Skip to main content

Home/ OARS funding Engineering/ Group items tagged Physics

Rss Feed Group items tagged

MiamiOH OARS

Condensed Matter Physics | NSF - National Science Foundation - 0 views

  •  
    The Condensed Matter Physics program supports experimental, as well as combined experiment and theory projects investigating the fundamental physics behind phenomena exhibited by condensed matter systems.  Representative research areas in such systems include: 1) phenomena at the nano- to macro-scale including: transport, magnetic, and optical phenomena; classical and quantum phase transitions; localization; electronic, magnetic, and lattice structure or excitations; superconductivity; and nonlinear dynamics. 2) low-temperature physics: quantum fluids and solids; 1D & 2D electron systems. 3) soft condensed matter: partially ordered fluids, granular and colloid physics, and 4) understanding the fundamental physics of new states of matter as well as the physical behavior of condensed matter under extreme conditions e.g., low temperatures, high pressures, and high magnetic fields.  Questions of current interest that span these research areas are:  How and why do complex macroscopic phenomena emerge from simple interacting microscopic constituents?  What new physics occurs far from equilibrium and why?  What is the physics behind the behavior of matter confined to the nanoscale in one or more dimensions?  What is the physics of spin systems and quantum states of matter that could lead to their coherent manipulation and control?
  •  
    The Condensed Matter Physics program supports experimental, as well as combined experiment and theory projects investigating the fundamental physics behind phenomena exhibited by condensed matter systems.  Representative research areas in such systems include: 1) phenomena at the nano- to macro-scale including: transport, magnetic, and optical phenomena; classical and quantum phase transitions; localization; electronic, magnetic, and lattice structure or excitations; superconductivity; and nonlinear dynamics. 2) low-temperature physics: quantum fluids and solids; 1D & 2D electron systems. 3) soft condensed matter: partially ordered fluids, granular and colloid physics, and 4) understanding the fundamental physics of new states of matter as well as the physical behavior of condensed matter under extreme conditions e.g., low temperatures, high pressures, and high magnetic fields.  Questions of current interest that span these research areas are:  How and why do complex macroscopic phenomena emerge from simple interacting microscopic constituents?  What new physics occurs far from equilibrium and why?  What is the physics behind the behavior of matter confined to the nanoscale in one or more dimensions?  What is the physics of spin systems and quantum states of matter that could lead to their coherent manipulation and control?
MiamiOH OARS

Division of Physics: Investigator-Initiated Research Projects - 0 views

  •  
    The Division of Physics (PHY) supports physics research and education in the nation's colleges and universities across a broad range of physics disciplines that span scales of space and time from the largest to the smallest and the oldest to the youngest.  The Division is comprised of disciplinary programs covering experimental and theoretical research in the following major subfields of physics: Accelerator Science; Atomic, Molecular, Optical and Plasma Physics; Computational Physics; Elementary Particle Physics; Gravitational Physics; Nuclear Physics; Particle Astrophysics; Physics of Living Systems; Quantum Information Science; Education and Interdisciplinary Research.
MiamiOH OARS

Use of the NASA Physical Sciences Informatics System - Appendix D - 0 views

  •  
    This National Aeronautics and Space Administration (NASA) Research Announcement (NRA) solicits ground-based research proposals from established researchers and graduate students to generate new scientific insights by utilizing experimental data residing in NASA's Physical Sciences Informatics (PSI) system (http://psi.nasa.gov), an online database of completed physical science reduced-gravity flight experiments conducted on the International Space Station (ISS), Space Shuttle flights, and Free-flyers, or from related ground-based studies. The solicitation (NNH17ZTT001N-17PSI-D), entitled "Use of the NASA Physical Sciences Informatics System - Appendix D," will be available on or about September 15, 2017. Upon release, the solicitation will be found via the following steps: 1. Open the NSPIRES homepage at http://nspires.nasaprs.com/ 2. Select "Solicitations" 3. Select "Open Solicitations" 4. Select "Use of the NASA Physical Sciences Informatics System NNH17ZTT001N" 5. Select List of Open Program Elements 6. Select "Use of the NASA Physical Sciences Informatics System - Appendix D" 7. Select "Appendix D NNH17ZTT001N-17PSI-D" under Announcement Documents. NASA plans to host a proposers' conference via WebEx shortly after the release of the Appendix to provide more information and to answer questions about the NRA and the PSI system. NASA's Physical Sciences Research Program conducts fundamental and applied physical sciences research, with the objective of enabling exploration and pioneering scientific discovery.
MiamiOH OARS

National Science Foundation Division of Physics: Investigator-Initiated Research Projec... - 0 views

  •  
    The Physics Division, through the Physics of Living Systems program, accepts and reviews investigator-initiated proposals on the interdisciplinary topic of theoretical physics in cancer biology. Proposals may involve joint efforts between investigators from theoretical physics and researchers from the biomedical community, although the focus of the project must be on the role that physics plays in the effort.
MiamiOH OARS

Integrative Activities in Physics | NSF - National Science Foundation - 0 views

  •  
    Supports activities in conjunction with NSF-wide programs such as Faculty Early Career Development (CAREER), Research Experiences for Undergraduates (REU), and programs aimed at women, minorities, and persons with disabilities. Further information about all of these programs and activities is available in the Crosscutting Investment Strategies section of the NSF Guide to Programs. The program also supports activities that seek to improve the education and training of physics students (both undergraduate and graduate), such as curriculum development or physics education research directed towards upper-level or graduate physics courses, and activities that are not included in specific programs elsewhere within NSF. The program supports research at the interface between physics and other disciplines and extending to emerging areas. Broadening activities related to research at the interface with other fields, possibly not normally associated with physics, also may be considered.
MiamiOH OARS

Prize for a Faculty Member for Research in an Undergraduate Institution - 0 views

  •  
    To honor a physicist whose research in an undergraduate setting has achieved wide recognition and contributed significantly to physics and who has contributed substantially to the professional development of undergraduate physics students. The prize consists of a $5,000 stipend to the prize recipient and a separate $5,000 unrestricted grant for the research to the prize recipient's institution. An additional allowance will be provided for travel expenses to the APS meeting at which the prize ceremony will take place and a certificate citing the contributions by the recipient. The prize is presented annually. The prize was established in 1984 by a grant from the Research Corporation for Science Advancement, a private foundation for the advancement of science and technology. The prize will be given to a physics faculty member at an undergraduate institution. The recipient will have been recognized as contributing substantially to physics research and providing inspirational guidance and encouragement of undergraduate students participating in this research. A nominee must be from the faculty of a predominantly undergraduate institution in the United States. The nominee's department may offer a program leading to a master's degree but shall not have a doctoral program in physics. Nominations are active for three years.
MiamiOH OARS

NSF/DOE Partnership in Basic Plasma Science and Engineering (nsf19596) | NSF - National... - 0 views

  •  
    Plasma Physics is a study of matter and physical systems whose intrinsic properties are governed by collective interactions of large ensembles of free charged particles. 99.9% of the visible Universe is thought to consist of plasmas. The underlying physics of the collective behavior in plasmas has applications to space physics and astrophysics, materials science, applied mathematics, fusion science, accelerator science, and many branches of engineering. The National Science Foundation (NSF), with participation of the Directorates for Engineering, Geosciences, and Mathematical and Physical Sciences, and the Department of Energy, Office of Science, Fusion Energy Sciences are continuing the joint Partnership in Basic Plasma Science and Engineering begun in FY1997 and renewed several times since. As stated in the original solicitation (NSF 97-39), which is superseded by the present solicitation, the goal of the Partnership is to enhance basic plasma science research and education in this broad, multidisciplinary field by coordinating efforts and combining resources of the two agencies. The current solicitation also encourages submission of proposals to perform basic plasma experiments at NSF and/or DOE supported user facilities, including facilities located at DOE national laboratories, designed to serve the needs of the broader plasma science and engineering community.
MiamiOH OARS

NSF/DOE Partnership in Basic Plasma Science and Engineering - 0 views

  •  
    Plasma Physics is a study of matter and physical systems whose intrinsic properties are governed by collective interactions of large ensembles of free charged particles. 99.9% of the visible Universe is thought to consist of plasmas. The underlying physics of the collective behavior in plasmas has applications to space physics and astrophysics, materials science, applied mathematics, fusion science, accelerator science, and many branches of engineering. The National Science Foundation (NSF), with participation of the Directorates for Engineering, Geosciences, and Mathematical and Physical Sciences, and the Department of Energy, Office of Science, Fusion Energy Sciences are continuing the joint Partnership in Basic Plasma Science and Engineering begun in FY1997 and renewed several times since. As stated in the original solicitation (NSF 97-39), which is superseded by the present solicitation, the goal of the Partnership is to enhance basic plasma science research and education in this broad, multidisciplinary field by coordinating efforts and combining resources of the two agencies. The current solicitation also encourages submission of proposals to perform basic plasma experiments at NSF and/or DOE supported user facilities, including facilities located at DOE national laboratories, designed to serve the needs of the broader plasma science and engineering community.
MiamiOH OARS

BRAIN Initiative: Research Career Enhancement Award for Investigators to Build Skills i... - 0 views

  •  
    This funding opportunity announcement (FOA) invites applications for mentored career enhancement (K18) awards in research areas that are highly relevant to the NIH BRAIN Initiative. This career enhancement program will support development of research capability for the BRAIN Initiative, with specific emphasis on cross-training independent investigators in a substantively different area of neuroscience, neuroethics, or in a quantitative and physical discipline (e.g., physics, chemistry, engineering, computer science, mathematics); and vice versa, cross-training independent investigators trained in a quantitative or physical discipline proposing to gain in-depth training in a high-priority area of neuroscience. The research project conducted under this K18 should enhance the candidate's ability to significantly contribute to or lead projects that investigate questions central to the goals of the BRAIN Initiative. Eligible candidates are independent investigators at any faculty rank or level.
  •  
    This funding opportunity announcement (FOA) invites applications for mentored career enhancement (K18) awards in research areas that are highly relevant to the NIH BRAIN Initiative. This career enhancement program will support development of research capability for the BRAIN Initiative, with specific emphasis on cross-training independent investigators in a substantively different area of neuroscience, neuroethics, or in a quantitative and physical discipline (e.g., physics, chemistry, engineering, computer science, mathematics); and vice versa, cross-training independent investigators trained in a quantitative or physical discipline proposing to gain in-depth training in a high-priority area of neuroscience. The research project conducted under this K18 should enhance the candidate's ability to significantly contribute to or lead projects that investigate questions central to the goals of the BRAIN Initiative. Eligible candidates are independent investigators at any faculty rank or level.
MiamiOH OARS

Dynamically and Controllably Reconfigurable Antennas through Physical Deformation Proce... - 0 views

  •  
    The Air Force and the Department of Defense have need for deployable, reconfigurable, multifunctional antennas. They must be versatile, mechanically sound, and have predictable and reproducible properties. Physical reconfigurability is an especially effective means to enable such antennas. A goal is for these antennas to achieve in each configuration properties and performance over time equivalent to those of static, single-function antennas. Current approaches and capabilities do not allow for multiple-conformation, physically reconfigurable antennas to be realized fully. This research topic seeks novel approaches for physically reconfigurable hardware to complement software approaches to manipulating and adapting on-the-fly Radio Frequency (RF) properties through means of folding, deforming, and electromagnetic tuning. The end products of this approach are to be antennas and possibly other front-end RF components that provide significantly enhanced and adaptable electromagnetic capabilities compared to current devices. Mechanisms of physical reconfigurability can include, but are not limited to, approaches utilizing origami and kirigami designs.
MiamiOH OARS

Communications, Circuits, and Sensing-Systems | NSF - National Science Foundation - 0 views

  •  
    The Communications, Circuits, and Sensing-Systems (CCSS) Program is intended to spur visionary systems-oriented activities in collaborative, multidisciplinary, and integrative engineering research. CCSS supports systems research in hardware, signal processing techniques, and architectures to enable the next generation of cyber-physical systems (CPS) that leverage computation, communication, and algorithms integrated with physical domains. CCSS supports innovative research and integrated educational activities in micro- and nano- electromechanical systems (MEMS/NEMS), communications and sensing systems, and cyber-physical systems. The goal is to design, develop, and implement new complex and hybrid systems at all scales, including nano and macro, that lead to innovative engineering principles and solutions for a variety of application domains including, but not limited to, healthcare, medicine, environmental and biological monitoring, communications, disaster mitigation, homeland security, intelligent transportation, manufacturing, energy, and smart buildings. CCSS also supports integration technologies at both intra- and inter- chip levels, new and advanced radio frequency (RF), millimeter wave and optical wireless and hybrid communications systems architectures, and sensing and imaging at terahertz (THz) frequencies.
  •  
    The Communications, Circuits, and Sensing-Systems (CCSS) Program is intended to spur visionary systems-oriented activities in collaborative, multidisciplinary, and integrative engineering research. CCSS supports systems research in hardware, signal processing techniques, and architectures to enable the next generation of cyber-physical systems (CPS) that leverage computation, communication, and algorithms integrated with physical domains. CCSS supports innovative research and integrated educational activities in micro- and nano- electromechanical systems (MEMS/NEMS), communications and sensing systems, and cyber-physical systems. The goal is to design, develop, and implement new complex and hybrid systems at all scales, including nano and macro, that lead to innovative engineering principles and solutions for a variety of application domains including, but not limited to, healthcare, medicine, environmental and biological monitoring, communications, disaster mitigation, homeland security, intelligent transportation, manufacturing, energy, and smart buildings. CCSS also supports integration technologies at both intra- and inter- chip levels, new and advanced radio frequency (RF), millimeter wave and optical wireless and hybrid communications systems architectures, and sensing and imaging at terahertz (THz) frequencies.
MiamiOH OARS

NSF/DOE Partnership in Basic Plasma Science and Engineering (nsf16564) | NSF - National... - 0 views

  •  
    The specific areas of interest are: 1. HED Hydrodynamics 2. Radiation-Dominated Dynamics and Material Properties 3. Magnetized HED Plasma Physics 4. Nonlinear Optics of Plasmas and Laser-Plasma Interactions 5. Relativistic HED Plasmas and Intense Beam Physics 6. Warm Dense Matter 7. High-Z, Multiply Ionized HED Atomic Physics 8. Diagnostics for HED Laboratory Plasmas Proposed research efforts can include experimental, theoretical, and/or computational science. Applications integrating experiments, theory, and simulation are encouraged. Grant applications are sought in the following subfields and crosscutting areas of HED laboratory plasmas, as described in the Report of the 2009 Workshop on Basic Research Needs for High-Energy-Density Laboratory Physics.
MiamiOH OARS

Theoretical Nuclear Physics - 0 views

  •  
    The nuclear theory program encompasses the structure and reactions of nuclei, and of hadrons in few-nucleon and nuclear environments, and the quark/gluon substructure expressed by QCD.  Supported research includes contributions to broad theoretical advances as well as model building and applications to experimental programs at facilities such as NSCL, RHIC and Jefferson Laboratory, and to astrophysical phenomena. This includes formulating new approaches for theoretical, computational, and experimental research that explore the fundamental laws of physics and the behavior of physical systems; formulating quantitative hypotheses; exploring and analyzing the implications of such hypotheses analytically and computationally; and, in some cases, interpreting the results of experiments. Some awards are co-funded with other programs in the Physics Division and in other divisions.
MiamiOH OARS

Innovations at the Nexus of Food, Energy and Water Systems - 0 views

  •  
    Humanity depends upon the Earth's physical resources and natural systems for food, energy, and water (FEW). However, both the physical resources and the FEW systems are under increasing stress. It is becoming imperative that we determine how society can best integrate social, ecological, physical and built environments to provide for growing demand for food, energy and water in the short term while also maintaining appropriate ecosystem services for the future. Known stressors in FEW systems include governance challenges, population growth and migration, land use change, climate variability, and uneven resource distribution.The interconnections and interdependencies associated with the FEW Nexus pose research grand challenges. To meet these grand challenges, there is a critical need for research that enables new means of adapting societal use of FEW systems. The INFEWS program seeks to support research that conceptualizes FEW systems broadly and inclusively, incorporating social and behavioral processes (such as decision making and governance), physical processes (such as built infrastructure and new technologies for more efficient resource utilization), natural processes (such as biogeochemical and hydrologic cycles), biological processes (such as agroecosystem structure and productivity), and cyber-components (such as sensing, networking, computation and visualization for decision-making and assessment).
MiamiOH OARS

Fluid Dynamics - 0 views

  •  
    The Fluid Dynamics program is part of the Transport Phenomena cluster, which also includes 1) the Combustion and Fire Systems program; 2) the Particulate and Multiphase Processes program; and 3) the Thermal Transport Processes program. The Fluid Dynamics program supports fundamental research toward gaining an understanding of the physics of various fluid dynamics phenomena. Proposed research should contribute to basic scientific understanding via experiments, theoretical developments, and computational discovery. Major areas of interest and activity in the program include: Turbulence and transition: High Reynolds number experiments; large eddy simulation; direct numerical simulation; transition to turbulence; 3-D boundary layers; separated flows; multi-phase turbulent flows; flow control and drag reduction. A new area of emphasis is high speed boundary layer transition and turbulence; the focus would be for flows at Mach numbers greater than 5 to understand cross-mode interactions leading to boundary layer transition and the ensuing developing and fully developed turbulent boundary layer flows. Combined experiments and simulations are encouraged. Bio-fluid physics: Bio-inspired flows; biological flows with emphasis on flow physics. Non-Newtonian fluid mechanics: Viscoelastic flows; solutions of macro-molecules. Microfluidics and nanofluidics: Micro-and nano-scale flow physics.
MiamiOH OARS

Diet and Physical Activity Assessment Methodology (R01 Clinical Trial Optional) - 0 views

  •  
    This Funding Opportunity Announcement (FOA) encourages innovative research to enhance the quality of measurements of dietary intake and physical activity. Applications submitted under this FOA are encouraged to include development of: novel assessment approaches; better methods to evaluate instruments; assessment tools for culturally diverse populations or various age groups, including children and older adults; improved technology or applications of existing technology; statistical methods/modeling to improve assessment and/or to correct for measurement errors or biases; methods to investigate the multidimensionality of diet and physical activity behavior through pattern analysis; or integrated measurement of diet and physical activity along with the environmental context of such behaviors.
MiamiOH OARS

nsf.gov - Funding - Cyber-Physical Systems - US National Science Foundation (NSF) - 0 views

  •  
    The goal of the CPS program is to develop the core system science needed to engineer complex cyber-physical systems upon which people can depend with high confidence. The program aims to foster a research community committed to advancing research and education in CPS and to transitioning CPS science and technology into engineering practice. By abstracting from the particulars of specific systems and application domains, the CPS program aims to reveal cross-cutting fundamental scientific and engineering principles that underpin the integration of cyber and physical elements across all application sectors.  To expedite and accelerate the realization of cyber-physical systems in a wide range of applications, the CPS program also supports the development of methods, tools, and hardware and software components based upon these cross-cutting principles, along with validation of the principles via prototypes and test beds.
MiamiOH OARS

Continuation of Solicitation for the Office of Science Financial Assistance Program - 0 views

  •  
    The Office of Science (SC) of the Department of Energy hereby announces its continuing interest in receiving grant applications for support of work in the following program areas: Advanced Scientific Computing Research, Basic Energy Sciences, Biological and Environmental Research, Fusion Energy Sciences, High Energy Physics, and Nuclear Physics.
  •  
    The Office of Science (SC) of the Department of Energy hereby announces its continuing interest in receiving grant applications for support of work in the following program areas: Advanced Scientific Computing Research, Basic Energy Sciences, Biological and Environmental Research, Fusion Energy Sciences, High Energy Physics, and Nuclear Physics.
MiamiOH OARS

Cyber-Physical Systems (CPS) (nsf17529) | NSF - National Science Foundation - 0 views

  •  
    The goal of the CPS program is to develop the core system science needed to engineer complex cyber-physical systems that people can use or interact with and depend upon. Some of these may require high-confidence or provable behaviors. The program aims to foster a research community committed to advancing research and education in CPS and to transitioning CPS science and technology into engineering practice. By abstracting from the particulars of specific systems and application domains, the CPS program seeks to reveal cross-cutting fundamental scientific and engineering principles that underpin the integration of cyber and physical elements across all application sectors. To expedite and accelerate the realization of cyber-physical systems in a wide range of applications, the CPS program also supports the development of methods, tools, and hardware and software components based upon these cross-cutting principles, along with validation of the principles via prototypes and testbeds. We have also seen a convergence of CPS technologies and research thrusts that underpin Smart & Connected Communities (S&CC) and the Internet of Things (IoT). These domains offer new and exciting challenges for foundational research and provide opportunities for maturation at multiple time horizons.
MiamiOH OARS

Background | Burroughs Wellcome Fund - 0 views

  •  
    Scientific advances such as genomics, quantitative structural biology, imaging techniques, and modeling of complex systems have created opportunities for exciting research careers at the interface between the physical/computational sciences and the biological sciences. Tackling key problems in biology will require scientists trained in areas such as chemistry, physics, applied mathematics, computer science, and engineering. Recognizing the vital role such cross-trained scientists will play in furthering biomedical science, the Burroughs Wellcome Fund has developed the Career Awards at the Scientific Interface. These grants are intended to foster the early career development of researchers who have transitioned or are transitioning from undergraduate and/or graduate work in the physical/mathematical/computational sciences or engineering into postdoctoral work in the biological sciences, and who are dedicated to pursuing a career in academic research. Candidates are expected to draw from their training in a scientific field other than biology to propose innovative approaches to answer important questions in the biological sciences.
1 - 20 of 467 Next › Last »
Showing 20 items per page