference, and verification), security and privacy, robustness and reliability, domain-specific design, and heterogeneity must be taken into account from the outset in all aspects of systems and application design and implementation.
MiamiOH OARS

Addressing Systems Challenges through Engineering Teams (ASCENT) (nsf21521) | NSF - Nat... - 0 views

  •  
    The Electrical, Communications and Cyber Systems (ECCS) Division supports enabling and transformative research that fuels progress in engineering applications with high societal impacts. ECCS programs encompass novel electronic, photonic, and magnetic devices; communication systems, novel integrated circuits, antennas, sensors; machine learning, control, and networks, to name a few. The fundamental research supported by ECCS impacts a wide range of applications such as communications, energy and power, healthcare, environment, transportation, manufacturing, and other areas. ECCS strongly emphasizes the integration of education into its research programs to support the preparation of a diverse and professionally skilled workforce. ECCS also strengthens its programs through links to other areas of engineering, science, industry, government, and international collaborations. The Addressing Systems Challenges through Engineering Teams (ASCENT) program is a strategic investment of ECCS that emphasizes new collaboration modalities among the various ECCS supported sub-disciplines. ASCENT encourages robust collaborations between the devices, circuits, algorithmic, and network research communities to develop innovative projects. ASCENT seeks proposals that are bold and ground-breaking transcending the perspectives and approaches typical of disciplinary research efforts. ASCENT projects are expected to lead to disruptive technologies or nucleate entirely new research fields motivated by the most pressing societal challenges the global community faces.
1 - 11 of 11
Showing 20 items per page