Skip to main content

Home/ OARS funding Engineering/ Group items tagged chemistry

Rss Feed Group items tagged

MiamiOH OARS

Macromolecular, Supramolecular and Nanochemistry | NSF - National Science Foundation - 0 views

  •  
    The Macromolecular, Supramolecular and Nanochemistry (MSN) Program focuses on basic research that addresses fundamental questions regarding the chemistry of macromolecular, supramolecular and nanoscopic species and other organized structures and that advances chemistry knowledge in these areas.  Research of interest to this program will explore novel chemistry concepts in the following topics: (1) The development of novel synthetic approaches to clusters, nanoparticles, polymers, and supramolecular architectures; innovative surface functionalization methodologies; surface monolayer chemistry; and template-directed synthesis.  (2) The study of molecular-scale interactions that give rise to macromolecular, supramolecular or nanoparticulate self-assembly into discrete structures; and the study of chemical forces and dynamics that are responsible for spatial organization in discrete organic, inorganic, or hybrid systems (excluding extended solids).  (3) Investigations that utilize advanced experimental or computational methods to understand or to predict the chemical structure, unique chemical and physicochemical properties, and chemical reactivities that result from the organized or nanoscopic structures.  Research in which theory advances experiment and experiment advances theory synergistically is of special interest.
  •  
    The Macromolecular, Supramolecular and Nanochemistry (MSN) Program focuses on basic research that addresses fundamental questions regarding the chemistry of macromolecular, supramolecular and nanoscopic species and other organized structures and that advances chemistry knowledge in these areas.  Research of interest to this program will explore novel chemistry concepts in the following topics: (1) The development of novel synthetic approaches to clusters, nanoparticles, polymers, and supramolecular architectures; innovative surface functionalization methodologies; surface monolayer chemistry; and template-directed synthesis.  (2) The study of molecular-scale interactions that give rise to macromolecular, supramolecular or nanoparticulate self-assembly into discrete structures; and the study of chemical forces and dynamics that are responsible for spatial organization in discrete organic, inorganic, or hybrid systems (excluding extended solids).  (3) Investigations that utilize advanced experimental or computational methods to understand or to predict the chemical structure, unique chemical and physicochemical properties, and chemical reactivities that result from the organized or nanoscopic structures.  Research in which theory advances experiment and experiment advances theory synergistically is of special interest.
MiamiOH OARS

Chemistry of Life Processes | NSF - National Science Foundation - 0 views

  •  
    The Chemistry of Life Processes (CLP) Program supports fundamental studies of biomolecules or biological systems at the interface of chemistry and biology. The primary contributions and innovations of the proposed research focus on the chemical aspects of the project. The Program supports studies that investigate how molecular structure, dynamics and interactions, as well as reaction thermodynamics and mechanisms are integrated with the chemistry performed by, or intrinsic to, the biological systems.
  •  
    The Chemistry of Life Processes (CLP) Program supports fundamental studies of biomolecules or biological systems at the interface of chemistry and biology. The primary contributions and innovations of the proposed research focus on the chemical aspects of the project. The Program supports studies that investigate how molecular structure, dynamics and interactions, as well as reaction thermodynamics and mechanisms are integrated with the chemistry performed by, or intrinsic to, the biological systems.
MiamiOH OARS

Centers for Chemical Innovation (CCI) (nsf18555) | NSF - National Science Foundation - 0 views

  •  
    The Centers for Chemical Innovation (CCI) Program supports research centers focused on major, long-term fundamental chemical research challenges. CCIs that address these challenges will produce transformative research, lead to innovation, and attract broad scientific and public interest. CCIs are agile structures that can respond rapidly to emerging opportunities through enhanced collaborations. CCIs integrate research, innovation, education, broadening participation, and informal science communication. The FY 2019 Phase I CCI competition is open to projects in all fields supported by the Division of Chemistry, and must have scientific focus and the potential for transformative impact in chemistry. NSF Chemistry particularly encourages fundamental chemistry projects related to one or more of NSF's 10 Big Ideas. The CCI Program is a two-phase program. Both phases are described in this solicitation. Phase I CCIs receive significant resources to develop the science, management and broader impacts of a major research center before requesting Phase II funding. Satisfactory progress in Phase I is required for Phase II applications; Phase I proposals funded in FY 2019 will seek Phase II funding in FY 2022. This solicitation also covers the renewal application of the Phase II CCI initiated in FY 2014: the Center for Sustainable Polymers, led by the University of Minnesota.
MiamiOH OARS

Geobiology and Low-Temperature Geochemistry (nsf15559) - 0 views

  •  
    The Geobiology and Low-Temperature Geochemistry Program focuses on geochemical processes in terrestrial Earth's surface environmental systems, as well as the interaction of geochemical and biological processes. The program supports field, laboratory, theoretical, and modeling studies of these processes and related mechanisms at all spatial and temporal scales. Studies may address: 1) inorganic and/or organic geochemical processes occurring at or near the Earth's surface now and in the past, and across the broad spectrum of interfaces ranging in scale from planetary and regional to mineral-surface and supramolecular; 2) the role of life in the transformation and evolution of Earth's geochemical cycles; 3) surficial chemical and biogeochemical systems and cycles, including their modification through environmental change and human activities; 4) low-temperature aqueous geochemical processes; 5) mineralogy and chemistry of earth materials; 6) geomicrobiology and biomineralization processes; and 7) medical mineralogy and geochemistry. The Program encourages research that focuses on geochemical processes as they are coupled with physical and biological processes in the critical zone. The Program also supports work on the development of tools, methods, and models for the advancement of low-temperature geochemistry and geobiology. The Geobiology and Low-Temperature Geochemistry Program is interested in supporting transformational and cutting-edge research. The Program is highly interdisciplinary and interfaces with other programs within the Earth Surface Section and with programs in biology, chemistry and engineering.
MiamiOH OARS

Semiconductor Synthetic Biology for Information Storage and Retrieval | NSF - National ... - 0 views

  •  
    The National Science Foundation (NSF), through its Divisions of Electrical, Communications and Cyber Systems (ECCS), Computing and Communication Foundations (CCF), Molecular and Cellular Biosciences (MCB), and Materials Research (DMR) announces a follow-up solicitation on the Semiconductor Synthetic Biology for Information Storage and Retrieval Program (SemiSynBio-II).  Future ultra-low energy storage-based computing systems can be built on principles derived from organic systems that are at the intersection of physics, chemistry, biology, computer science and engineering.  Next-generation information storage technologies can be envisioned that are driven by biological principles and use biomaterials in the fabrication of devices and systems that can store data for more than 100 years with storage capacity 1,000 times more than current storage technologies.  Such a research effort can have a significant impact on the future of information storage and retrieval technologies. This focused solicitation seeks high-risk/high-return interdisciplinary research on novel concepts and enabling technologies that will address the fundamental scientific issues and technological challenges associated with the underpinnings of synthetic biology integrated with semiconductor technology. This research will foster interactions among various disciplines including biology, physics, chemistry, materials science, computer science and engineering that will enable in heretofore unanticipated breakthroughs.
MiamiOH OARS

Chemical Measurement and Imaging | NSF - National Science Foundation - 0 views

  •  
    The Chemical Measurement and Imaging Program supports research focusing on chemically-relevant measurement science and chemical imaging, targeting both improved understanding of new and existing methods and development of innovative approaches and instruments.  Research areas include but are not limited to sampling and separation science; electroanalytical chemistry; spectrometry; and frequency- and time-domain spectroscopy.  Development of new chemical imaging and measurement tools probing chemical properties and processes are supported.  Innovations enabling the monitoring and imaging of chemical and electronic processes across a wide range of time and length scales are also relevant.  New approaches to data analysis and interpretation (including chemometrics) are encouraged.  Proposals addressing established techniques must seek improved understanding and/or innovative approaches to substantially broaden applicability.  Sensor-related proposals should address new approaches to chemical sensing, with prospects for broad utility and significant enhancement of current capabilities.
  •  
    The Chemical Measurement and Imaging Program supports research focusing on chemically-relevant measurement science and chemical imaging, targeting both improved understanding of new and existing methods and development of innovative approaches and instruments.  Research areas include but are not limited to sampling and separation science; electroanalytical chemistry; spectrometry; and frequency- and time-domain spectroscopy.  Development of new chemical imaging and measurement tools probing chemical properties and processes are supported.  Innovations enabling the monitoring and imaging of chemical and electronic processes across a wide range of time and length scales are also relevant.  New approaches to data analysis and interpretation (including chemometrics) are encouraged.  Proposals addressing established techniques must seek improved understanding and/or innovative approaches to substantially broaden applicability.  Sensor-related proposals should address new approaches to chemical sensing, with prospects for broad utility and significant enhancement of current capabilities.
MiamiOH OARS

BRAIN Initiative: Research Career Enhancement Award for Investigators to Build Skills i... - 0 views

  •  
    This funding opportunity announcement (FOA) invites applications for mentored career enhancement (K18) awards in research areas that are highly relevant to the NIH BRAIN Initiative. This career enhancement program will support development of research capability for the BRAIN Initiative, with specific emphasis on cross-training independent investigators in a substantively different area of neuroscience, neuroethics, or in a quantitative and physical discipline (e.g., physics, chemistry, engineering, computer science, mathematics); and vice versa, cross-training independent investigators trained in a quantitative or physical discipline proposing to gain in-depth training in a high-priority area of neuroscience. The research project conducted under this K18 should enhance the candidate's ability to significantly contribute to or lead projects that investigate questions central to the goals of the BRAIN Initiative. Eligible candidates are independent investigators at any faculty rank or level.
  •  
    This funding opportunity announcement (FOA) invites applications for mentored career enhancement (K18) awards in research areas that are highly relevant to the NIH BRAIN Initiative. This career enhancement program will support development of research capability for the BRAIN Initiative, with specific emphasis on cross-training independent investigators in a substantively different area of neuroscience, neuroethics, or in a quantitative and physical discipline (e.g., physics, chemistry, engineering, computer science, mathematics); and vice versa, cross-training independent investigators trained in a quantitative or physical discipline proposing to gain in-depth training in a high-priority area of neuroscience. The research project conducted under this K18 should enhance the candidate's ability to significantly contribute to or lead projects that investigate questions central to the goals of the BRAIN Initiative. Eligible candidates are independent investigators at any faculty rank or level.
MiamiOH OARS

Semiconductor Synthetic Biology for Information Storage and Retrieval ... - 0 views

  •  
    The National Science Foundation (NSF), through its Divisions of Electrical, Communications and Cyber Systems (ECCS), Computing and Communication Foundations (CCF), Molecular and Cellular Biosciences (MCB), and Materials Research (DMR) announces a follow-up solicitation on the Semiconductor Synthetic Biology for Information Storage and Retrieval Program (SemiSynBio-II). Future ultra-low energy storage-based computing systems can be built on principles derived from organic systems that are at the intersection of physics, chemistry, biology, computer science and engineering. Next-generation information storage technologies can be envisioned that are driven by biological principles and use biomaterials in the fabrication of devices and systems that can store data for more than 100 years with storage capacity 1,000 times more than current storage technologies. Such a research effort can have a significant impact on the future of information storage and retrieval technologies. This focused solicitation seeks high-risk/high-return interdisciplinary research on novel concepts and enabling technologies that will address the fundamental scientific issues and technological challenges associated with the underpinnings of synthetic biology integrated with semiconductor technology. This research will foster interactions among various disciplines including biology, physics, chemistry, materials science, computer science and engineering that will enable in heretofore unanticipated breakthroughs.
MiamiOH OARS

Semiconductor Synthetic Biology for Information Processing and Storage Technologies (Se... - 0 views

  •  
    Future ultra-low-energy computing, storage and signal-processing systems can be built on principles derived from organic systems that are at the intersection of chemistry, biology, and engineering. New information technologies can be envisioned that are based on biological principles and that use biomaterials in the fabrication of devices and components; it is anticipated that these information technologies could enable stored data to be retained for more than 100 years and storage capacity to be 1,000 times greater than current capabilities. These could also facilitate compact computers that will operate with substantially lower power than today's computers. Research in support of these goals can have a significant impact on advanced information processing and storage technologies. This focused solicitation seeks high-risk/high-return interdisciplinary research on novel concepts and enabling technologies that will address the scientific issues and technological challenges associated with the underpinnings of synthetic biology integrated with semiconductor technology. This research will foster interactions among various disciplines including biology, engineering, physics, chemistry, materials science, computer science, and information science that will enable heretofore-unanticipated breakthroughs as well as meet educational goals.
MiamiOH OARS

Semiconductor Synthetic Biology for Information Storage and Retrieval - 0 views

  •  
    The National Science Foundation (NSF), through its Divisions of Electrical, Communications and Cyber Systems (ECCS), Computing and Communication Foundations (CCF), Molecular and Cellular Biosciences (MCB), and Materials Research (DMR) announces a follow-up solicitation on the Semiconductor Synthetic Biology for Information Storage and Retrieval Program (SemiSynBio-II). Future ultra-low energy storage-based computing systems can be built on principles derived from organic systems that are at the intersection of physics, chemistry, biology, computer science and engineering. Next-generation information storage technologies can be envisioned that are driven by biological principles and use biomaterials in the fabrication of devices and systems that can store data for more than 100 years with storage capacity 1,000 times more than current storage technologies. Such a research effort can have a significant impact on the future of information storage and retrieval technologies. This focused solicitation seeks high-risk/high-return interdisciplinary research on novel concepts and enabling technologies that will address the fundamental scientific issues and technological challenges associated with the underpinnings of synthetic biology integrated with semiconductor technology. This research will foster interactions among various disciplines including biology, physics, chemistry, materials science, computer science and engineering that will enable in heretofore unanticipated breakthroughs.
MiamiOH OARS

Research Grants | Human Frontier Science Program - 0 views

  •  
    Emphasis is placed on novel collaborations that bring together scientists preferably from different disciplines (e.g. from chemistry, physics, computer science, engineering) to focus on problems in the life sciences. The research teams must be international. The principal applicant must be from one of the eligible countries. However, other participating scientists and laboratories may be situated anywhere in the world.
MiamiOH OARS

Pathway Awards - DiabetesPro - American Diabetes Association - 0 views

  •  
    Pathway supports innovative basic, clinical, translational, epidemiological, behavioral, or health services research relevant to any diabetes type, diabetes-related disease state, or diabetes complication. The Association seeks exceptional candidates from a broad range of disciplines, including medicine, biology, chemistry, computing, physics, mathematics and engineering.
MiamiOH OARS

Senior Scientist Mentor Program - 0 views

  •  
    The Camille and Henry Dreyfus Foundation supports emeritus faculty who maintain active research programs with undergraduates in the chemical sciences. The Senior Scientist Mentor Program provides an award of $20,000 over two years for undergraduate stipends and modest research support. Eligibility The Senior Scientist Mentor Program is open to all academic institutions in the States, Districts, and Territories of the United States of America that grant a bachelor's degree or higher in the chemical sciences, including biochemistry, materials chemistry, and chemical engineering. Faculty with emeritus status on or before October 2013, and who maintain active research programs in the chemical sciences, may apply to the program. More than one application per department or institution is permitted. Selection Successful applicants are expected to be closely engaged in a mentoring relationship with undergraduate students. The evaluation will be based on both an assessment of the research proposed and the plans for undergraduate participation in the research. An applicant's history of mentoring undergraduates is favorably viewed. Current Senior Scientist Mentors.
MiamiOH OARS

Background | Burroughs Wellcome Fund - 0 views

  •  
    Scientific advances such as genomics, quantitative structural biology, imaging techniques, and modeling of complex systems have created opportunities for exciting research careers at the interface between the physical/computational sciences and the biological sciences. Tackling key problems in biology will require scientists trained in areas such as chemistry, physics, applied mathematics, computer science, and engineering. Recognizing the vital role such cross-trained scientists will play in furthering biomedical science, the Burroughs Wellcome Fund has developed the Career Awards at the Scientific Interface. These grants are intended to foster the early career development of researchers who have transitioned or are transitioning from undergraduate and/or graduate work in the physical/mathematical/computational sciences or engineering into postdoctoral work in the biological sciences, and who are dedicated to pursuing a career in academic research. Candidates are expected to draw from their training in a scientific field other than biology to propose innovative approaches to answer important questions in the biological sciences.
MiamiOH OARS

NSF Mechanics of Materials - 0 views

  •  
    The Mechanics of Materials program supports fundamental research on the behavior of solid materials and respective devices under external actions.?? A diverse and interdisciplinary spectrum of research is supported with emphasis placed on fundamental understanding that i) advances theory, experimental, and/or computational methods in Mechanics of Materials, and/or ii) uses contemporary Mechanics of Materials methods to address modern challenges in material and device mechanics and physics. Proposed research can focus on existing or emerging material systems across time and length scales. Intellectual merit typically includes advances in fundamental understanding of deformation, fracture, fatigue, and contact through constitutive modeling, multiscale and multiphysics analysis, computational methods, or experimental techniques.??Recent interests comprise, but are not limited to:?? contemporary materials including multiphase materials and material systems, soft materials, active materials, low-dimensional materials, phononic/elastic metamaterials, friction, wear;??multiphysics methods, mechanics at the nano, meso and microscale and multiscale integration thereof, as well as approaches incorporating fundamental understanding of physics and chemistry into the continuum-level understanding of the response characteristics of materials and material systems.
MiamiOH OARS

Dreyfus Foundation Teacher-Scholar Awards in Chemical Sciences | RFPs | PND - 0 views

  •  
    The New York City-based Camille & Henry Dreyfus Foundation is accepting nominations from academic institutions for its Henry Dreyfus Teacher-Scholar Awards Program. The annual program supports the research and teaching careers of talented young faculty in the chemical sciences at undergraduate institutions. Based on institutional nominations, the program provides discretionary funding to faculty at an early stage in their careers. The award is based on accomplishment in scholarly research with undergraduates, as well as a compelling commitment to teaching, and provides an unrestricted research grant of $60,000. The program is open to academic institutions in the states, districts, and territories of the United States that grant a bachelor's or master's degree in the chemical sciences, including biochemistry, materials chemistry, and chemical engineering. Nominees must hold a full-time tenure-track academic appointment; be after the fourth and not after the twelfth years of their independent academic careers; and be engaged in research and teaching primarily with undergraduates.
MiamiOH OARS

Condensed Matter and Materials Theory (CMMT) | NSF - National Science Foundation - 0 views

  •  
    CMMT supports theoretical and computational materials research in the topical areas represented in DMR's Topical Materials Research Programs (these are also variously known as Individual Investigator Award (IIA) Programs, or Core Programs, or Disciplinary Programs), which include: Condensed Matter Physics (CMP), Biomaterials (BMAT), Ceramics (CER), Electronic and Photonic Materials (EPM), Metals and Metallic Nanostructures (MMN), Polymers (POL), and Solid State and Materials Chemistry (SSMC). The CMMT program supports fundamental research that advances conceptual understanding of hard and soft materials, and materials-related phenomena; the development of associated analytical, computational, and data-centric techniques; and predictive materials-specific theory, simulation, and modeling for materials research.Research may encompass the advance of new paradigms in materials research, including emerging data-centric approaches utilizing data-analytics or machine learning. Computational efforts span from the level of workstations to advanced and high-performance scientific computing. Emphasis is on approaches that begin at the smallest appropriate length scale, such as electronic, atomic, molecular, nano-, micro-, and mesoscale, required to yield fundamental insight into material properties, processes, and behavior, to predict new materials and states of matter, and to reveal new materials phenomena. Approaches that span multiple scales of length and time may be required to advance fundamental understanding of materials properties and phenomena, particularly for polymeric materials and soft matter.
MiamiOH OARS

Funding | Human Frontier Science Program - 0 views

  •  
    The HFSP supports novel, innovative and interdisciplinary basic research focused on the complex mechanisms of living organisms; topics range from molecular and cellular approaches to systems and cognitive neuroscience and the interactions between organisms. A clear emphasis is placed on novel collaborations that bring biologists together with scientists from fields such as physics, mathematics, chemistry, computer science and engineering to focus on problems at the frontier of the life sciences.
MiamiOH OARS

Upgrading Carbon Derived From Methane Pyrolysis - 0 views

  •  
    Request for Information - Upgrading Carbon Derived from Methane Pyrolysis This is a Request for Information (RFI) only. This RFI is not accepting application for financial assistance. The purpose of this RFI is solely to solicit input for ARPA-E consideration to inform the possible formulation of future programs. The Advanced Research Projects Agency -Energy (ARPA-E) in the US Department of Energy is seeking information concerning technologies to produce hydrogen and elemental carbon from the thermal decomposition of methane (also known as methane pyrolysis, methane cracking, or methane splitting). Recognizing that the value of the carbon product would be a key factor in the economic feasibility of such processes, ARPA-E seeks input from experts in the fields of materials science (including advanced carbon fiber synthesis), process engineering, methane pyrolysis, plasma chemistry, and chemical engineering regarding potential mechanisms for the bulk conversion of carbon materials, specifically from less valuable forms (e.g. amorphous carbon) or mixtures, to more valuable single allotropes or controlled mixtures of high-value carbon structures. Consistent with the agency's mission, ARPA-E is seeking insights on clearly disruptive, novel technologies for such conversions, early in the R&D cycle, and not integration strategies for existing technologies. The information you provide may be used by ARPA-E in support of program planning.
MiamiOH OARS

Signals in the Soil (SitS) (nsf20548) | NSF - National Science Foundation - 0 views

  •  
    The National Science Foundation (NSF) Directorates for Engineering (ENG) and Geosciences (GEO), the Divisions of Integrative Organismal Systems (IOS) and Environmental Biology (DEB), in the Directorate for Biological Sciences (BIO), the Division of Computer and Network Systems in the Directorate Computer and Information Science and Engineering (CISE/CNS), and the Division of Chemistry (CHE) in the Directorate for Mathematical and Physical Sciences, in collaboration with the US Department of Agriculture National Institute of Food and Agriculture (USDA NIFA) encourage convergent research that transforms existing capabilities in understanding dynamic soil processes, including soil formation, through advances in sensor systems and modeling. The Signals in the Soil (SitS) program fosters collaboration among the two partner agencies and the researchers they support by combining resources and funding for the most innovative and high-impact projects that address their respective missions. To make transformative advances in our understanding of soils, multiple disciplines must converge to produce environmentally-benign novel sensing systems with multiple modalities that can adapt to different environments and collect and transmit data for a wide range of biological, chemical, and physical parameters. Effective integration of sensor data will be key for achieving a better understanding of signaling interactions among plants, animals, microbes, the soil matrix, and aqueous and gaseous components. New sensor networks have the potential to inform models in novel ways, to radically change how data is obtained from various natural and managed (both urban and rural) ecosystems, and to better inform the communities that directly rely on soils for sustenance and livelihood.
1 - 20 of 247 Next › Last »
Showing 20 items per page