Skip to main content

Home/ OARS funding Physics/ Group items tagged computer

Rss Feed Group items tagged

MiamiOH OARS

nsf.gov - Funding - Physics at the Information Frontier - US National Science Foundatio... - 0 views

  •  
    PIF provides support for physics proposals in three subareas: 1) computational physics, 2) data enabled physics, and 3) quantum information science and revolutionary computing. Computational physics emphasizes methods for high-performance computing that require significant code development, are led by physicists, and may include applied mathematicians and computer scientists. Priority will be given to proposals that, in addition to compelling scientific goals, have a computational advance or new enabling capability. Proposals should include either innovation in computing such as algorithm development and efficient use of novel architectures or provide significant improvement to community codes. Data enabled physics seeks proposals to develop tools and infrastructure that provide rapid, secure, and efficient access to physics data stores via heterogeneous or distributed computing resources and networks. Examples include development of reliable digital preservation, access, integration, and curation capabilities associated with data from Physics Division experimental facilities and the tools for data handling needed to maximize the scientific payoff. Priority will be given to proposals that serve broad communities or that bring dramatic new capabilities to a specific sub-area of physics. Quantum information and revolutionary computing supports theoretical and experimental proposals that explore applications of quantum mechanics to new computing paradigms or that foster interactions between physicists, mathematicians, and computer scientists that push the frontiers of quantum-based information, transmission, and manipulation.
MiamiOH OARS

View Opportunity | GRANTS.GOV - 0 views

  •  
    Physics at the Information Frontier (PIF) includes support for data-enabled science, community research networks, and new computational infrastructure, as well as for next-generation computing. It focuses on cyber-infrastructure for the disciplines supported by the Physics Division while encouraging broader impacts on other disciplines. Disciplines within the purview of the Physics Division include: atomic, molecular, optical, plasma, elementary particle, nuclear, particle astrophysics, gravitational and biological physics. Proposals with intellectual focus in areas supported by other NSF Divisions should be submitted to those divisions directly. Proposals that cross Divisional lines are welcome, but the Physics Division encourages PIs to request a co-review by naming other divisional programs on the cover sheet. This facilitates the co-review and participation of other programs in the review process. PIF provides support for physics proposals in three subareas: 1) computational physics, 2) data enabled physics, and 3) quantum information science and revolutionary computing. Computational physics emphasizes methods for high-performance computing that require significant code development, are led by physicists, and may include applied mathematicians and computer scientists. Priority will be given to proposals that, in addition to compelling scientific goals, have a computational advance or new enabling capability. Proposals should include either innovation in computing such as algorithm development and efficient use of novel architectures or provide significant improvement to community codes.Data enabled physics seeks proposals to develop tools and infrastructure that provide rapid, secure, and efficient access to physics data stores via heterogeneous or distributed computing resources and networks.
MiamiOH OARS

Ideas Lab: Practical Fully-Connected Quantum Computer Challenge (PFCQC) | NSF - Nationa... - 0 views

  •  
    Quantum computing is a revolutionary approach to information processing based on the quantum physics of coherent superposition and entanglement.  Advantages of quantum computing include efficient algorithms for computationally difficult tasks, efficient use of resources such as memory and energy needed for computations, and new platforms for the simulation of quantum mechanical systems that are currently intractable using conventional computers.  Applications for quantum computing, such as integer number factoring, search and optimization algorithms, and quantum simulations, will accelerate discoveries in a broad range of disciplines including physics, engineering, and computer science.
MiamiOH OARS

14-518 Petascale Computing Resource Allocations - 0 views

  •  
    In 2013, a new NSF-funded petascale computing system, Blue Waters, was deployed at the University of Illinois. The goal of this project and system is to open up new possibilities in science and engineering by providing computational capability that makes it possible for investigators to tackle much larger and more complex research challenges across a wide spectrum of domains. The purpose of this solicitation is to invite research groups to submit requests for allocations of resources on the Blue Waters system. Proposers must show a compelling science or engineering challenge that will require petascale computing resources. Proposers must also be prepared to demonstrate that they have a science or engineering research problem that requires and can effectively exploit the petascale computing capabilities offered by Blue Waters. Proposals from or including junior researchers are encouraged, as one of the goals of this solicitation is to build a community capable of using petascale computing.
MiamiOH OARS

nsf.gov - Funding - Petascale Computing Resource Allocations - US National Science Foun... - 0 views

  •  
    In 2013, a new NSF-funded petascale computing system, Blue Waters, was deployed at the University of Illinois.  The goal of this project and system is to open up new possibilities in science and engineering by providing computational capability that makes it possible for investigators to tackle much larger and more complex research challenges across a wide spectrum of domains.  The purpose of this solicitation is to invite research groups to submit requests for allocations of resources on the Blue Waters system. Proposers must show a compelling science or engineering challenge that will require petascale computing resources. Proposers must also be prepared to demonstrate that they have a science or engineering research problem that requires and can effectively exploit the petascale computing  capabilities offered by Blue Waters.  Proposals from or including junior researchers are encouraged, as one of the goals of this solicitation is to build a community capable of using petascale computing.
MiamiOH OARS

Semiconductor Synthetic Biology for Information Storage and Retrieval | NSF - National ... - 0 views

  •  
    The National Science Foundation (NSF), through its Divisions of Electrical, Communications and Cyber Systems (ECCS), Computing and Communication Foundations (CCF), Molecular and Cellular Biosciences (MCB), and Materials Research (DMR) announces a follow-up solicitation on the Semiconductor Synthetic Biology for Information Storage and Retrieval Program (SemiSynBio-II).  Future ultra-low energy storage-based computing systems can be built on principles derived from organic systems that are at the intersection of physics, chemistry, biology, computer science and engineering.  Next-generation information storage technologies can be envisioned that are driven by biological principles and use biomaterials in the fabrication of devices and systems that can store data for more than 100 years with storage capacity 1,000 times more than current storage technologies.  Such a research effort can have a significant impact on the future of information storage and retrieval technologies. This focused solicitation seeks high-risk/high-return interdisciplinary research on novel concepts and enabling technologies that will address the fundamental scientific issues and technological challenges associated with the underpinnings of synthetic biology integrated with semiconductor technology. This research will foster interactions among various disciplines including biology, physics, chemistry, materials science, computer science and engineering that will enable in heretofore unanticipated breakthroughs.
MiamiOH OARS

Semiconductor Synthetic Biology for Information Processing and Storage Technologies (Se... - 0 views

  •  
    Future ultra-low-energy computing, storage and signal-processing systems can be built on principles derived from organic systems that are at the intersection of chemistry, biology, and engineering. New information technologies can be envisioned that are based on biological principles and that use biomaterials in the fabrication of devices and components; it is anticipated that these information technologies could enable stored data to be retained for more than 100 years and storage capacity to be 1,000 times greater than current capabilities. These could also facilitate compact computers that will operate with substantially lower power than today's computers. Research in support of these goals can have a significant impact on advanced information processing and storage technologies. This focused solicitation seeks high-risk/high-return interdisciplinary research on novel concepts and enabling technologies that will address the scientific issues and technological challenges associated with the underpinnings of synthetic biology integrated with semiconductor technology. This research will foster interactions among various disciplines including biology, engineering, physics, chemistry, materials science, computer science, and information science that will enable heretofore-unanticipated breakthroughs as well as meet educational goals.
MiamiOH OARS

Scientific Discovery through Advanced Computing: Integrated Simulation Partnerships in ... - 0 views

  •  
    The Office of Fusion Energy Sciences (FES) and the Office of Advanced Scientific Computing Research (ASCR) of the Office of Science (SC), U.S. Department of Energy (DOE), announce their interest in receiving applications from multi-institutional interdisciplinary teams to establish scientific application partnerships under the SC-wide Scientific Discovery through Advanced Computing (SciDAC) program in the area of integrated simulations for fusion energy sciences. The goal of this announcement is to select applications that can take advantage of today's multi-petascale DOE high-performance computing (DOE HPC) systems to accelerate scientific discovery in strategically important areas of magnetic fusion energy science and address high- priority issues identified in recent community studies. The specific areas of interest under this Funding Opportunity Announcement (FOA) are: 1. Plasma Disruptions in Tokamaks 2. Boundary Physics 3. Plasma-Materials Interactions 4. Whole Device Modeling
MiamiOH OARS

nsf.gov - Funding - Computational and Data-Enabled Science and Engineering - US Nationa... - 0 views

  •  
    Advanced computational infrastructure and the ability to perform large-scale simulations and accumulate massive amounts of data have revolutionized scientific and engineering disciplines.  The goal of the CDS&E program is to identify and capitalize on opportunities for major scientific and engineering breakthroughs through new computational and data analysis approaches.  The intellectual drivers may be in an individual discipline or they may cut across more than one discipline in various Directorates.  The key identifying factor is that the outcome relies on the development, adaptation, and utilization of one or more of the capabilities offered by advancement of both research and infrastructure in computation and data, either through cross-cutting or disciplinary programs. 
MiamiOH OARS

Computational Physics | NSF - National Science Foundation - 0 views

  •  
    Computational Physics (CP) supports research for computational and data-enabled science. The program emphasizes novel methods for high-performance computing that require significant code development.
MiamiOH OARS

Condensed Matter and Materials Theory (CMMT) | NSF - National Science Foundation - 0 views

  •  
    CMMT supports theoretical and computational materials research in the topical areas represented in DMR's Topical Materials Research Programs (these are also variously known as Individual Investigator Award (IIA) Programs, or Core Programs, or Disciplinary Programs), which include: Condensed Matter Physics (CMP), Biomaterials (BMAT), Ceramics (CER), Electronic and Photonic Materials (EPM), Metals and Metallic Nanostructures (MMN), Polymers (POL), and Solid State and Materials Chemistry (SSMC). The CMMT program supports fundamental research that advances conceptual understanding of hard and soft materials, and materials-related phenomena; the development of associated analytical, computational, and data-centric techniques; and predictive materials-specific theory, simulation, and modeling for materials research.Research may encompass the advance of new paradigms in materials research, including emerging data-centric approaches utilizing data-analytics or machine learning. Computational efforts span from the level of workstations to advanced and high-performance scientific computing. Emphasis is on approaches that begin at the smallest appropriate length scale, such as electronic, atomic, molecular, nano-, micro-, and mesoscale, required to yield fundamental insight into material properties, processes, and behavior, to predict new materials and states of matter, and to reveal new materials phenomena. Approaches that span multiple scales of length and time may be required to advance fundamental understanding of materials properties and phenomena, particularly for polymeric materials and soft matter.
MiamiOH OARS

Semiconductor Synthetic Biology for Information Storage and Retrieval (SemiSynBio-II) (... - 0 views

  •  
    The National Science Foundation (NSF), through its Divisions of Electrical, Communications and Cyber Systems (ECCS), Computing and Communication Foundations (CCF), Molecular and Cellular Biosciences (MCB), and Materials Research (DMR) announces a follow-up solicitation on the Semiconductor Synthetic Biology for Information Storage and Retrieval Program (SemiSynBio-II). Future ultra-low energy storage-based computing systems can be built on principles derived from organic systems that are at the intersection of physics, chemistry, biology, computer science and engineering. Next-generation information storage technologies can be envisioned that are driven by biological principles and use biomaterials in the fabrication of devices and systems that can store data for more than 100 years with storage capacity 1,000 times more than current storage technologies. Such a research effort can have a significant impact on the future of information storage and retrieval technologies. This focused solicitation seeks high-risk/high-return interdisciplinary research on novel concepts and enabling technologies that will address the fundamental scientific issues and technological challenges associated with the underpinnings of synthetic biology integrated with semiconductor technology. This research will foster interactions among various disciplines including biology, physics, chemistry, materials science, computer science and engineering that will enable in heretofore unanticipated breakthroughs.
MiamiOH OARS

Background | Burroughs Wellcome Fund - 0 views

  •  
    Scientific advances such as genomics, quantitative structural biology, imaging techniques, and modeling of complex systems have created opportunities for exciting research careers at the interface between the physical/computational sciences and the biological sciences. Tackling key problems in biology will require scientists trained in areas such as chemistry, physics, applied mathematics, computer science, and engineering. Recognizing the vital role such cross-trained scientists will play in furthering biomedical science, the Burroughs Wellcome Fund has developed the Career Awards at the Scientific Interface. These grants are intended to foster the early career development of researchers who have transitioned or are transitioning from undergraduate and/or graduate work in the physical/mathematical/computational sciences or engineering into postdoctoral work in the biological sciences, and who are dedicated to pursuing a career in academic research. Candidates are expected to draw from their training in a scientific field other than biology to propose innovative approaches to answer important questions in the biological sciences.
MiamiOH OARS

Scalable Parallelism in the Extreme - 0 views

  •  
    The Scalable Parallelism in the Extreme (SPX) program aims to support research addressing the challenges of increasing performance in this modern era of parallel computing. This will require a collaborative effort among researchers in multiple areas, from services and applications down to micro-architecture. Objectives, including supporting foundational research toward architecture and software approaches that drive performance improvements in the post-Moore’s Law era; development and deployment of programmable, scalable, and reusable platforms in the national HPC and scientific cyberinfrastructure ecosystem; increased coherence of data analytic computing and modeling and simulation; and capable extreme-scale computing.
MiamiOH OARS

nsf.gov - Funding - Condensed Matter and Materials Theory - US National Science Foundat... - 0 views

  •  
    This program supports theoretical and computational materials research and education in the topical areas represented in DMR programs, including condensed matter physics, polymers, solid-state and materials chemistry, metals and nanostructures, electronic and photonic materials, ceramics, and biomaterials. The program supports fundamental research that advances conceptual, analytical, and computational techniques for materials research. A broad spectrum of research is supported using electronic structure methods, many-body theory, statistical mechanics, and Monte Carlo and molecular dynamics simulations, along with other techniques, many involving advanced scientific computing. Emphasis is on approaches that begin at the smallest appropriate length scale, such as electronic, atomic, molecular, nano-, micro-, and mesoscale, required to yield fundamental insight into material properties, processes, and behavior and to reveal new materials phenomena. Areas of recent interest include, but are not limited to: strongly correlated electron systems; low-dimensional systems; nonequilibrium phenomena, including pattern formation, microstructural evolution, and fracture; high-temperature superconductivity; nanostructured materials and mesoscale phenomena; quantum coherence and its control; and soft condensed matter, including systems of biological interest.
MiamiOH OARS

Critical Techniques, Technologies and Methodologies for Advancing Foundations and Appli... - 0 views

  •  
    The BIGDATA program seeks novel approaches in computer science, statistics, computational science, and mathematics leading towards the further development of the interdisciplinary field of data science. The program also seeks innovative applications in domain science, including social and behavioral sciences, education, physical sciences, and engineering, where data science and the availability of big data are creating new opportunities for research and insights not previously possible. The solicitation invites two categories of proposals: Foundations (BIGDATA: F): those developing or studying fundamental theories, techniques, methodologies, and technologies of broad applicability to big data problems, motivated by specific data challenges and requirements; and Innovative Applications (BIGDATA: IA): those engaged in translational activities that employ new big data techniques, methodologies, and technologies to address and solve problems in specific application domains. Projects in this category must be collaborative, involving researchers from domain disciplines and one or more methodological disciplines, e.g., computer science, statistics, mathematics, simulation and modeling, etc.
MiamiOH OARS

Quantum Information Science | NSF - National Science Foundation - 0 views

  •  
    Quantum Information Science (QIS) supports theoretical and experimental proposals that explore quantum applications to new computing paradigms or that foster interactions between physicists, mathematicians, and computer scientists that push the frontiers of quantum-based information, transmission, and manipulation.
MiamiOH OARS

Eligibility Requirements - 0 views

  •  
    Candidates must hold a Ph.D. (or equivalent) in chemistry, computational or evolutionary molecular biology, computer science, economics, mathematics, neuroscience, ocean sciences (including marine biology), physics, or a related field; Candidates must hold a tenure track (or equivalent) position at a college, university or other degree-granting institution in the United States or Canada;  Candidates must normally be no more than six years from completion of their most recent Ph.D. (or equivalent) as of the year of their nomination.  (That is, most recent Ph.D. must have been awarded on or after September 2007.)** While Fellows are expected to be at an early stage of their research careers, there should be strong evidence of independent research accomplishments. Candidates in all fields are normally below the rank of associate professor and do not hold tenure, but these are not strict requirements. The Alfred P. Sloan Foundation welcomes nominations of all candidates who meet the traditional high standards of this program, and strongly encourages the participation of women and members of underrepresented minority groups.
MiamiOH OARS

Condensed Matter and Materials Theory - 0 views

  •  
    This program supports theoretical and computational materials research and education in the topical areas represented in DMR programs, including condensed matter physics, polymers, solid-state and materials chemistry, metals and nanostructures, electronic and photonicmaterials, ceramics, and biomaterials. The program supports fundamental research that advances conceptual, analytical, and computational techniques for materials research.
MiamiOH OARS

Critical Techniques, Technologies and Methodologies for Advancing Foundations and Appli... - 0 views

  •  
    The BIGDATA program seeks novel approaches in computer science, statistics, computational science, and mathematics, along with innovative applications in domain science, including social and behavioral sciences, geosciences, education, biology, the physical sciences, and engineering that lead towards the further development of the interdisciplinary field of data science
1 - 20 of 181 Next › Last »
Showing 20 items per page