Skip to main content

Home/ OARS funding Materials Science/ Group items tagged environmental sustainability

Rss Feed Group items tagged

MiamiOH OARS

13th Annual P3 Awards: A National Student Design Competition for Sustainability Focusin... - 0 views

  •  
    The U.S. Environmental Protection Agency (EPA), as part of the P3-People, Prosperity and the Planet Award Program, is seeking applications proposing to research, develop, and design solutions to real world challenges involving the overall sustainability of human society. The P3 competition highlights the use of scientific principles in creating innovative projects focused on sustainability. The P3 Award program was developed to foster progress toward sustainability by achieving the mutual goals of improved quality of life, economic prosperity and protection of the planet -- people, prosperity, and the planet - the three pillars of sustainability. The EPA offers the P3 competition in order to respond to the technical needs of the world while moving towards the goal of sustainability. Please see the P3 website for more details about this program.
MiamiOH OARS

Dear Colleague Letter: FY 2017 Innovations at the Nexus of Food, Energy and Water Syste... - 0 views

  •  
    In 2010, NSF established the Science, Engineering, and Education for Sustainability (SEES)1 investment area to lay the research foundation for decision capabilities and technologies aimed at mitigating and adapting to environmental changes that threaten sustainability. Some SEES investments advanced a systems-based approach to understanding, predicting, and reacting to stress upon, and changes in, the linked natural, social, and built environments. In this context, the importance of understanding the interconnected and interdependent systems involving food, energy, and water (FEW) has emerged. The NSF aims to specifically focus on advancing knowledge of the nitrogen and phosphorus cycles; the production and use of fertilizers for food production; and the detection, separation, and reclamation/recycling of nitrogen- and phosphorus-containing species in and from complex aqueous environments.
  •  
    In 2010, NSF established the Science, Engineering, and Education for Sustainability (SEES)1 investment area to lay the research foundation for decision capabilities and technologies aimed at mitigating and adapting to environmental changes that threaten sustainability. Some SEES investments advanced a systems-based approach to understanding, predicting, and reacting to stress upon, and changes in, the linked natural, social, and built environments. In this context, the importance of understanding the interconnected and interdependent systems involving food, energy, and water (FEW) has emerged. The NSF aims to specifically focus on advancing knowledge of the nitrogen and phosphorus cycles; the production and use of fertilizers for food production; and the detection, separation, and reclamation/recycling of nitrogen- and phosphorus-containing species in and from complex aqueous environments.
MiamiOH OARS

Advancing Sustainable Materials Management - 0 views

  •  
    This notice solicits applications that accelerate substantial solutions or propose innovative ways of capturing, using, and reusing materials such as: (1) advancing the sustainable management of food (organics) through prevention, donation or recycling; (2) expanding, capturing and/or reusing glass cullet or the glass recycling infrastructure; (3) advancing recycling market development using clear marketing strategies for material reuse opportunities within the Southeast; and (4) advancing Sustainable Materials Management (SMM) in the built environment (including buildings, infrastructure, and resiliency). Priorities for this solicitation are economically-driven strategies to drive SMM of food, glass, recycling markets, and the built environment.
MiamiOH OARS

Pivot - 0 views

  •  
    Individual Warfighter protection against battlefield threats such as ballistics, enemy detection, chemical and biological agents, and IEDs is essential to the continued effectiveness of the fighting force. At the same time, protective materials (clothing/armor, etc.) must also be effective and ensure survival under extremes of environmental (temperature and humidity) conditions without significant sacrifices in Warfighter comfort. Current textile technologies require multiple components to be added to the Warfighter uniform in order to meet these threats. Development of novel multifunctional materials would have significant impact on Warfighter load, increasing their sustainability in the field. In addition to threat survivability, there is a strong interest in the new and growing field of "wearables." The wearables field is of interest insofar as it relates to the integration of electronic capabilities in to textile materials, combat clothing and combat field equipment worn by Warfighters.
MiamiOH OARS

Particulate and Multiphase Processes | NSF - National Science Foundation - 0 views

  •  
    The goal of the Particulate and Multiphase Processes (PMP) program is to support fundamental research on physico-chemical phenomena that govern particulate and multiphase systems, including flow of suspensions, drops and bubbles, granular and granular-fluid flows, behavior of micro- and nanostructured fluids, and self-assembly/directed-assembly processes that involve particulates. The program encourages transformative research to improve our basic understanding of particulate and multiphase processes with emphasis on research that demonstrates how particle-scale phenomena affect the behavior and dynamics of larger-scale systems. Although proposed research should focus on fundamentals, a clear vision is required that anticipates how results could benefit important applications in advanced manufacturing, energy harvesting, transport in biological systems, biotechnology, or environmental sustainability. Collaborative and interdisciplinary proposals are encouraged, especially those that involve a combination of experiment with theory or modeling.
MiamiOH OARS

nsf.gov - Funding - Solid State and Materials Chemistry - US National Science Foundatio... - 0 views

  •  
    This multidisciplinary program supports basic research in solid state and materials chemistry comprising the elucidation of the atomic and molecular basis for material development and properties in the solid state from the nanoscale to the bulk.  General areas of interest include but are not limited to innovative approaches to design, synthesis, bulk crystal and/or film growth, and characterization of novel organic, inorganic, and hybrid materials, as well as liquid crystal materials and multi-component material systems exhibiting new phenomena and/or providing new scientific insights into structure/composition/property relationships in the solid state.  Relevant topics include original material design principles, new approaches to assembly or crystalline material growth, characterization of new material phenomena or superior behavior, investigations of surface and interfacial effects on material system structures and properties, and unraveling the relationships between structure/composition (e.g. self- or program-assembled materials, crystalline material growth, and nanostructured material systems) and properties (e.g. charge, ionic, thermal or spin transport, exciton diffusion, chemical reactivity and selectivity, etc.).  Development of new organic solid state materials, environmentally-safe and sustainable materials, and fundamental studies of novel material and material systems for efficient energy harvesting, conversion and storage are encouraged. 
MiamiOH OARS

nsf.gov - Funding - Metals and Metallic Nanostructures - US National Science Foundation... - 0 views

  •  
    he Metals and Metallic Nanostructures (MMN) Program supports fundamental research and education on the relationships between processing, structure and properties of metals and their alloys. The program focuses on experimental research while strongly encouraging the synergistic use of theory and computational materials science. Structure spanning atomic, nanometer, micrometer and larger length scales controls properties and connects these with processing.   The program emphasizes the role of structure across all these length scales, including structural imperfections such as vacancies, solutes, dislocations, boundaries and interfaces. Research should advance fundamental materials science that will enable the design and synthesis of metallic materials to optimize superior behaviors and enable the prediction of properties and performance. The program aims to advance the materials science of metals and alloys through transformative research on a diverse array of topics, including, but not limited to, phase transformations; equilibrium, non-equilibrium and far-from equilibrium structures; thermodynamics; kinetics; diffusion; interfaces; oxidation; performance in extreme environments; recyclability; magnetic behavior; thermal transport; plastic flow; and similar phenomena. Yield strength, flow stress, creep, fatigue and fracture are structural-materials examples. Magnetic energy density, shape-memory strain and thermoelectric efficiency are examples for functional materials.  Broader impacts are expected in education and other areas, such as workforce development, sustainability, environmental impact or critical infrastructure needs.  High-quality proposals that integrate research, education, and other broader impacts are invited.
MiamiOH OARS

nsf.gov - Funding - Solid State and Materials Chemistry - US National Science Foundatio... - 0 views

  •  
    This multidisciplinary program supports basic research in solid state and materials chemistry comprising the elucidation of the atomic and molecular basis for material development and properties in the solid state from the nanoscale to the bulk.  General areas of interest include but are not limited to innovative approaches to design, synthesis, bulk crystal and/or film growth, and characterization of novel organic, inorganic, and hybrid materials, as well as liquid crystal materials and multi-component material systems exhibiting new phenomena and/or providing new scientific insights into structure/composition/property relationships in the solid state.  Relevant topics include original material design principles, new approaches to assembly or crystalline material growth, characterization of new material phenomena or superior behavior, investigations of surface and interfacial effects on material system structures and properties, and unraveling the relationships between structure/composition (e.g. self- or program-assembled materials, crystalline material growth, and nanostructured material systems) and properties (e.g. charge, ionic, thermal or spin transport, exciton diffusion, chemical reactivity and selectivity, etc.).  Development of new organic solid state materials, environmentally-safe and sustainable materials, and fundamental studies of novel material and material systems for efficient energy harvesting, conversion and storage are encouraged.  The SSMC program works closely with other programs within the Division of Materials Research (DMR) and in the Mathematical and Physical Sciences (MPS) and Engineering (ENG) directorates to accommodate the multidisciplinary nature of proposal submissions.
MiamiOH OARS

How to Apply for a P3 Grant | People, Prosperity and the Planet (P3) Student Design Com... - 0 views

  •  
    Through this EPA program, college students can benefit people, promote prosperity and protect the planet by designing environmental solutions that move us towards a sustainable future. EPA considers projects that address challenges from a wide range of categories including water, energy, agriculture, built environment, and materials and chemicals. These can be challenges found in the developed or developing world. The P3 Award competition is a two-phase team contest. For the first phase, interdisciplinary student teams compete for $15,000 grants. Recipients use the money to research and develop their design projects during the academic year. The final projects include a Phase I project report and a Phase II proposal. In the spring, all teams submit their reports and proposals. Scores from the reports, proposals and the design presentations are combined into a final overall score for each P3 team. Based on these scores, a panel of expert judges recommend to EPA which teams should receive the EPA P3 Award and the opportunity for Phase II funding. Given to the best student designs, this is an award and opportunity for grant funding up to $75,000 to further the project design, implement it in the field, and move it to the marketplace.
MiamiOH OARS

Future Manufacturing - 0 views

  •  
    Asstated intheStrategy for American Leadership in Advanced Manufacturing,worldwide competition in manufacturing has been dominated in recent decades by the maturation, commoditization, and widespread application of computation in production equipment and logistics, effectively leveling the global technological playing field and putting a premium on low wages and incremental technical improvements.[1] The next generation of technological competition in manufacturing will be dictated by inventions of new materials, chemicals, devices, systems, processes, machines, design and work methods, social structures and business practices. Fundamental research will be required in robotics, artificial intelligence, biotechnology, materials science, sustainability, education and public policy, and workforce development to take the lead in this global competition. The research supported under this solicitationwillenhance U.S. leadership in manufacturing far into the future by providing new capabilitiesfor established companies andentrepreneurs,improving ourhealth and quality of life,andreducingthe impact of manufacturing industries on the environment.
1 - 10 of 10
Showing 20 items per page