Skip to main content

Home/ OARS funding Nanoscience/ Group items tagged behavioral

Rss Feed Group items tagged

MiamiOH OARS

Particulate and Multiphase Processes | NSF - National Science Foundation - 0 views

  •  
    The goal of the Particulate and Multiphase Processes (PMP) program is to support fundamental research on physico-chemical phenomena that govern particulate and multiphase systems, including flow of suspensions, drops and bubbles, granular and granular-fluid flows, behavior of micro- and nanostructured fluids, and self-assembly/directed-assembly processes that involve particulates.  The program encourages transformative research to improve our basic understanding of particulate and multiphase processes with emphasis on research that demonstrates how particle-scale phenomena affect the behavior and dynamics of larger-scale systems.  Although proposed research should focus on fundamentals, a clear vision is required that anticipates how results could benefit important applications in advanced manufacturing, energy harvesting, transport in biological systems, biotechnology, or environmental sustainability.  Collaborative and interdisciplinary proposals are encouraged, especially those that involve a combination of experiment with theory or modeling.  Proposals whose main focus is on the synthesis of particles are not encouraged.
  •  
    The goal of the Particulate and Multiphase Processes (PMP) program is to support fundamental research on physico-chemical phenomena that govern particulate and multiphase systems, including flow of suspensions, drops and bubbles, granular and granular-fluid flows, behavior of micro- and nanostructured fluids, and self-assembly/directed-assembly processes that involve particulates.  The program encourages transformative research to improve our basic understanding of particulate and multiphase processes with emphasis on research that demonstrates how particle-scale phenomena affect the behavior and dynamics of larger-scale systems.  Although proposed research should focus on fundamentals, a clear vision is required that anticipates how results could benefit important applications in advanced manufacturing, energy harvesting, transport in biological systems, biotechnology, or environmental sustainability.  Collaborative and interdisciplinary proposals are encouraged, especially those that involve a combination of experiment with theory or modeling.  Proposals whose main focus is on the synthesis of particles are not encouraged.
MiamiOH OARS

Condensed Matter Physics | NSF - National Science Foundation - 0 views

  •  
    The Condensed Matter Physics program supports experimental, as well as combined experiment and theory projects investigating the fundamental physics behind phenomena exhibited by condensed matter systems.  Representative research areas in such systems include: 1) phenomena at the nano- to macro-scale including: transport, magnetic, and optical phenomena; classical and quantum phase transitions; localization; electronic, magnetic, and lattice structure or excitations; superconductivity; and nonlinear dynamics. 2) low-temperature physics: quantum fluids and solids; 1D & 2D electron systems. 3) soft condensed matter: partially ordered fluids, granular and colloid physics, and 4) understanding the fundamental physics of new states of matter as well as the physical behavior of condensed matter under extreme conditions e.g., low temperatures, high pressures, and high magnetic fields.  Questions of current interest that span these research areas are:  How and why do complex macroscopic phenomena emerge from simple interacting microscopic constituents?  What new physics occurs far from equilibrium and why?  What is the physics behind the behavior of matter confined to the nanoscale in one or more dimensions?  What is the physics of spin systems and quantum states of matter that could lead to their coherent manipulation and control?
  •  
    The Condensed Matter Physics program supports experimental, as well as combined experiment and theory projects investigating the fundamental physics behind phenomena exhibited by condensed matter systems.  Representative research areas in such systems include: 1) phenomena at the nano- to macro-scale including: transport, magnetic, and optical phenomena; classical and quantum phase transitions; localization; electronic, magnetic, and lattice structure or excitations; superconductivity; and nonlinear dynamics. 2) low-temperature physics: quantum fluids and solids; 1D & 2D electron systems. 3) soft condensed matter: partially ordered fluids, granular and colloid physics, and 4) understanding the fundamental physics of new states of matter as well as the physical behavior of condensed matter under extreme conditions e.g., low temperatures, high pressures, and high magnetic fields.  Questions of current interest that span these research areas are:  How and why do complex macroscopic phenomena emerge from simple interacting microscopic constituents?  What new physics occurs far from equilibrium and why?  What is the physics behind the behavior of matter confined to the nanoscale in one or more dimensions?  What is the physics of spin systems and quantum states of matter that could lead to their coherent manipulation and control?
MiamiOH OARS

Particulate and Multiphase Processes | NSF - National Science Foundation - 0 views

  •  
    The goal of the Particulate and Multiphase Processes (PMP) program is to support fundamental research on physico-chemical phenomena that govern particulate and multiphase systems, including flow of suspensions, drops and bubbles, granular and granular-fluid flows, behavior of micro- and nanostructured fluids, and self-assembly/directed-assembly processes that involve particulates.  The program encourages transformative research to improve our basic understanding of particulate and multiphase processes with emphasis on research that demonstrates how particle-scale phenomena affect the behavior and dynamics of larger-scale systems.  Although proposed research should focus on fundamentals, a clear vision is required that anticipates how results could benefit important applications in advanced manufacturing, energy harvesting, transport in biological systems, biotechnology, or environmental sustainability.  Collaborative and interdisciplinary proposals are encouraged, especially those that involve a combination of experiment with theory or modeling.
  •  
    The goal of the Particulate and Multiphase Processes (PMP) program is to support fundamental research on physico-chemical phenomena that govern particulate and multiphase systems, including flow of suspensions, drops and bubbles, granular and granular-fluid flows, behavior of micro- and nanostructured fluids, and self-assembly/directed-assembly processes that involve particulates.  The program encourages transformative research to improve our basic understanding of particulate and multiphase processes with emphasis on research that demonstrates how particle-scale phenomena affect the behavior and dynamics of larger-scale systems.  Although proposed research should focus on fundamentals, a clear vision is required that anticipates how results could benefit important applications in advanced manufacturing, energy harvesting, transport in biological systems, biotechnology, or environmental sustainability.  Collaborative and interdisciplinary proposals are encouraged, especially those that involve a combination of experiment with theory or modeling.
MiamiOH OARS

Science of Science and Innovation Policy - 0 views

  •  
    The Science of Science & Innovation Policy (SciSIP) program supports research designed to advance the scientific basis of science and innovation policy. Research funded by the program thus develops, improves and expands models, analytical tools, data and metrics that can be applied in the science policy decision making process. For example, research proposals may develop behavioral and analytical conceptualizations, frameworks or models that have applications across a broad array of SciSIP challenges, including the relationship between broader participation and innovation or creativity. Proposals may also develop methodologies to analyze science and technology data, and to convey the information to a variety of audiences. Researchers are also encouraged to create or improve science and engineering data, metrics and indicators reflecting current discovery, particularly proposals that demonstrate the viability of collecting and analyzing data on knowledge generation and innovation in organizations. Among the many research topics supported are:examinations of the ways in which the contexts, structures and processes of science and engineering research are affected by policy decision, the evaluation of the tangible and intangible returns from investments in science and from investments in research and development, the study of structures and processes that facilitate the development of usable knowledge, theories of creative processes and their transformation into social and economic outcomes, the collection, analysis and visualization of new data describing the scientific and engineering enterprise. The SciSIP program invites the participation of researchers from all of the social, behavioral and economic sciences as well as those working in domain-specific applications such as chemistry, biology, physics, or nanotechnology. The program welcomes proposals for individual or multi-investigator research projects, doctoral dissertation improvement awards, conferences, wo
MiamiOH OARS

Particulate and Multiphase Processes | NSF - National Science Foundation - 0 views

  •  
    The goal of the Particulate and Multiphase Processes (PMP) program is to support fundamental research on physico-chemical phenomena that govern particulate and multiphase systems, including flow of suspensions, drops and bubbles, granular and granular-fluid flows, behavior of micro- and nanostructured fluids, and self-assembly/directed-assembly processes that involve particulates. The program encourages transformative research to improve our basic understanding of particulate and multiphase processes with emphasis on research that demonstrates how particle-scale phenomena affect the behavior and dynamics of larger-scale systems. Although proposed research should focus on fundamentals, a clear vision is required that anticipates how results could benefit important applications in advanced manufacturing, energy harvesting, transport in biological systems, biotechnology, or environmental sustainability. Collaborative and interdisciplinary proposals are encouraged, especially those that involve a combination of experiment with theory or modeling.
MiamiOH OARS

nsf.gov - Funding - Metals and Metallic Nanostructures - US National Science Foundation... - 0 views

  •  
    he Metals and Metallic Nanostructures (MMN) Program supports fundamental research and education on the relationships between processing, structure and properties of metals and their alloys. The program focuses on experimental research while strongly encouraging the synergistic use of theory and computational materials science. Structure spanning atomic, nanometer, micrometer and larger length scales controls properties and connects these with processing.   The program emphasizes the role of structure across all these length scales, including structural imperfections such as vacancies, solutes, dislocations, boundaries and interfaces. Research should advance fundamental materials science that will enable the design and synthesis of metallic materials to optimize superior behaviors and enable the prediction of properties and performance. The program aims to advance the materials science of metals and alloys through transformative research on a diverse array of topics, including, but not limited to, phase transformations; equilibrium, non-equilibrium and far-from equilibrium structures; thermodynamics; kinetics; diffusion; interfaces; oxidation; performance in extreme environments; recyclability; magnetic behavior; thermal transport; plastic flow; and similar phenomena. Yield strength, flow stress, creep, fatigue and fracture are structural-materials examples. Magnetic energy density, shape-memory strain and thermoelectric efficiency are examples for functional materials.  Broader impacts are expected in education and other areas, such as workforce development, sustainability, environmental impact or critical infrastructure needs.  High-quality proposals that integrate research, education, and other broader impacts are invited.
MiamiOH OARS

Grants.gov - Find Grant Opportunities - Opportunity Synopsis - 0 views

  •  
    The purpose of this FOA is to seek, identify and support bold and innovative approaches to broaden graduate and postdoctoral training, such that training programs reflect the range of career options that trainees (regardless of funding source) ultimately may pursue and that are required for a robust biomedical, behavioral, social and clinical research enterprise. Collaborations with non-academic partners are encouraged to ensure that experts from a broad spectrum of research and research-related careers contribute to coursework, rotations, internships or other forms of exposure. This program will establish a new paradigm for graduate and postdoctoral training; awardee institutions will work together to define needs and share best practices.
MiamiOH OARS

Science of Learning | NSF - National Science Foundation - 0 views

  •  
    The Science of Learning program supports potentially transformative basic research to advance the science of learning. The goals of the SL Program are to develop basic theoretical insights and fundamental knowledge about learning principles, processes and constraints. Projects that are integrative and/or interdisciplinary may be especially valuable in moving basic understanding of learning forward but research with a single discipline or methodology is also appropriate if it addresses basic scientific questions in learning.   The possibility of developing connections between proposed research and specific scientific, technological, educational, and workforce challenges will be considered as valuable broader impacts, but are not necessarily central to the intellectual merit of proposed research. The program will support  research addressing learning in a wide range of domains at one or more levels of analysis including: molecular/cellular mechanisms; brain systems; cognitive affective, and behavioral processes; and social/cultural influences. The program supports a variety of methods including: experiments, field studies, surveys, secondary-data analyses, and modeling.
  •  
    The Science of Learning program supports potentially transformative basic research to advance the science of learning. The goals of the SL Program are to develop basic theoretical insights and fundamental knowledge about learning principles, processes and constraints. Projects that are integrative and/or interdisciplinary may be especially valuable in moving basic understanding of learning forward but research with a single discipline or methodology is also appropriate if it addresses basic scientific questions in learning.   The possibility of developing connections between proposed research and specific scientific, technological, educational, and workforce challenges will be considered as valuable broader impacts, but are not necessarily central to the intellectual merit of proposed research. The program will support  research addressing learning in a wide range of domains at one or more levels of analysis including: molecular/cellular mechanisms; brain systems; cognitive affective, and behavioral processes; and social/cultural influences. The program supports a variety of methods including: experiments, field studies, surveys, secondary-data analyses, and modeling.
MiamiOH OARS

Biological and Environmental Interactions of Nanoscale Materials | NSF - National Scien... - 0 views

  •  
    The goal of the Biological and Environmental Interactions of Nanoscale Materials program is to support research to advance fundamental and quantitative understanding of the interactions of biological and environmental media with nanomaterials and nanosystems. Materials of interest include one- to three-dimensional nanostructures, heterogeneous nano-bio hybrid assemblies, and other nanoparticles.  Such nanomaterials and systems frequently exhibit novel physical, chemical and biological behavior in living systems and environmental matrices as compared to the bulk scale. This program supports research that explores the interaction of nanomaterials in biological and environmental media.
  •  
    The goal of the Biological and Environmental Interactions of Nanoscale Materials program is to support research to advance fundamental and quantitative understanding of the interactions of biological and environmental media with nanomaterials and nanosystems. Materials of interest include one- to three-dimensional nanostructures, heterogeneous nano-bio hybrid assemblies, and other nanoparticles.  Such nanomaterials and systems frequently exhibit novel physical, chemical and biological behavior in living systems and environmental matrices as compared to the bulk scale. This program supports research that explores the interaction of nanomaterials in biological and environmental media.    
MiamiOH OARS

Environmental Chemical Sciences | NSF - National Science Foundation - 0 views

  •  
    The Environmental Chemical Sciences (ECS) Program supports basic research in chemistry that promotes the understanding of natural and anthropogenic chemical processes in our environment.  Projects supported by this program enable fundamentally new avenues of basic research and transformative technologies. The program is particularly interested in studying molecular phenomena on surfaces and interfaces in order to understand the inherently complex and heterogeneous environment.  Projects utilize advanced experimental, modeling and computational approaches, as well as developing new approaches.  Topics include studies of environmental surfaces and interfaces under laboratory conditions, the fundamental properties of water and water solutions important in environmental processes, dissolution, composition, origin and behavior of molecular scale systems under a variety of naturally occurring environmental conditions, chemical reactivity of synthetic nanoparticles and their molecular level interactions with the environment, and application of theoretical models and computational approaches to discover and predict environmental phenomena at the molecular scale.
  •  
    The Environmental Chemical Sciences (ECS) Program supports basic research in chemistry that promotes the understanding of natural and anthropogenic chemical processes in our environment.  Projects supported by this program enable fundamentally new avenues of basic research and transformative technologies. The program is particularly interested in studying molecular phenomena on surfaces and interfaces in order to understand the inherently complex and heterogeneous environment.  Projects utilize advanced experimental, modeling and computational approaches, as well as developing new approaches.  Topics include studies of environmental surfaces and interfaces under laboratory conditions, the fundamental properties of water and water solutions important in environmental processes, dissolution, composition, origin and behavior of molecular scale systems under a variety of naturally occurring environmental conditions, chemical reactivity of synthetic nanoparticles and their molecular level interactions with the environment, and application of theoretical models and computational approaches to discover and predict environmental phenomena at the molecular scale.
MiamiOH OARS

Energy, Power, Control, and Networks | NSF - National Science Foundation - 0 views

  •  
    Recent advances in communications, computation, and sensing technologies offer unprecedented opportunities for the design of cyber-physical systems with increased responsiveness, interconnectivity and automation. To meet new challenges and societal needs, the Energy, Power, Control and Networks (EPCN) Program invests in systems and control methods for analysis and design of cyber-physical systems to ensure stability, performance, robustness, and security. Topics of interest include modeling, optimization, learning, and control of networked multi-agent systems, higher-level decision making, and dynamic resource allocation as well as risk management in the presence of uncertainty, sub-system failures and stochastic disturbances. EPCN also invests in adaptive dynamic programing, brain-like networked architectures performing real-time learning, and neuromorphic engineering. EPCN supports innovative proposals dealing with systems research in such areas as energy, transportation, and nanotechnology. EPCN places emphasis on electric power systems, including generation, transmission, storage, and integration of renewables; power electronics and drives; battery management systems; hybrid and electric vehicles; and understanding of the interplay of power systems with associated regulatory and economic structures and with consumer behavior. Also of interest are interdependencies of power and energy systems with other critical infrastructures. Topics of interest also include systems analysis and design for energy scavenging and alternate energy technologies such as solar, wind, and hydrokinetic. The program also supports innovative tools and test beds, as well as curriculum development integrating research and education. In addition to single investigator projects, EPCN encourages cross-disciplinary proposals that benefit from active collaboration of researchers with complementary skills.
  •  
    Recent advances in communications, computation, and sensing technologies offer unprecedented opportunities for the design of cyber-physical systems with increased responsiveness, interconnectivity and automation. To meet new challenges and societal needs, the Energy, Power, Control and Networks (EPCN) Program invests in systems and control methods for analysis and design of cyber-physical systems to ensure stability, performance, robustness, and security. Topics of interest include modeling, optimization, learning, and control of networked multi-agent systems, higher-level decision making, and dynamic resource allocation as well as risk management in the presence of uncertainty, sub-system failures and stochastic disturbances. EPCN also invests in adaptive dynamic programing, brain-like networked architectures performing real-time learning, and neuromorphic engineering. EPCN supports innovative proposals dealing with systems research in such areas as energy, transportation, and nanotechnology. EPCN places emphasis on electric power systems, including generation, transmission, storage, and integration of renewables; power electronics and drives; battery management systems; hybrid and electric vehicles; and understanding of the interplay of power systems with associated regulatory and economic structures and with consumer behavior. Also of interest are interdependencies of power and energy systems with other critical infrastructures. Topics of interest also include systems analysis and design for energy scavenging and alternate energy technologies such as solar, wind, and hydrokinetic. The program also supports innovative tools and test beds, as well as curriculum development integrating research and education. In addition to single investigator projects, EPCN encourages cross-disciplinary proposals that benefit from active collaboration of researchers with complementary skills.
MiamiOH OARS

PA-10-106: Scientific Meetings for Creating Interdisciplinary Research Teams (R13) - 0 views

  •  
    This FOA encourages Research Conference Grant (R13) applications from institutions and organizations that propose to develop interdisciplinary research teams. Teams must include investigators from the social and/or behavioral sciences, and may include the life and/or physical sciences.  The goal is to broaden the scope of investigation into scientific problems, yield fresh and possibly unexpected insights, and increase the sophistication of theoretical, methodological, and analytical approaches by integrating the analytical strengths of two or more disparate scientific disciplines while addressing gaps in terminology, approach, and methodology.  This program will allow investigators from multiple disciplines to hold meetings in order to provide the foundation for developing interdisciplinary research projects.
MiamiOH OARS

RFA-HL-16-008: Short-Term Research Education Program to Increase Diversity in Health-Re... - 0 views

  •  
    The NIH Research Education Program (R25) supports research education activities in the mission areas of the NIH. The goal of this NHLBI R25 program is to support educational activities that enhance the diversity of the biomedical, behavioral, and clinical research workforce in the mission areas of importance to NHLBI. To accomplish the stated goal, this funding opportunity announcement encourages the development of creative educational activities with a primary focus on Research Experiences.
MiamiOH OARS

Grants.gov - Find Grant Opportunities - Opportunity Synopsis - 0 views

  •  
    The Particulate and Multiphase Processes program supports fundamental and applied research on phenomena governing particulate and multiphase processes, including flows of suspensions of particles, drops or bubbles, granular and granular-fluid flows, flow behavior of micro or nano-structured fluids, aerosol science and technology, and self- and directed-assembly processes involving particulates. Innovative research is sought that contributes to improving the basic understanding, design, predictability, efficiency, and control of particulate and multiphase processes with particular emphasis on: novel manufacturing techniques, multiphase systems of relevance to energy harvesting, multiphase transport in biological systems or biotechnology, and environmental sustainability.
MiamiOH OARS

Fluid Dynamics | NSF - National Science Foundation - 0 views

  •  
    The Fluid Dynamics program supports fundamental research on mechanisms and phenomena governing fluid flow from the molecular to the macroscopic scale.  Proposed research should contribute to basic understanding, thus enabling the better design, predictability, efficiency, and control of systems that involve fluids.  Encouraged are proposals that address behavior of new fluid materials and innovative uses of fluids in manufacturing, energy and the environment, materials development, biotechnology, nanotechnology, sensor development, clinical diagnostics and drug delivery. While the research should focus on fundamentals, a clear connection to potential applications with significant societal/technological impact should be outlined.
MiamiOH OARS

Support for Agenda Setting Conferences for the SciSIP Program - 0 views

  •  
    The purpose of this letter is to invite the submission of exceptionally creative conference proposals. The SciSIP program invites organizers and participants from all of the social, behavioral and economic sciences as well as those working in domain-specific applications such as chemistry, biology, physics, or nanotechnology.
MiamiOH OARS

Cellular and Biochemical Engineering | NSF - National Science Foundation - 0 views

  •  
    The Cellular and Biochemical Engineering (CBE) program supports fundamental engineering research that advances the understanding of cellular and biomolecular processes in engineering biology and eventually leads to the development of enabling technology for advanced biomanufacturing in support of the therapeutic cells, biochemical, biopharmaceutical and biotechnology industries.  A quantitative treatment of biological and engineering problems of biological processes is considered vital to successful research projects in the CBE program.  Fundamental to many research projects in this area is the understanding of how biomolecules, cells and cell populations interact in the biomanufacturing environment, and how those molecular-level interactions lead to changes in structure, function, and behavior.  The program encourages highly innovative and potentially transformative engineering research leading to novel bioprocessing and biomanufacturing approaches, and proposals that address emerging research areas and technologies that effectively integrate knowledge and practices from different disciplines while incorporating ongoing research into educational activities.
MiamiOH OARS

Biological and Environmental Interactions of Nanoscale Materials | NSF - National Scien... - 0 views

  •  
    The goal of the Biological and Environmental Interactions of Nanoscale Materials program is to support research to advance fundamental and quantitative understanding of the interactions of biological and environmental media with nanomaterials and nanosystems. Materials of interest include one- to three-dimensional nanostructures, heterogeneous nano-bio hybrid assemblies, and other nanoparticles. Such nanomaterials and systems frequently exhibit novel physical, chemical, and biological behavior in living systems and environmental matrices as compared to the bulk scale. This program supports research that explores the interaction of nanomaterials in biological and environmental media.    
MiamiOH OARS

nsf.gov - Funding - Chemical and Biological Separations - US National Science Foundatio... - 0 views

  •  
    The Chemical and Biological Separations (CBS) program supports fundamental research on novel methods and materials for separation processes.  These processes are central to the chemical, biochemical, materials, energy, and pharmaceutical industries.  A fundamental understanding of the interfacial, transport, and thermodynamic behavior of multiphase chemical systems as well as quantitative descriptions of processing characteristics in the process-oriented industries is critical for efficient resource management and effective environmental protection.  The program encourages proposals that address emerging research areas and technologies, have a high degree of interdisciplinary thought coupled with knowledge creation, and integrate education and research. Research topics OF PARTICULAR INTEREST in CBS include fundamental molecular-level work on: Nanostructured materials for separations Biorenewable resource separation processes Purification of drinking water Field (flow, magnetic, electrical) induced separations Separation of molecular constituents from blood The duration of unsolicited awards is generally one to three years.  The average annual award size for the program is $80,000.  Proposals requesting a substantially higher amount than this, without prior consultation with the Program Director, may be returned without review.  Small equipment proposals of less than $100,000 will also be considered and may be submitted during the annual submission window. 
MiamiOH OARS

nsf.gov - Funding - Particulate and Multiphase Processes - US National Science Foundati... - 0 views

  •  
    The Particulate and Multiphase Processes program supports fundamental and applied research on phenomena governing particulate and multiphase processes, including flows of suspensions of particles, drops or bubbles, granular and granular-fluid flows, flow behavior of micro or nano-structured fluids, aerosol science and technology, and self- and directed-assembly processes involving particulates.  Innovative research is sought that contributes to improving the basic understanding, design, predictability, efficiency, and control of particulate and multiphase processes with particular emphasis on: novel manufacturing techniques, multiphase systems of relevance to energy harvesting, multiphase transport in biological systems or biotechnology, and environmental sustainability.  Collaborative and interdisciplinary proposals are encouraged; proposals that include a combination of experimental and theoretical approaches are more likely to receive funding than solely experimentally oriented work.  Highly reviewed projects generally demonstrate a strong scientific basis together with clear practical applications.
1 - 20 of 41 Next › Last »
Showing 20 items per page