Skip to main content

Home/ New Media Ethics 2009 course/ Group items tagged Mathematics

Rss Feed Group items tagged

Weiye Loh

Odds Are, It's Wrong - Science News - 0 views

  • science has long been married to mathematics. Generally it has been for the better. Especially since the days of Galileo and Newton, math has nurtured science. Rigorous mathematical methods have secured science’s fidelity to fact and conferred a timeless reliability to its findings.
  • a mutant form of math has deflected science’s heart from the modes of calculation that had long served so faithfully. Science was seduced by statistics, the math rooted in the same principles that guarantee profits for Las Vegas casinos. Supposedly, the proper use of statistics makes relying on scientific results a safe bet. But in practice, widespread misuse of statistical methods makes science more like a crapshoot.
  • science’s dirtiest secret: The “scientific method” of testing hypotheses by statistical analysis stands on a flimsy foundation. Statistical tests are supposed to guide scientists in judging whether an experimental result reflects some real effect or is merely a random fluke, but the standard methods mix mutually inconsistent philosophies and offer no meaningful basis for making such decisions. Even when performed correctly, statistical tests are widely misunderstood and frequently misinterpreted. As a result, countless conclusions in the scientific literature are erroneous, and tests of medical dangers or treatments are often contradictory and confusing.
  • ...24 more annotations...
  • Experts in the math of probability and statistics are well aware of these problems and have for decades expressed concern about them in major journals. Over the years, hundreds of published papers have warned that science’s love affair with statistics has spawned countless illegitimate findings. In fact, if you believe what you read in the scientific literature, you shouldn’t believe what you read in the scientific literature.
  • “There are more false claims made in the medical literature than anybody appreciates,” he says. “There’s no question about that.”Nobody contends that all of science is wrong, or that it hasn’t compiled an impressive array of truths about the natural world. Still, any single scientific study alone is quite likely to be incorrect, thanks largely to the fact that the standard statistical system for drawing conclusions is, in essence, illogical. “A lot of scientists don’t understand statistics,” says Goodman. “And they don’t understand statistics because the statistics don’t make sense.”
  • In 2007, for instance, researchers combing the medical literature found numerous studies linking a total of 85 genetic variants in 70 different genes to acute coronary syndrome, a cluster of heart problems. When the researchers compared genetic tests of 811 patients that had the syndrome with a group of 650 (matched for sex and age) that didn’t, only one of the suspect gene variants turned up substantially more often in those with the syndrome — a number to be expected by chance.“Our null results provide no support for the hypothesis that any of the 85 genetic variants tested is a susceptibility factor” for the syndrome, the researchers reported in the Journal of the American Medical Association.How could so many studies be wrong? Because their conclusions relied on “statistical significance,” a concept at the heart of the mathematical analysis of modern scientific experiments.
  • Statistical significance is a phrase that every science graduate student learns, but few comprehend. While its origins stretch back at least to the 19th century, the modern notion was pioneered by the mathematician Ronald A. Fisher in the 1920s. His original interest was agriculture. He sought a test of whether variation in crop yields was due to some specific intervention (say, fertilizer) or merely reflected random factors beyond experimental control.Fisher first assumed that fertilizer caused no difference — the “no effect” or “null” hypothesis. He then calculated a number called the P value, the probability that an observed yield in a fertilized field would occur if fertilizer had no real effect. If P is less than .05 — meaning the chance of a fluke is less than 5 percent — the result should be declared “statistically significant,” Fisher arbitrarily declared, and the no effect hypothesis should be rejected, supposedly confirming that fertilizer works.Fisher’s P value eventually became the ultimate arbiter of credibility for science results of all sorts
  • But in fact, there’s no logical basis for using a P value from a single study to draw any conclusion. If the chance of a fluke is less than 5 percent, two possible conclusions remain: There is a real effect, or the result is an improbable fluke. Fisher’s method offers no way to know which is which. On the other hand, if a study finds no statistically significant effect, that doesn’t prove anything, either. Perhaps the effect doesn’t exist, or maybe the statistical test wasn’t powerful enough to detect a small but real effect.
  • Soon after Fisher established his system of statistical significance, it was attacked by other mathematicians, notably Egon Pearson and Jerzy Neyman. Rather than testing a null hypothesis, they argued, it made more sense to test competing hypotheses against one another. That approach also produces a P value, which is used to gauge the likelihood of a “false positive” — concluding an effect is real when it actually isn’t. What  eventually emerged was a hybrid mix of the mutually inconsistent Fisher and Neyman-Pearson approaches, which has rendered interpretations of standard statistics muddled at best and simply erroneous at worst. As a result, most scientists are confused about the meaning of a P value or how to interpret it. “It’s almost never, ever, ever stated correctly, what it means,” says Goodman.
  • experimental data yielding a P value of .05 means that there is only a 5 percent chance of obtaining the observed (or more extreme) result if no real effect exists (that is, if the no-difference hypothesis is correct). But many explanations mangle the subtleties in that definition. A recent popular book on issues involving science, for example, states a commonly held misperception about the meaning of statistical significance at the .05 level: “This means that it is 95 percent certain that the observed difference between groups, or sets of samples, is real and could not have arisen by chance.”
  • That interpretation commits an egregious logical error (technical term: “transposed conditional”): confusing the odds of getting a result (if a hypothesis is true) with the odds favoring the hypothesis if you observe that result. A well-fed dog may seldom bark, but observing the rare bark does not imply that the dog is hungry. A dog may bark 5 percent of the time even if it is well-fed all of the time. (See Box 2)
    • Weiye Loh
       
      Does the problem then, lie not in statistics, but the interpretation of statistics? Is the fallacy of appeal to probability is at work in such interpretation? 
  • Another common error equates statistical significance to “significance” in the ordinary use of the word. Because of the way statistical formulas work, a study with a very large sample can detect “statistical significance” for a small effect that is meaningless in practical terms. A new drug may be statistically better than an old drug, but for every thousand people you treat you might get just one or two additional cures — not clinically significant. Similarly, when studies claim that a chemical causes a “significantly increased risk of cancer,” they often mean that it is just statistically significant, possibly posing only a tiny absolute increase in risk.
  • Statisticians perpetually caution against mistaking statistical significance for practical importance, but scientific papers commit that error often. Ziliak studied journals from various fields — psychology, medicine and economics among others — and reported frequent disregard for the distinction.
  • “I found that eight or nine of every 10 articles published in the leading journals make the fatal substitution” of equating statistical significance to importance, he said in an interview. Ziliak’s data are documented in the 2008 book The Cult of Statistical Significance, coauthored with Deirdre McCloskey of the University of Illinois at Chicago.
  • Multiplicity of mistakesEven when “significance” is properly defined and P values are carefully calculated, statistical inference is plagued by many other problems. Chief among them is the “multiplicity” issue — the testing of many hypotheses simultaneously. When several drugs are tested at once, or a single drug is tested on several groups, chances of getting a statistically significant but false result rise rapidly.
  • Recognizing these problems, some researchers now calculate a “false discovery rate” to warn of flukes disguised as real effects. And genetics researchers have begun using “genome-wide association studies” that attempt to ameliorate the multiplicity issue (SN: 6/21/08, p. 20).
  • Many researchers now also commonly report results with confidence intervals, similar to the margins of error reported in opinion polls. Such intervals, usually given as a range that should include the actual value with 95 percent confidence, do convey a better sense of how precise a finding is. But the 95 percent confidence calculation is based on the same math as the .05 P value and so still shares some of its problems.
  • Statistical problems also afflict the “gold standard” for medical research, the randomized, controlled clinical trials that test drugs for their ability to cure or their power to harm. Such trials assign patients at random to receive either the substance being tested or a placebo, typically a sugar pill; random selection supposedly guarantees that patients’ personal characteristics won’t bias the choice of who gets the actual treatment. But in practice, selection biases may still occur, Vance Berger and Sherri Weinstein noted in 2004 in ControlledClinical Trials. “Some of the benefits ascribed to randomization, for example that it eliminates all selection bias, can better be described as fantasy than reality,” they wrote.
  • Randomization also should ensure that unknown differences among individuals are mixed in roughly the same proportions in the groups being tested. But statistics do not guarantee an equal distribution any more than they prohibit 10 heads in a row when flipping a penny. With thousands of clinical trials in progress, some will not be well randomized. And DNA differs at more than a million spots in the human genetic catalog, so even in a single trial differences may not be evenly mixed. In a sufficiently large trial, unrandomized factors may balance out, if some have positive effects and some are negative. (See Box 3) Still, trial results are reported as averages that may obscure individual differences, masking beneficial or harm­ful effects and possibly leading to approval of drugs that are deadly for some and denial of effective treatment to others.
  • nother concern is the common strategy of combining results from many trials into a single “meta-analysis,” a study of studies. In a single trial with relatively few participants, statistical tests may not detect small but real and possibly important effects. In principle, combining smaller studies to create a larger sample would allow the tests to detect such small effects. But statistical techniques for doing so are valid only if certain criteria are met. For one thing, all the studies conducted on the drug must be included — published and unpublished. And all the studies should have been performed in a similar way, using the same protocols, definitions, types of patients and doses. When combining studies with differences, it is necessary first to show that those differences would not affect the analysis, Goodman notes, but that seldom happens. “That’s not a formal part of most meta-analyses,” he says.
  • Meta-analyses have produced many controversial conclusions. Common claims that antidepressants work no better than placebos, for example, are based on meta-analyses that do not conform to the criteria that would confer validity. Similar problems afflicted a 2007 meta-analysis, published in the New England Journal of Medicine, that attributed increased heart attack risk to the diabetes drug Avandia. Raw data from the combined trials showed that only 55 people in 10,000 had heart attacks when using Avandia, compared with 59 people per 10,000 in comparison groups. But after a series of statistical manipulations, Avandia appeared to confer an increased risk.
  • combining small studies in a meta-analysis is not a good substitute for a single trial sufficiently large to test a given question. “Meta-analyses can reduce the role of chance in the interpretation but may introduce bias and confounding,” Hennekens and DeMets write in the Dec. 2 Journal of the American Medical Association. “Such results should be considered more as hypothesis formulating than as hypothesis testing.”
  • Some studies show dramatic effects that don’t require sophisticated statistics to interpret. If the P value is 0.0001 — a hundredth of a percent chance of a fluke — that is strong evidence, Goodman points out. Besides, most well-accepted science is based not on any single study, but on studies that have been confirmed by repetition. Any one result may be likely to be wrong, but confidence rises quickly if that result is independently replicated.“Replication is vital,” says statistician Juliet Shaffer, a lecturer emeritus at the University of California, Berkeley. And in medicine, she says, the need for replication is widely recognized. “But in the social sciences and behavioral sciences, replication is not common,” she noted in San Diego in February at the annual meeting of the American Association for the Advancement of Science. “This is a sad situation.”
  • Most critics of standard statistics advocate the Bayesian approach to statistical reasoning, a methodology that derives from a theorem credited to Bayes, an 18th century English clergyman. His approach uses similar math, but requires the added twist of a “prior probability” — in essence, an informed guess about the expected probability of something in advance of the study. Often this prior probability is more than a mere guess — it could be based, for instance, on previous studies.
  • it basically just reflects the need to include previous knowledge when drawing conclusions from new observations. To infer the odds that a barking dog is hungry, for instance, it is not enough to know how often the dog barks when well-fed. You also need to know how often it eats — in order to calculate the prior probability of being hungry. Bayesian math combines a prior probability with observed data to produce an estimate of the likelihood of the hunger hypothesis. “A scientific hypothesis cannot be properly assessed solely by reference to the observational data,” but only by viewing the data in light of prior belief in the hypothesis, wrote George Diamond and Sanjay Kaul of UCLA’s School of Medicine in 2004 in the Journal of the American College of Cardiology. “Bayes’ theorem is ... a logically consistent, mathematically valid, and intuitive way to draw inferences about the hypothesis.” (See Box 4)
  • In many real-life contexts, Bayesian methods do produce the best answers to important questions. In medical diagnoses, for instance, the likelihood that a test for a disease is correct depends on the prevalence of the disease in the population, a factor that Bayesian math would take into account.
  • But Bayesian methods introduce a confusion into the actual meaning of the mathematical concept of “probability” in the real world. Standard or “frequentist” statistics treat probabilities as objective realities; Bayesians treat probabilities as “degrees of belief” based in part on a personal assessment or subjective decision about what to include in the calculation. That’s a tough placebo to swallow for scientists wedded to the “objective” ideal of standard statistics. “Subjective prior beliefs are anathema to the frequentist, who relies instead on a series of ad hoc algorithms that maintain the facade of scientific objectivity,” Diamond and Kaul wrote.Conflict between frequentists and Bayesians has been ongoing for two centuries. So science’s marriage to mathematics seems to entail some irreconcilable differences. Whether the future holds a fruitful reconciliation or an ugly separation may depend on forging a shared understanding of probability.“What does probability mean in real life?” the statistician David Salsburg asked in his 2001 book The Lady Tasting Tea. “This problem is still unsolved, and ... if it remains un­solved, the whole of the statistical approach to science may come crashing down from the weight of its own inconsistencies.”
  •  
    Odds Are, It's Wrong Science fails to face the shortcomings of statistics
Weiye Loh

How We Know by Freeman Dyson | The New York Review of Books - 0 views

  • Another example illustrating the central dogma is the French optical telegraph.
  • The telegraph was an optical communication system with stations consisting of large movable pointers mounted on the tops of sixty-foot towers. Each station was manned by an operator who could read a message transmitted by a neighboring station and transmit the same message to the next station in the transmission line.
  • The distance between neighbors was about seven miles. Along the transmission lines, optical messages in France could travel faster than drum messages in Africa. When Napoleon took charge of the French Republic in 1799, he ordered the completion of the optical telegraph system to link all the major cities of France from Calais and Paris to Toulon and onward to Milan. The telegraph became, as Claude Chappe had intended, an important instrument of national power. Napoleon made sure that it was not available to private users.
  • ...27 more annotations...
  • Unlike the drum language, which was based on spoken language, the optical telegraph was based on written French. Chappe invented an elaborate coding system to translate written messages into optical signals. Chappe had the opposite problem from the drummers. The drummers had a fast transmission system with ambiguous messages. They needed to slow down the transmission to make the messages unambiguous. Chappe had a painfully slow transmission system with redundant messages. The French language, like most alphabetic languages, is highly redundant, using many more letters than are needed to convey the meaning of a message. Chappe’s coding system allowed messages to be transmitted faster. Many common phrases and proper names were encoded by only two optical symbols, with a substantial gain in speed of transmission. The composer and the reader of the message had code books listing the message codes for eight thousand phrases and names. For Napoleon it was an advantage to have a code that was effectively cryptographic, keeping the content of the messages secret from citizens along the route.
  • After these two historical examples of rapid communication in Africa and France, the rest of Gleick’s book is about the modern development of information technolog
  • The modern history is dominated by two Americans, Samuel Morse and Claude Shannon. Samuel Morse was the inventor of Morse Code. He was also one of the pioneers who built a telegraph system using electricity conducted through wires instead of optical pointers deployed on towers. Morse launched his electric telegraph in 1838 and perfected the code in 1844. His code used short and long pulses of electric current to represent letters of the alphabet.
  • Morse was ideologically at the opposite pole from Chappe. He was not interested in secrecy or in creating an instrument of government power. The Morse system was designed to be a profit-making enterprise, fast and cheap and available to everybody. At the beginning the price of a message was a quarter of a cent per letter. The most important users of the system were newspaper correspondents spreading news of local events to readers all over the world. Morse Code was simple enough that anyone could learn it. The system provided no secrecy to the users. If users wanted secrecy, they could invent their own secret codes and encipher their messages themselves. The price of a message in cipher was higher than the price of a message in plain text, because the telegraph operators could transcribe plain text faster. It was much easier to correct errors in plain text than in cipher.
  • Claude Shannon was the founding father of information theory. For a hundred years after the electric telegraph, other communication systems such as the telephone, radio, and television were invented and developed by engineers without any need for higher mathematics. Then Shannon supplied the theory to understand all of these systems together, defining information as an abstract quantity inherent in a telephone message or a television picture. Shannon brought higher mathematics into the game.
  • When Shannon was a boy growing up on a farm in Michigan, he built a homemade telegraph system using Morse Code. Messages were transmitted to friends on neighboring farms, using the barbed wire of their fences to conduct electric signals. When World War II began, Shannon became one of the pioneers of scientific cryptography, working on the high-level cryptographic telephone system that allowed Roosevelt and Churchill to talk to each other over a secure channel. Shannon’s friend Alan Turing was also working as a cryptographer at the same time, in the famous British Enigma project that successfully deciphered German military codes. The two pioneers met frequently when Turing visited New York in 1943, but they belonged to separate secret worlds and could not exchange ideas about cryptography.
  • In 1945 Shannon wrote a paper, “A Mathematical Theory of Cryptography,” which was stamped SECRET and never saw the light of day. He published in 1948 an expurgated version of the 1945 paper with the title “A Mathematical Theory of Communication.” The 1948 version appeared in the Bell System Technical Journal, the house journal of the Bell Telephone Laboratories, and became an instant classic. It is the founding document for the modern science of information. After Shannon, the technology of information raced ahead, with electronic computers, digital cameras, the Internet, and the World Wide Web.
  • According to Gleick, the impact of information on human affairs came in three installments: first the history, the thousands of years during which people created and exchanged information without the concept of measuring it; second the theory, first formulated by Shannon; third the flood, in which we now live
  • The event that made the flood plainly visible occurred in 1965, when Gordon Moore stated Moore’s Law. Moore was an electrical engineer, founder of the Intel Corporation, a company that manufactured components for computers and other electronic gadgets. His law said that the price of electronic components would decrease and their numbers would increase by a factor of two every eighteen months. This implied that the price would decrease and the numbers would increase by a factor of a hundred every decade. Moore’s prediction of continued growth has turned out to be astonishingly accurate during the forty-five years since he announced it. In these four and a half decades, the price has decreased and the numbers have increased by a factor of a billion, nine powers of ten. Nine powers of ten are enough to turn a trickle into a flood.
  • Gordon Moore was in the hardware business, making hardware components for electronic machines, and he stated his law as a law of growth for hardware. But the law applies also to the information that the hardware is designed to embody. The purpose of the hardware is to store and process information. The storage of information is called memory, and the processing of information is called computing. The consequence of Moore’s Law for information is that the price of memory and computing decreases and the available amount of memory and computing increases by a factor of a hundred every decade. The flood of hardware becomes a flood of information.
  • In 1949, one year after Shannon published the rules of information theory, he drew up a table of the various stores of memory that then existed. The biggest memory in his table was the US Library of Congress, which he estimated to contain one hundred trillion bits of information. That was at the time a fair guess at the sum total of recorded human knowledge. Today a memory disc drive storing that amount of information weighs a few pounds and can be bought for about a thousand dollars. Information, otherwise known as data, pours into memories of that size or larger, in government and business offices and scientific laboratories all over the world. Gleick quotes the computer scientist Jaron Lanier describing the effect of the flood: “It’s as if you kneel to plant the seed of a tree and it grows so fast that it swallows your whole town before you can even rise to your feet.”
  • On December 8, 2010, Gleick published on the The New York Review’s blog an illuminating essay, “The Information Palace.” It was written too late to be included in his book. It describes the historical changes of meaning of the word “information,” as recorded in the latest quarterly online revision of the Oxford English Dictionary. The word first appears in 1386 a parliamentary report with the meaning “denunciation.” The history ends with the modern usage, “information fatigue,” defined as “apathy, indifference or mental exhaustion arising from exposure to too much information.”
  • The consequences of the information flood are not all bad. One of the creative enterprises made possible by the flood is Wikipedia, started ten years ago by Jimmy Wales. Among my friends and acquaintances, everybody distrusts Wikipedia and everybody uses it. Distrust and productive use are not incompatible. Wikipedia is the ultimate open source repository of information. Everyone is free to read it and everyone is free to write it. It contains articles in 262 languages written by several million authors. The information that it contains is totally unreliable and surprisingly accurate. It is often unreliable because many of the authors are ignorant or careless. It is often accurate because the articles are edited and corrected by readers who are better informed than the authors
  • Jimmy Wales hoped when he started Wikipedia that the combination of enthusiastic volunteer writers with open source information technology would cause a revolution in human access to knowledge. The rate of growth of Wikipedia exceeded his wildest dreams. Within ten years it has become the biggest storehouse of information on the planet and the noisiest battleground of conflicting opinions. It illustrates Shannon’s law of reliable communication. Shannon’s law says that accurate transmission of information is possible in a communication system with a high level of noise. Even in the noisiest system, errors can be reliably corrected and accurate information transmitted, provided that the transmission is sufficiently redundant. That is, in a nutshell, how Wikipedia works.
  • The information flood has also brought enormous benefits to science. The public has a distorted view of science, because children are taught in school that science is a collection of firmly established truths. In fact, science is not a collection of truths. It is a continuing exploration of mysteries. Wherever we go exploring in the world around us, we find mysteries. Our planet is covered by continents and oceans whose origin we cannot explain. Our atmosphere is constantly stirred by poorly understood disturbances that we call weather and climate. The visible matter in the universe is outweighed by a much larger quantity of dark invisible matter that we do not understand at all. The origin of life is a total mystery, and so is the existence of human consciousness. We have no clear idea how the electrical discharges occurring in nerve cells in our brains are connected with our feelings and desires and actions.
  • Even physics, the most exact and most firmly established branch of science, is still full of mysteries. We do not know how much of Shannon’s theory of information will remain valid when quantum devices replace classical electric circuits as the carriers of information. Quantum devices may be made of single atoms or microscopic magnetic circuits. All that we know for sure is that they can theoretically do certain jobs that are beyond the reach of classical devices. Quantum computing is still an unexplored mystery on the frontier of information theory. Science is the sum total of a great multitude of mysteries. It is an unending argument between a great multitude of voices. It resembles Wikipedia much more than it resembles the Encyclopaedia Britannica.
  • The rapid growth of the flood of information in the last ten years made Wikipedia possible, and the same flood made twenty-first-century science possible. Twenty-first-century science is dominated by huge stores of information that we call databases. The information flood has made it easy and cheap to build databases. One example of a twenty-first-century database is the collection of genome sequences of living creatures belonging to various species from microbes to humans. Each genome contains the complete genetic information that shaped the creature to which it belongs. The genome data-base is rapidly growing and is available for scientists all over the world to explore. Its origin can be traced to the year 1939, when Shannon wrote his Ph.D. thesis with the title “An Algebra for Theoretical Genetics.
  • Shannon was then a graduate student in the mathematics department at MIT. He was only dimly aware of the possible physical embodiment of genetic information. The true physical embodiment of the genome is the double helix structure of DNA molecules, discovered by Francis Crick and James Watson fourteen years later. In 1939 Shannon understood that the basis of genetics must be information, and that the information must be coded in some abstract algebra independent of its physical embodiment. Without any knowledge of the double helix, he could not hope to guess the detailed structure of the genetic code. He could only imagine that in some distant future the genetic information would be decoded and collected in a giant database that would define the total diversity of living creatures. It took only sixty years for his dream to come true.
  • In the twentieth century, genomes of humans and other species were laboriously decoded and translated into sequences of letters in computer memories. The decoding and translation became cheaper and faster as time went on, the price decreasing and the speed increasing according to Moore’s Law. The first human genome took fifteen years to decode and cost about a billion dollars. Now a human genome can be decoded in a few weeks and costs a few thousand dollars. Around the year 2000, a turning point was reached, when it became cheaper to produce genetic information than to understand it. Now we can pass a piece of human DNA through a machine and rapidly read out the genetic information, but we cannot read out the meaning of the information. We shall not fully understand the information until we understand in detail the processes of embryonic development that the DNA orchestrated to make us what we are.
  • The explosive growth of information in our human society is a part of the slower growth of ordered structures in the evolution of life as a whole. Life has for billions of years been evolving with organisms and ecosystems embodying increasing amounts of information. The evolution of life is a part of the evolution of the universe, which also evolves with increasing amounts of information embodied in ordered structures, galaxies and stars and planetary systems. In the living and in the nonliving world, we see a growth of order, starting from the featureless and uniform gas of the early universe and producing the magnificent diversity of weird objects that we see in the sky and in the rain forest. Everywhere around us, wherever we look, we see evidence of increasing order and increasing information. The technology arising from Shannon’s discoveries is only a local acceleration of the natural growth of information.
  • . Lord Kelvin, one of the leading physicists of that time, promoted the heat death dogma, predicting that the flow of heat from warmer to cooler objects will result in a decrease of temperature differences everywhere, until all temperatures ultimately become equal. Life needs temperature differences, to avoid being stifled by its waste heat. So life will disappear
  • Thanks to the discoveries of astronomers in the twentieth century, we now know that the heat death is a myth. The heat death can never happen, and there is no paradox. The best popular account of the disappearance of the paradox is a chapter, “How Order Was Born of Chaos,” in the book Creation of the Universe, by Fang Lizhi and his wife Li Shuxian.2 Fang Lizhi is doubly famous as a leading Chinese astronomer and a leading political dissident. He is now pursuing his double career at the University of Arizona.
  • The belief in a heat death was based on an idea that I call the cooking rule. The cooking rule says that a piece of steak gets warmer when we put it on a hot grill. More generally, the rule says that any object gets warmer when it gains energy, and gets cooler when it loses energy. Humans have been cooking steaks for thousands of years, and nobody ever saw a steak get colder while cooking on a fire. The cooking rule is true for objects small enough for us to handle. If the cooking rule is always true, then Lord Kelvin’s argument for the heat death is correct.
  • the cooking rule is not true for objects of astronomical size, for which gravitation is the dominant form of energy. The sun is a familiar example. As the sun loses energy by radiation, it becomes hotter and not cooler. Since the sun is made of compressible gas squeezed by its own gravitation, loss of energy causes it to become smaller and denser, and the compression causes it to become hotter. For almost all astronomical objects, gravitation dominates, and they have the same unexpected behavior. Gravitation reverses the usual relation between energy and temperature. In the domain of astronomy, when heat flows from hotter to cooler objects, the hot objects get hotter and the cool objects get cooler. As a result, temperature differences in the astronomical universe tend to increase rather than decrease as time goes on. There is no final state of uniform temperature, and there is no heat death. Gravitation gives us a universe hospitable to life. Information and order can continue to grow for billions of years in the future, as they have evidently grown in the past.
  • The vision of the future as an infinite playground, with an unending sequence of mysteries to be understood by an unending sequence of players exploring an unending supply of information, is a glorious vision for scientists. Scientists find the vision attractive, since it gives them a purpose for their existence and an unending supply of jobs. The vision is less attractive to artists and writers and ordinary people. Ordinary people are more interested in friends and family than in science. Ordinary people may not welcome a future spent swimming in an unending flood of information.
  • A darker view of the information-dominated universe was described in a famous story, “The Library of Babel,” by Jorge Luis Borges in 1941.3 Borges imagined his library, with an infinite array of books and shelves and mirrors, as a metaphor for the universe.
  • Gleick’s book has an epilogue entitled “The Return of Meaning,” expressing the concerns of people who feel alienated from the prevailing scientific culture. The enormous success of information theory came from Shannon’s decision to separate information from meaning. His central dogma, “Meaning is irrelevant,” declared that information could be handled with greater freedom if it was treated as a mathematical abstraction independent of meaning. The consequence of this freedom is the flood of information in which we are drowning. The immense size of modern databases gives us a feeling of meaninglessness. Information in such quantities reminds us of Borges’s library extending infinitely in all directions. It is our task as humans to bring meaning back into this wasteland. As finite creatures who think and feel, we can create islands of meaning in the sea of information. Gleick ends his book with Borges’s image of the human condition:We walk the corridors, searching the shelves and rearranging them, looking for lines of meaning amid leagues of cacophony and incoherence, reading the history of the past and of the future, collecting our thoughts and collecting the thoughts of others, and every so often glimpsing mirrors, in which we may recognize creatures of the information.
Weiye Loh

Science, Strong Inference -- Proper Scientific Method - 0 views

  • Scientists these days tend to keep up a polite fiction that all science is equal. Except for the work of the misguided opponent whose arguments we happen to be refuting at the time, we speak as though every scientist's field and methods of study are as good as every other scientist's and perhaps a little better. This keeps us all cordial when it comes to recommending each other for government grants.
  • Why should there be such rapid advances in some fields and not in others? I think the usual explanations that we tend to think of - such as the tractability of the subject, or the quality or education of the men drawn into it, or the size of research contracts - are important but inadequate. I have begun to believe that the primary factor in scientific advance is an intellectual one. These rapidly moving fields are fields where a particular method of doing scientific research is systematically used and taught, an accumulative method of inductive inference that is so effective that I think it should be given the name of "strong inference." I believe it is important to examine this method, its use and history and rationale, and to see whether other groups and individuals might learn to adopt it profitably in their own scientific and intellectual work. In its separate elements, strong inference is just the simple and old-fashioned method of inductive inference that goes back to Francis Bacon. The steps are familiar to every college student and are practiced, off and on, by every scientist. The difference comes in their systematic application. Strong inference consists of applying the following steps to every problem in science, formally and explicitly and regularly: Devising alternative hypotheses; Devising a crucial experiment (or several of them), with alternative possible outcomes, each of which will, as nearly is possible, exclude one or more of the hypotheses; Carrying out the experiment so as to get a clean result; Recycling the procedure, making subhypotheses or sequential hypotheses to refine the possibilities that remain, and so on.
  • On any new problem, of course, inductive inference is not as simple and certain as deduction, because it involves reaching out into the unknown. Steps 1 and 2 require intellectual inventions, which must be cleverly chosen so that hypothesis, experiment, outcome, and exclusion will be related in a rigorous syllogism; and the question of how to generate such inventions is one which has been extensively discussed elsewhere (2, 3). What the formal schema reminds us to do is to try to make these inventions, to take the next step, to proceed to the next fork, without dawdling or getting tied up in irrelevancies.
  • ...28 more annotations...
  • It is clear why this makes for rapid and powerful progress. For exploring the unknown, there is no faster method; this is the minimum sequence of steps. Any conclusion that is not an exclusion is insecure and must be rechecked. Any delay in recycling to the next set of hypotheses is only a delay. Strong inference, and the logical tree it generates, are to inductive reasoning what the syllogism is to deductive reasoning in that it offers a regular method for reaching firm inductive conclusions one after the other as rapidly as possible.
  • "But what is so novel about this?" someone will say. This is the method of science and always has been, why give it a special name? The reason is that many of us have almost forgotten it. Science is now an everyday business. Equipment, calculations, lectures become ends in themselves. How many of us write down our alternatives and crucial experiments every day, focusing on the exclusion of a hypothesis? We may write our scientific papers so that it looks as if we had steps 1, 2, and 3 in mind all along. But in between, we do busywork. We become "method- oriented" rather than "problem-oriented." We say we prefer to "feel our way" toward generalizations. We fail to teach our students how to sharpen up their inductive inferences. And we do not realize the added power that the regular and explicit use of alternative hypothesis and sharp exclusion could give us at every step of our research.
  • A distinguished cell biologist rose and said, "No two cells give the same properties. Biology is the science of heterogeneous systems." And he added privately. "You know there are scientists, and there are people in science who are just working with these over-simplified model systems - DNA chains and in vitro systems - who are not doing science at all. We need their auxiliary work: they build apparatus, they make minor studies, but they are not scientists." To which Cy Levinthal replied: "Well, there are two kinds of biologists, those who are looking to see if there is one thing that can be understood and those who keep saying it is very complicated and that nothing can be understood. . . . You must study the simplest system you think has the properties you are interested in."
  • At the 1958 Conference on Biophysics, at Boulder, there was a dramatic confrontation between the two points of view. Leo Szilard said: "The problems of how enzymes are induced, of how proteins are synthesized, of how antibodies are formed, are closer to solution than is generally believed. If you do stupid experiments, and finish one a year, it can take 50 years. But if you stop doing experiments for a little while and think how proteins can possibly be synthesized, there are only about 5 different ways, not 50! And it will take only a few experiments to distinguish these." One of the young men added: "It is essentially the old question: How small and elegant an experiment can you perform?" These comments upset a number of those present. An electron microscopist said. "Gentlemen, this is off the track. This is philosophy of science." Szilard retorted. "I was not quarreling with third-rate scientists: I was quarreling with first-rate scientists."
  • Any criticism or challenge to consider changing our methods strikes of course at all our ego-defenses. But in this case the analytical method offers the possibility of such great increases in effectiveness that it is unfortunate that it cannot be regarded more often as a challenge to learning rather than as challenge to combat. Many of the recent triumphs in molecular biology have in fact been achieved on just such "oversimplified model systems," very much along the analytical lines laid down in the 1958 discussion. They have not fallen to the kind of men who justify themselves by saying "No two cells are alike," regardless of how true that may ultimately be. The triumphs are in fact triumphs of a new way of thinking.
  • the emphasis on strong inference
  • is also partly due to the nature of the fields themselves. Biology, with its vast informational detail and complexity, is a "high-information" field, where years and decades can easily be wasted on the usual type of "low-information" observations or experiments if one does not think carefully in advance about what the most important and conclusive experiments would be. And in high-energy physics, both the "information flux" of particles from the new accelerators and the million-dollar costs of operation have forced a similar analytical approach. It pays to have a top-notch group debate every experiment ahead of time; and the habit spreads throughout the field.
  • Historically, I think, there have been two main contributions to the development of a satisfactory strong-inference method. The first is that of Francis Bacon (13). He wanted a "surer method" of "finding out nature" than either the logic-chopping or all-inclusive theories of the time or the laudable but crude attempts to make inductions "by simple enumeration." He did not merely urge experiments as some suppose, he showed the fruitfulness of interconnecting theory and experiment so that the one checked the other. Of the many inductive procedures he suggested, the most important, I think, was the conditional inductive tree, which proceeded from alternative hypothesis (possible "causes," as he calls them), through crucial experiments ("Instances of the Fingerpost"), to exclusion of some alternatives and adoption of what is left ("establishing axioms"). His Instances of the Fingerpost are explicitly at the forks in the logical tree, the term being borrowed "from the fingerposts which are set up where roads part, to indicate the several directions."
  • ere was a method that could separate off the empty theories! Bacon, said the inductive method could be learned by anybody, just like learning to "draw a straighter line or more perfect circle . . . with the help of a ruler or a pair of compasses." "My way of discovering sciences goes far to level men's wit and leaves but little to individual excellence, because it performs everything by the surest rules and demonstrations." Even occasional mistakes would not be fatal. "Truth will sooner come out from error than from confusion."
  • Nevertheless there is a difficulty with this method. As Bacon emphasizes, it is necessary to make "exclusions." He says, "The induction which is to be available for the discovery and demonstration of sciences and arts, must analyze nature by proper rejections and exclusions, and then, after a sufficient number of negatives come to a conclusion on the affirmative instances." "[To man] it is granted only to proceed at first by negatives, and at last to end in affirmatives after exclusion has been exhausted." Or, as the philosopher Karl Popper says today there is no such thing as proof in science - because some later alternative explanation may be as good or better - so that science advances only by disproofs. There is no point in making hypotheses that are not falsifiable because such hypotheses do not say anything, "it must be possible for all empirical scientific system to be refuted by experience" (14).
  • The difficulty is that disproof is a hard doctrine. If you have a hypothesis and I have another hypothesis, evidently one of them must be eliminated. The scientist seems to have no choice but to be either soft-headed or disputatious. Perhaps this is why so many tend to resist the strong analytical approach and why some great scientists are so disputatious.
  • Fortunately, it seems to me, this difficulty can be removed by the use of a second great intellectual invention, the "method of multiple hypotheses," which is what was needed to round out the Baconian scheme. This is a method that was put forward by T.C. Chamberlin (15), a geologist at Chicago at the turn of the century, who is best known for his contribution to the Chamberlain-Moulton hypothesis of the origin of the solar system.
  • Chamberlin says our trouble is that when we make a single hypothesis, we become attached to it. "The moment one has offered an original explanation for a phenomenon which seems satisfactory, that moment affection for his intellectual child springs into existence, and as the explanation grows into a definite theory his parental affections cluster about his offspring and it grows more and more dear to him. . . . There springs up also unwittingly a pressing of the theory to make it fit the facts and a pressing of the facts to make them fit the theory..." "To avoid this grave danger, the method of multiple working hypotheses is urged. It differs from the simple working hypothesis in that it distributes the effort and divides the affections. . . . Each hypothesis suggests its own criteria, its own method of proof, its own method of developing the truth, and if a group of hypotheses encompass the subject on all sides, the total outcome of means and of methods is full and rich."
  • The conflict and exclusion of alternatives that is necessary to sharp inductive inference has been all too often a conflict between men, each with his single Ruling Theory. But whenever each man begins to have multiple working hypotheses, it becomes purely a conflict between ideas. It becomes much easier then for each of us to aim every day at conclusive disproofs - at strong inference - without either reluctance or combativeness. In fact, when there are multiple hypotheses, which are not anyone's "personal property," and when there are crucial experiments to test them, the daily life in the laboratory takes on an interest and excitement it never had, and the students can hardly wait to get to work to see how the detective story will come out. It seems to me that this is the reason for the development of those distinctive habits of mind and the "complex thought" that Chamberlin described, the reason for the sharpness, the excitement, the zeal, the teamwork - yes, even international teamwork - in molecular biology and high- energy physics today. What else could be so effective?
  • Unfortunately, I think, there are other other areas of science today that are sick by comparison, because they have forgotten the necessity for alternative hypotheses and disproof. Each man has only one branch - or none - on the logical tree, and it twists at random without ever coming to the need for a crucial decision at any point. We can see from the external symptoms that there is something scientifically wrong. The Frozen Method, The Eternal Surveyor, The Never Finished, The Great Man With a Single Hypothcsis, The Little Club of Dependents, The Vendetta, The All-Encompassing Theory Which Can Never Be Falsified.
  • a "theory" of this sort is not a theory at all, because it does not exclude anything. It predicts everything, and therefore does not predict anything. It becomes simply a verbal formula which the graduate student repeats and believes because the professor has said it so often. This is not science, but faith; not theory, but theology. Whether it is hand-waving or number-waving, or equation-waving, a theory is not a theory unless it can be disproved. That is, unless it can be falsified by some possible experimental outcome.
  • the work methods of a number of scientists have been testimony to the power of strong inference. Is success not due in many cases to systematic use of Bacon's "surest rules and demonstrations" as much as to rare and unattainable intellectual power? Faraday's famous diary (16), or Fermi's notebooks (3, 17), show how these men believed in the effectiveness of daily steps in applying formal inductive methods to one problem after another.
  • Surveys, taxonomy, design of equipment, systematic measurements and tables, theoretical computations - all have their proper and honored place, provided they are parts of a chain of precise induction of how nature works. Unfortunately, all too often they become ends in themselves, mere time-serving from the point of view of real scientific advance, a hypertrophied methodology that justifies itself as a lore of respectability.
  • We speak piously of taking measurements and making small studies that will "add another brick to the temple of science." Most such bricks just lie around the brickyard (20). Tables of constraints have their place and value, but the study of one spectrum after another, if not frequently re-evaluated, may become a substitute for thinking, a sad waste of intelligence in a research laboratory, and a mistraining whose crippling effects may last a lifetime.
  • Beware of the man of one method or one instrument, either experimental or theoretical. He tends to become method-oriented rather than problem-oriented. The method-oriented man is shackled; the problem-oriented man is at least reaching freely toward that is most important. Strong inference redirects a man to problem-orientation, but it requires him to be willing repeatedly to put aside his last methods and teach himself new ones.
  • anyone who asks the question about scientific effectiveness will also conclude that much of the mathematizing in physics and chemistry today is irrelevant if not misleading. The great value of mathematical formulation is that when an experiment agrees with a calculation to five decimal places, a great many alternative hypotheses are pretty well excluded (though the Bohr theory and the Schrödinger theory both predict exactly the same Rydberg constant!). But when the fit is only to two decimal places, or one, it may be a trap for the unwary; it may be no better than any rule-of-thumb extrapolation, and some other kind of qualitative exclusion might be more rigorous for testing the assumptions and more important to scientific understanding than the quantitative fit.
  • Today we preach that science is not science unless it is quantitative. We substitute correlations for causal studies, and physical equations for organic reasoning. Measurements and equations are supposed to sharpen thinking, but, in my observation, they more often tend to make the thinking noncausal and fuzzy. They tend to become the object of scientific manipulation instead of auxiliary tests of crucial inferences.
  • Many - perhaps most - of the great issues of science are qualitative, not quantitative, even in physics and chemistry. Equations and measurements are useful when and only when they are related to proof; but proof or disproof comes first and is in fact strongest when it is absolutely convincing without any quantitative measurement.
  • you can catch phenomena in a logical box or in a mathematical box. The logical box is coarse but strong. The mathematical box is fine-grained but flimsy. The mathematical box is a beautiful way of wrapping up a problem, but it will not hold the phenomena unless they have been caught in a logical box to begin with.
  • Of course it is easy - and all too common - for one scientist to call the others unscientific. My point is not that my particular conclusions here are necessarily correct, but that we have long needed some absolute standard of possible scientific effectiveness by which to measure how well we are succeeding in various areas - a standard that many could agree on and one that would be undistorted by the scientific pressures and fashions of the times and the vested interests and busywork that they develop. It is not public evaluation I am interested in so much as a private measure by which to compare one's own scientific performance with what it might be. I believe that strong inference provides this kind of standard of what the maximum possible scientific effectiveness could be - as well as a recipe for reaching it.
  • The strong-inference point of view is so resolutely critical of methods of work and values in science that any attempt to compare specific cases is likely to sound but smug and destructive. Mainly one should try to teach it by example and by exhorting to self-analysis and self-improvement only in general terms
  • one severe but useful private test - a touchstone of strong inference - that removes the necessity for third-person criticism, because it is a test that anyone can learn to carry with him for use as needed. It is our old friend the Baconian "exclusion," but I call it "The Question." Obviously it should be applied as much to one's own thinking as to others'. It consists of asking in your own mind, on hearing any scientific explanation or theory put forward, "But sir, what experiment could disprove your hypothesis?"; or, on hearing a scientific experiment described, "But sir, what hypothesis does your experiment disprove?"
  • It is not true that all science is equal; or that we cannot justly compare the effectiveness of scientists by any method other than a mutual-recommendation system. The man to watch, the man to put your money on, is not the man who wants to make "a survey" or a "more detailed study" but the man with the notebook, the man with the alternative hypotheses and the crucial experiments, the man who knows how to answer your Question of disproof and is already working on it.
  •  
    There is so much bad science and bad statistics information in media reports, publications, and shared between conversants that I think it is important to understand about facts and proofs and the associated pitfalls.
Weiye Loh

Sociologist Harry Collins poses as a physicist. - By Jon Lackman - Slate Magazine - 0 views

  • British sociologist Harry Collins asked a scientist who specializes in gravitational waves to answer seven questions about the physics of these waves. Collins, who has made an amateur study of this field for more than 30 years but has never actually practiced it, also answered the questions himself. Then he submitted both sets of answers to a panel of judges who are themselves gravitational-wave researchers. The judges couldn't tell the impostor from one of their own. Collins argues that he is therefore as qualified as anyone to discuss this field, even though he can't conduct experiments in it.
  • The journal Nature predicted that the experiment would have a broad impact, writing that Collins could help settle the "science wars of the 1990s," "when sociologists launched what scientists saw as attacks on the very nature of science, and scientists responded in kind," accusing the sociologists of misunderstanding science. More generally, it could affect "the argument about whether an outsider, such as an anthropologist, can properly understand another group, such as a remote rural community." With this comment, Nature seemed to be saying that if a sociologist can understand physics, then anyone can understand anything.
  • It will be interesting to see if Collins' results can indeed be repeated in different situations. Meanwhile, his experiment is plenty interesting in itself. Just one of the judges succeeded in distinguishing Collins' answers from those of the trained experts. One threw up his hands. And the other seven declared Collins the physicist. He didn't simply do as well as the trained specialist—he did better, even though the test questions demanded technical answers. One sample answer from Collins gives you the flavor: "Since gravitational waves change the shape of spacetime and radio waves do not, the effect on an interferometer of radio waves can only be to mimic the effects of a gravitational wave, not reproduce them." (More details can be found in this paper Collins wrote with his collaborators.)
  • ...5 more annotations...
  • To be sure, a differently designed experiment would have presented more difficulty for Collins. If he'd chosen questions that involved math, they would have done him in
  • But many scientists consider themselves perfectly qualified to discuss topics for which they lack the underlying mathematical skills, as Collins noted when I talked to him. "You can be a great physicist and not know any mathematics," he said.
  • So, if Collins can talk gravitational waves as well as an insider, who cares if he doesn't know how to crunch the numbers? Alan Sokal does. The New York University physicist is famous for an experiment a decade ago that seemed to demonstrate the futility of laymen discussing science. In 1996, he tricked the top humanities journal Social Text into publishing as genuine scholarship a totally nonsensical paper that celebrated fashionable literary theory and then applied it to all manner of scientific questions. ("As Lacan suspected, there is an intimate connection between the external structure of the physical world and its inner psychological representation qua knot theory.") Sokal showed that, with a little flattery, laymen could be induced to swallow the most ridiculous of scientific canards—so why should we value their opinions on science as highly as scientists'?
  • Sokal doesn't think Collins has proved otherwise. When I reached him this week, he acknowledged that you don't need to practice science in order to understand it. But he maintains, as he put it to Nature, that in many science debates, "you need a knowledge of the field that is virtually, if not fully, at the level of researchers in the field," in order to participate. He elaborated: Say there are two scientists, X and Y. If you want to argue that X's theory was embraced over Y's, even though Y's is better, because the science community is biased against Y, then you had better be able to read and evaluate their theories yourself, mathematics included (or collaborate with someone who can). He has a point. Just because mathematics features little in the work of some gravitational-wave physicists doesn't mean it's a trivial part of the subject.
  • Even if Collins didn't demonstrate that he is qualified to pronounce on all of gravitational-wave physics, he did learn more of the subject than anyone may have thought possible. Sokal says he was shocked by Collins' store of knowledge: "He knows more about gravitational waves than I do!" Sokal admitted that Collins was already qualified to pronounce on a lot, and that with a bit more study, he would be the equal of a professional.
Weiye Loh

Mystery and Evidence - NYTimes.com - 0 views

  • a very natural way for atheists to react to religious claims: to ask for evidence, and reject these claims in the absence of it. Many of the several hundred comments that followed two earlier Stone posts “Philosophy and Faith” and “On Dawkins’s Atheism: A Response,” both by Gary Gutting, took this stance. Certainly this is the way that today’s “new atheists”  tend to approach religion. According to their view, religions — by this they mean basically Christianity, Judaism and Islam and I will follow them in this — are largely in the business of making claims about the universe that are a bit like scientific hypotheses. In other words, they are claims — like the claim that God created the world — that are supported by evidence, that are proved by arguments and tested against our experience of the world. And against the evidence, these hypotheses do not seem to fare well.
  • But is this the right way to think about religion? Here I want to suggest that it is not, and to try and locate what seem to me some significant differences between science and religion
  • To begin with, scientific explanation is a very specific and technical kind of knowledge. It requires patience, pedantry, a narrowing of focus and (in the case of the most profound scientific theories) considerable mathematical knowledge and ability. No-one can understand quantum theory — by any account, the most successful physical theory there has ever been — unless they grasp the underlying mathematics. Anyone who says otherwise is fooling themselves.
  • ...16 more annotations...
  • Religious belief is a very different kind of thing. It is not restricted only to those with a certain education or knowledge, it does not require years of training, it is not specialized and it is not technical. (I’m talking here about the content of what people who regularly attend church, mosque or synagogue take themselves to be thinking; I’m not talking about how theologians interpret this content.)
  • while religious belief is widespread, scientific knowledge is not. I would guess that very few people in the world are actually interested in the details of contemporary scientific theories. Why? One obvious reason is that many lack access to this knowledge. Another reason is that even when they have access, these theories require sophisticated knowledge and abilities, which not everyone is capable of getting.
  • most people aren’t deeply interested in science, even when they have the opportunity and the basic intellectual capacity to learn about it. Of course, educated people who know about science know roughly what Einstein, Newton and Darwin said. Many educated people accept the modern scientific view of the world and understand its main outlines. But this is not the same as being interested in the details of science, or being immersed in scientific thinking.
  • This lack of interest in science contrasts sharply with the worldwide interest in religion. It’s hard to say whether religion is in decline or growing, partly because it’s hard to identify only one thing as religion — not a question I can address here. But it’s pretty obvious that whatever it is, religion commands and absorbs the passions and intellects of hundreds of millions of people, many more people than science does. Why is this? Is it because — as the new atheists might argue — they want to explain the world in a scientific kind of way, but since they have not been properly educated they haven’t quite got there yet? Or is it because so many people are incurably irrational and are incapable of scientific thinking? Or is something else going on?
  • Some philosophers have said that religion is so unlike science that it has its own “grammar” or “logic” and should not be held accountable to the same standards as scientific or ordinary empirical belief. When Christians express their belief that “Christ has risen,” for example, they should not be taken as making a factual claim, but as expressing their commitment to what Wittgenstein called a certain “form of life,” a way of seeing significance in the world, a moral and practical outlook which is worlds away from scientific explanation.
  • This view has some merits, as we shall see, but it grossly misrepresents some central phenomena of religion. It is absolutely essential to religions that they make certain factual or historical claims. When Saint Paul says “if Christ is not risen, then our preaching is in vain and our faith is in vain” he is saying that the point of his faith depends on a certain historical occurrence.
  • Theologians will debate exactly what it means to claim that Christ has risen, what exactly the meaning and significance of this occurrence is, and will give more or less sophisticated accounts of it. But all I am saying is that whatever its specific nature, Christians must hold that there was such an occurrence. Christianity does make factual, historical claims. But this is not the same as being a kind of proto-science. This will become clear if we reflect a bit on what science involves.
  • The essence of science involves making hypotheses about the causes and natures of things, in order to explain the phenomena we observe around us, and to predict their future behavior. Some sciences — medical science, for example — make hypotheses about the causes of diseases and test them by intervening. Others — cosmology, for example — make hypotheses that are more remote from everyday causes, and involve a high level of mathematical abstraction and idealization. Scientific reasoning involves an obligation to hold a hypothesis only to the extent that the evidence requires it. Scientists should not accept hypotheses which are “ad hoc” — that is, just tailored for one specific situation but cannot be generalized to others. Most scientific theories involve some kind of generalization: they don’t just make claims about one thing, but about things of a general kind. And their hypotheses are designed, on the whole, to make predictions; and if these predictions don’t come out true, then this is something for the scientists to worry about.
  • Religions do not construct hypotheses in this sense. I said above that Christianity rests upon certain historical claims, like the claim of the resurrection. But this is not enough to make scientific hypotheses central to Christianity, any more than it makes such hypotheses central to history. It is true, as I have just said, that Christianity does place certain historical events at the heart of their conception of the world, and to that extent, one cannot be a Christian unless one believes that these events happened. Speaking for myself, it is because I reject the factual basis of the central Christian doctrines that I consider myself an atheist. But I do not reject these claims because I think they are bad hypotheses in the scientific sense. Not all factual claims are scientific hypotheses. So I disagree with Richard Dawkins when he says “religions make existence claims, and this means scientific claims.”
  • Taken as hypotheses, religious claims do very badly: they are ad hoc, they are arbitrary, they rarely make predictions and when they do they almost never come true. Yet the striking fact is that it does not worry Christians when this happens. In the gospels Jesus predicts the end of the world and the coming of the kingdom of God. It does not worry believers that Jesus was wrong (even if it causes theologians to reinterpret what is meant by ‘the kingdom of God’). If Jesus was framing something like a scientific hypothesis, then it should worry them. Critics of religion might say that this just shows the manifest irrationality of religion. But what it suggests to me is that that something else is going on, other than hypothesis formation.
  • Religious belief tolerates a high degree of mystery and ignorance in its understanding of the world. When the devout pray, and their prayers are not answered, they do not take this as evidence which has to be weighed alongside all the other evidence that prayer is effective. They feel no obligation whatsoever to weigh the evidence. If God does not answer their prayers, well, there must be some explanation of this, even though we may never know it. Why do people suffer if an omnipotent God loves them? Many complex answers have been offered, but in the end they come down to this: it’s a mystery.
  • Science too has its share of mysteries (or rather: things that must simply be accepted without further explanation). But one aim of science is to minimize such things, to reduce the number of primitive concepts or primitive explanations. The religious attitude is very different. It does not seek to minimize mystery. Mysteries are accepted as a consequence of what, for the religious, makes the world meaningful.
  • Religion is an attempt to make sense of the world, but it does not try and do this in the way science does. Science makes sense of the world by showing how things conform to its hypotheses. The characteristic mode of scientific explanation is showing how events fit into a general pattern.
  • Religion, on the other hand, attempts to make sense of the world by seeing a kind of meaning or significance in things. This kind of significance does not need laws or generalizations, but just the sense that the everyday world we experience is not all there is, and that behind it all is the mystery of God’s presence. The believer is already convinced that God is present in everything, even if they cannot explain this or support it with evidence. But it makes sense of their life by suffusing it with meaning. This is the attitude (seeing God in everything) expressed in George Herbert’s poem, “The Elixir.” Equipped with this attitude, even the most miserable tasks can come to have value: Who sweeps a room as for Thy laws/ Makes that and th’ action fine.
  • None of these remarks are intended as being for or against religion. Rather, they are part of an attempt (by an atheist, from the outside) to understand what it is. Those who criticize religion should have an accurate understanding of what it is they are criticizing. But to understand a world view, or a philosophy or system of thought, it is not enough just to understand the propositions it contains. You also have to understand what is central and what is peripheral to the view. Religions do make factual and historical claims, and if these claims are false, then the religions fail. But this dependence on fact does not make religious claims anything like hypotheses in the scientific sense. Hypotheses are not central. Rather, what is central is the commitment to the meaningfulness (and therefore the mystery) of the world.
  • while religious thinking is widespread in the world, scientific thinking is not. I don’t think that this can be accounted for merely in terms of the ignorance or irrationality of human beings. Rather, it is because of the kind of intellectual, emotional and practical appeal that religion has for people, which is a very different appeal from the kind of appeal that science has. Stephen Jay Gould once argued that religion and science are “non-overlapping magisteria.” If he meant by this that religion makes no factual claims which can be refuted by empirical investigations, then he was wrong. But if he meant that religion and science are very different kinds of attempt to understand the world, then he was certainly right.
  •  
    Mystery and Evidence By TIM CRANE
Weiye Loh

Climategate: Hiding the Decline? - 0 views

  • Regarding the “hide the decline” email, Jones has explained that when he used the word “trick”, he simply meant “a mathematical approach brought to bear to solve a problem”. The inquiry made the following criticism of the resulting graph (its emphasis): [T]he figure supplied for the WMO Report was misleading. We do not find that it is misleading to curtail reconstructions at some point per se, or to splice data, but we believe that both of these procedures should have been made plain — ideally in the figure but certainly clearly described in either the caption or the text. [1.3.2] But this was one isolated instance that occurred more than a decade ago. The Review did not find anything wrong with the overall picture painted about divergence (or uncertainties generally) in the literature and in IPCC reports. The Review notes that the WMO report in question “does not have the status or importance of the IPCC reports”, and concludes that divergence “is not hidden” and “the subject is openly and extensively discussed in the literature, including CRU papers.” [1.3.2]
  • As for the treatment of uncertainty in the AR4’s paleoclimate chapter, the Review concludes that the central Figure 6.10 is not misleading, that “[t]he variation within and between lines, as well as the depiction of uncertainty is quite apparent to any reader”, that “there has been no exclusion of other published temperature reconstructions which would show a very different picture”, and that “[t]he general discussion of sources of uncertainty in the text is extensive, including reference to divergence”. [7.3.1]
  • Regarding CRU’s selections of tree ring series, the Review does not presume to say whether one series is better than another, though it does point out that CRU have responded to the accusation that Briffa misused the Yamal data on their website. The Review found no evidence that CRU scientists knowingly promoted non-representative series or that their input cast doubt on the IPCC’s conclusions. The much-maligned Yamal series was included in only 4 of the 12 temperature reconstructions in the AR4 (and not at all in the TAR).
  • ...1 more annotation...
  • What about the allegation that CRU withheld the Yamal data? The Review found that “CRU did not withhold the underlying raw data (having correctly directed the single request to the owners)”, although “we believe that CRU should have ensured that the data they did not own, but on which their publications relied, was archived in a more timely way.” [1.3.2]
  •  
    Regarding the "hide the decline" email, Jones has explained that when he used the word "trick", he simply meant "a mathematical approach brought to bear to solve a problem". The inquiry made the following criticism of the resulting graph (its emphasis): [T]he figure supplied for the WMO Report was misleading. We do not find that it is misleading to curtail reconstructions at some point per se, or to splice data, but we believe that both of these procedures should have been made plain - ideally in the figure but certainly clearly described in either the caption or the text. [1.3.2] But this was one isolated instance that occurred more than a decade ago. The Review did not find anything wrong with the overall picture painted about divergence (or uncertainties generally) in the literature and in IPCC reports. The Review notes that the WMO report in question "does not have the status or importance of the IPCC reports", and concludes that divergence "is not hidden" and "the subject is openly and extensively discussed in the literature, including CRU papers." [1.3.2]
Weiye Loh

New voting methods and fair elections : The New Yorker - 0 views

  • history of voting math comes mainly in two chunks: the period of the French Revolution, when some members of France’s Academy of Sciences tried to deduce a rational way of conducting elections, and the nineteen-fifties onward, when economists and game theorists set out to show that this was impossible
  • The first mathematical account of vote-splitting was given by Jean-Charles de Borda, a French mathematician and a naval hero of the American Revolutionary War. Borda concocted examples in which one knows the order in which each voter would rank the candidates in an election, and then showed how easily the will of the majority could be frustrated in an ordinary vote. Borda’s main suggestion was to require voters to rank candidates, rather than just choose one favorite, so that a winner could be calculated by counting points awarded according to the rankings. The key idea was to find a way of taking lower preferences, as well as first preferences, into account.Unfortunately, this method may fail to elect the majority’s favorite—it could, in theory, elect someone who was nobody’s favorite. It is also easy to manipulate by strategic voting.
  • If the candidate who is your second preference is a strong challenger to your first preference, you may be able to help your favorite by putting the challenger last. Borda’s response was to say that his system was intended only for honest men.
  • ...15 more annotations...
  • After the Academy dropped Borda’s method, it plumped for a simple suggestion by the astronomer and mathematician Pierre-Simon Laplace, who was an important contributor to the theory of probability. Laplace’s rule insisted on an over-all majority: at least half the votes plus one. If no candidate achieved this, nobody was elected to the Academy.
  • Another early advocate of proportional representation was John Stuart Mill, who, in 1861, wrote about the critical distinction between “government of the whole people by the whole people, equally represented,” which was the ideal, and “government of the whole people by a mere majority of the people exclusively represented,” which is what winner-takes-all elections produce. (The minority that Mill was most concerned to protect was the “superior intellects and characters,” who he feared would be swamped as more citizens got the vote.)
  • The key to proportional representation is to enlarge constituencies so that more than one winner is elected in each, and then try to align the share of seats won by a party with the share of votes it receives. These days, a few small countries, including Israel and the Netherlands, treat their entire populations as single constituencies, and thereby get almost perfectly proportional representation. Some places require a party to cross a certain threshold of votes before it gets any seats, in order to filter out extremists.
  • The main criticisms of proportional representation are that it can lead to unstable coalition governments, because more parties are successful in elections, and that it can weaken the local ties between electors and their representatives. Conveniently for its critics, and for its defenders, there are so many flavors of proportional representation around the globe that you can usually find an example of whatever point you want to make. Still, more than three-quarters of the world’s rich countries seem to manage with such schemes.
  • The alternative voting method that will be put to a referendum in Britain is not proportional representation: it would elect a single winner in each constituency, and thus steer clear of what foreigners put up with. Known in the United States as instant-runoff voting, the method was developed around 1870 by William Ware
  • In instant-runoff elections, voters rank all or some of the candidates in order of preference, and votes may be transferred between candidates. The idea is that your vote may count even if your favorite loses. If any candidate gets more than half of all the first-preference votes, he or she wins, and the game is over. But, if there is no majority winner, the candidate with the fewest first-preference votes is eliminated. Then the second-preference votes of his or her supporters are distributed to the other candidates. If there is still nobody with more than half the votes, another candidate is eliminated, and the process is repeated until either someone has a majority or there are only two candidates left, in which case the one with the most votes wins. Third, fourth, and lower preferences will be redistributed if a voter’s higher preferences have already been transferred to candidates who were eliminated earlier.
  • At first glance, this is an appealing approach: it is guaranteed to produce a clear winner, and more voters will have a say in the election’s outcome. Look more closely, though, and you start to see how peculiar the logic behind it is. Although more people’s votes contribute to the result, they do so in strange ways. Some people’s second, third, or even lower preferences count for as much as other people’s first preferences. If you back the loser of the first tally, then in the subsequent tallies your second (and maybe lower) preferences will be added to that candidate’s first preferences. The winner’s pile of votes may well be a jumble of first, second, and third preferences.
  • Such transferrable-vote elections can behave in topsy-turvy ways: they are what mathematicians call “non-monotonic,” which means that something can go up when it should go down, or vice versa. Whether a candidate who gets through the first round of counting will ultimately be elected may depend on which of his rivals he has to face in subsequent rounds, and some votes for a weaker challenger may do a candidate more good than a vote for that candidate himself. In short, a candidate may lose if certain voters back him, and would have won if they hadn’t. Supporters of instant-runoff voting say that the problem is much too rare to worry about in real elections, but recent work by Robert Norman, a mathematician at Dartmouth, suggests otherwise. By Norman’s calculations, it would happen in one in five close contests among three candidates who each have between twenty-five and forty per cent of first-preference votes. With larger numbers of candidates, it would happen even more often. It’s rarely possible to tell whether past instant-runoff elections have gone topsy-turvy in this way, because full ballot data aren’t usually published. But, in Burlington’s 2006 and 2009 mayoral elections, the data were published, and the 2009 election did go topsy-turvy.
  • Kenneth Arrow, an economist at Stanford, examined a set of requirements that you’d think any reasonable voting system could satisfy, and proved that nothing can meet them all when there are more than two candidates. So designing elections is always a matter of choosing a lesser evil. When the Royal Swedish Academy of Sciences awarded Arrow a Nobel Prize, in 1972, it called his result “a rather discouraging one, as regards the dream of a perfect democracy.” Szpiro goes so far as to write that “the democratic world would never be the same again,
  • There is something of a loophole in Arrow’s demonstration. His proof applies only when voters rank candidates; it would not apply if, instead, they rated candidates by giving them grades. First-past-the-post voting is, in effect, a crude ranking method in which voters put one candidate in first place and everyone else last. Similarly, in the standard forms of proportional representation voters rank one party or group of candidates first, and all other parties and candidates last. With rating methods, on the other hand, voters would give all or some candidates a score, to say how much they like them. They would not have to say which is their favorite—though they could in effect do so, by giving only him or her their highest score—and they would not have to decide on an order of preference for the other candidates.
  • One such method is widely used on the Internet—to rate restaurants, movies, books, or other people’s comments or reviews, for example. You give numbers of stars or points to mark how much you like something. To convert this into an election method, count each candidate’s stars or points, and the winner is the one with the highest average score (or the highest total score, if voters are allowed to leave some candidates unrated). This is known as range voting, and it goes back to an idea considered by Laplace at the start of the nineteenth century. It also resembles ancient forms of acclamation in Sparta. The more you like something, the louder you bash your shield with your spear, and the biggest noise wins. A recent variant, developed by two mathematicians in Paris, Michel Balinski and Rida Laraki, uses familiar language rather than numbers for its rating scale. Voters are asked to grade each candidate as, for example, “Excellent,” “Very Good,” “Good,” “Insufficient,” or “Bad.” Judging politicians thus becomes like judging wines, except that you can drive afterward.
  • Range and approval voting deal neatly with the problem of vote-splitting: if a voter likes Nader best, and would rather have Gore than Bush, he or she can approve Nader and Gore but not Bush. Above all, their advocates say, both schemes give voters more options, and would elect the candidate with the most over-all support, rather than the one preferred by the largest minority. Both can be modified to deliver forms of proportional representation.
  • Whether such ideas can work depends on how people use them. If enough people are carelessly generous with their approval votes, for example, there could be some nasty surprises. In an unlikely set of circumstances, the candidate who is the favorite of more than half the voters could lose. Parties in an approval election might spend less time attacking their opponents, in order to pick up positive ratings from rivals’ supporters, and critics worry that it would favor bland politicians who don’t stand for anything much. Defenders insist that such a strategy would backfire in subsequent elections, if not before, and the case of Ronald Reagan suggests that broad appeal and strong views aren’t mutually exclusive.
  • Why are the effects of an unfamiliar electoral system so hard to puzzle out in advance? One reason is that political parties will change their campaign strategies, and voters the way they vote, to adapt to the new rules, and such variables put us in the realm of behavior and culture. Meanwhile, the technical debate about electoral systems generally takes place in a vacuum from which voters’ capriciousness and local circumstances have been pumped out. Although almost any alternative voting scheme now on offer is likely to be better than first past the post, it’s unrealistic to think that one voting method would work equally well for, say, the legislature of a young African republic, the Presidency of an island in Oceania, the school board of a New England town, and the assembly of a country still scarred by civil war. If winner takes all is a poor electoral system, one size fits all is a poor way to pick its replacements.
  • Mathematics can suggest what approaches are worth trying, but it can’t reveal what will suit a particular place, and best deliver what we want from a democratic voting system: to create a government that feels legitimate to people—to reconcile people to being governed, and give them reason to feel that, win or lose (especially lose), the game is fair.
  •  
    WIN OR LOSE No voting system is flawless. But some are less democratic than others. by Anthony Gottlieb
Weiye Loh

When Value Judgments Masquerade as Science - NYTimes.com - 0 views

  • Most people think of the term in the context of production of goods and services: more efficient means more valuable output is wrung from a given bundle of real resources (which is good) or that fewer real resources are burned up to produce a given output (which is also good).
  • In economics, efficiency is also used to evaluate alternative distributions of an available set of goods and services among members of society. In this context, I distinguished in last week’s post between changes in public policies (reallocations of economic welfare) that make some people feel better off and none feel worse off and those that make some people feel better off but others feel worse off.
  • consider whether economists should ever become advocates for a revaluation of China’s currency, the renminbi — or, alternatively, for imposing higher tariffs on Chinese imports. Such a policy would tend to improve the lot of shareholders and employees of manufacturers competing with Chinese imports. Yet it would make American consumers of Chinese goods worse off. If the renminbi were significantly and artificially undervalued against the United States dollar, relative to a free-market exchange rate without government intervention, that would be tantamount to China running a giant, perennial sale on Chinese goods sold to the United States. If you’re an American consumer, what’s not to like about that? So why are so many economists advocating an end to this sale?
  • ...9 more annotations...
  • Strict constructionists argue that their analyses should confine themselves strictly to positive (that is, descriptive) analysis: identify who wins and who loses from a public policy, and how much, but leave judgments about the social merits of the policy to politicians.
  • a researcher’s political ideology or vested interest in a particular theory can still enter even ostensibly descriptive analysis by the data set chosen for the research; the mathematical transformations of raw data and the exclusion of so-called outlier data; the specific form of the mathematical equations posited for estimation; the estimation method used; the number of retrials in estimation to get what strikes the researcher as “plausible” results, and the manner in which final research findings are presented. This is so even among natural scientists discussing global warming. As the late medical journalist Victor Cohn once quoted a scientist, “I would not have seen it if I did not believe it.”
  • anyone who sincerely believes that seemingly scientific, positive research in the sciences — especially the social sciences — is invariably free of the researcher’s own predilections is a Panglossian optimist.
  • majority of economists have been unhappy for more than a century with the limits that the strict constructionist school would place upon their professional purview. They routinely do enter the forum in which public policy is debated
  • The problem with welfare analysis is not so much that ethical dimensions typically enter into it, but that economists pretend that is not so. They do so by justifying their normative dicta with appeal to the seemly scientific but actually value-laden concept of efficiency.
  • economics is not a science that only describes, measures, explains and predicts human interests, values and policies — it also evaluates, promotes, endorses or rejects them. The predicament of economics and all other social sciences consists in their failure to acknowledge honestly their value orientation in their pathetic and inauthentic pretension to emulate the natural sciences they presume to be value free.
  • By the Kaldor-Hicks criterion, a public policy is judged to enhance economic efficiency and overall social welfare — and therefore is to be recommended by economists to decision-makers — if those who gain from the policy could potentially bribe those who lose from it into accepting it and still be better off (Kaldor), or those who lose from it were unable to bribe the gainers into forgoing the policy (Hicks). That the bribe was not paid merely underscores the point.
  • In applications, the Kaldor-Hicks criterion and the efficiency criterion amount to the same thing. When Jack gains $10 and Jill loses $5, social gains increase by $5, so the policy is a good one. When Jack gains $10 and Jill loses $15, there is a deadweight loss of $5, so the policy is bad. Evidently, on the Kaldor-Hicks criterion one need not know who Jack and Jill are, nor anything about their economic circumstances. Furthermore, a truly stunning implication of the criterion is that if a public policy takes $X away from one citizen and gives it to another, and nothing else changes, then such a policy is welfare neutral. Would any non-economist buy that proposition?
  • Virtually all modern textbooks in economics base their treatment of efficiency on Kaldor-Hicks, usually without acknowledging the ethical dimensions of the concept. I use these texts in my economics courses as, I suppose, do most my colleagues around the world. But I explicitly alert my students to the ethical pitfalls in normative welfare economics, with commentaries such as “How Economists Bastardized Benthamite Utilitarianism” and “The Welfare Economics of Health Insurance,” or with assignments that force students to think about this issue. My advice to students and readers is: When you hear us economists wax eloquent on the virtue of greater efficiency — beware!
  •  
    When Value Judgments Masquerade as Science
Weiye Loh

How wise are crowds? - 0 views

  • n the past, economists trying to model the propagation of information through a population would allow any given member of the population to observe the decisions of all the other members, or of a random sampling of them. That made the models easier to deal with mathematically, but it also made them less representative of the real world.
    • Weiye Loh
       
      Random sampling is not representative
  • this paper does is add the important component that this process is typically happening in a social network where you can’t observe what everyone has done, nor can you randomly sample the population to find out what a random sample has done, but rather you see what your particular friends in the network have done,” says Jon Kleinberg, Tisch University Professor in the Cornell University Department of Computer Science, who was not involved in the research. “That introduces a much more complex structure to the problem, but arguably one that’s representative of what typically happens in real settings.”
    • Weiye Loh
       
      So random sampling is actually more accurate?
  • Earlier models, Kleinberg explains, indicated the danger of what economists call information cascades. “If you have a few crucial ingredients — namely, that people are making decisions in order, that they can observe the past actions of other people but they can’t know what those people actually knew — then you have the potential for information cascades to occur, in which large groups of people abandon whatever private information they have and actually, for perfectly rational reasons, follow the crowd,”
  • ...8 more annotations...
  • The MIT researchers’ paper, however, suggests that the danger of information cascades may not be as dire as it previously seemed.
  • a mathematical model that describes attempts by members of a social network to make binary decisions — such as which of two brands of cell phone to buy — on the basis of decisions made by their neighbors. The model assumes that for all members of the population, there is a single right decision: one of the cell phones is intrinsically better than the other. But some members of the network have bad information about which is which.
  • The MIT researchers analyzed the propagation of information under two different conditions. In one case, there’s a cap on how much any one person can know about the state of the world: even if one cell phone is intrinsically better than the other, no one can determine that with 100 percent certainty. In the other case, there’s no such cap. There’s debate among economists and information theorists about which of these two conditions better reflects reality, and Kleinberg suggests that the answer may vary depending on the type of information propagating through the network. But previous models had suggested that, if there is a cap, information cascades are almost inevitable.
  • if there’s no cap on certainty, an expanding social network will eventually converge on an accurate representation of the state of the world; that wasn’t a big surprise. But they also showed that in many common types of networks, even if there is a cap on certainty, convergence will still occur.
  • people in the past have looked at it using more myopic models,” says Acemoglu. “They would be averaging type of models: so my opinion is an average of the opinions of my neighbors’.” In such a model, Acemoglu says, the views of people who are “oversampled” — who are connected with a large enough number of other people — will end up distorting the conclusions of the group as a whole.
  • What we’re doing is looking at it in a much more game-theoretic manner, where individuals are realizing where the information comes from. So there will be some correction factor,” Acemoglu says. “If I’m seeing you, your action, and I’m seeing Munzer’s action, and I also know that there is some probability that you might have observed Munzer, then I discount his opinion appropriately, because I know that I don’t want to overweight it. And that’s the reason why, even though you have these influential agents — it might be that Munzer is everywhere, and everybody observes him — that still doesn’t create a herd on his opinion.”
  • the new paper leaves a few salient questions unanswered, such as how quickly the network will converge on the correct answer, and what happens when the model of agents’ knowledge becomes more complex.
  • the MIT researchers begin to address both questions. One paper examines rate of convergence, although Dahleh and Acemoglu note that that its results are “somewhat weaker” than those about the conditions for convergence. Another paper examines cases in which different agents make different decisions given the same information: some people might prefer one type of cell phone, others another. In such cases, “if you know the percentage of people that are of one type, it’s enough — at least in certain networks — to guarantee learning,” Dahleh says. “I don’t need to know, for every individual, whether they’re for it or against it; I just need to know that one-third of the people are for it, and two-thirds are against it.” For instance, he says, if you notice that a Chinese restaurant in your neighborhood is always half-empty, and a nearby Indian restaurant is always crowded, then information about what percentages of people prefer Chinese or Indian food will tell you which restaurant, if either, is of above-average or below-average quality.
  •  
    By melding economics and engineering, researchers show that as social networks get larger, they usually get better at sorting fact from fiction.
Weiye Loh

Study: Airport Security Should Stop Racial Profiling | Smart Journalism. Real Solutions... - 0 views

  • Plucking out of line most of the vaguely Middle Eastern-looking men at the airport for heightened screening is no more effective at catching terrorists than randomly sampling everyone. It may even be less effective. Press stumbled across this counterintuitive concept — sometimes the best way to find something is not to weight it by probability — in the unrelated context of computational biology. The parallels to airport security struck him when a friend mentioned he was constantly being pulled out of line at the airport.
  • Racial profiling, in other words, doesn’t work because it devotes heightened resources to innocent people — and then devotes those resources to them repeatedly even after they’ve been cleared as innocent the first time. The actual terrorists, meanwhile, may sneak through while Transportation Security Administration agents are focusing their limited attention on the wrong passengers.
  • Press tested the theory in a series of probability equations (the ambitious can check his math here and here).
  • ...3 more annotations...
  • Sampling based on profiling is mathematically no more effective than uniform random sampling. The optimal equation, rather, turns out to be something called “square-root sampling,” a compromise between the other two methods.
  • “Crudely,” Press writes of his findings in the journal Significance, if certain people are “nine times as likely to be the terrorist, we pull out only three times as many of them for special checks. Surprisingly, and bizarrely, this turns out to be the most efficient way of catching the terrorist.”
  • Square-root sampling, though, still represents a kind of profiling, and, Press adds, not one that could be realistically implemented at airports today. Square-root sampling only works if the profile probabilities are accurate in the first place — if we are able to say with mathematical certainty that some types of people are “nine times as likely to be the terrorist” compared to others. TSA agents in a crowded holiday terminal making snap judgments about facial hair would be far from this standard. “The nice thing about uniform sampling is there’s nothing to be inaccurate about, you don’t need any data, it never can be worse than you expect,” Press said. “As soon as you use profile probabilities, if the profile probabilities are just wrong, then the strong profiling just does worse than the random sampling.”
Weiye Loh

Rationally Speaking: Studying folk morality: philosophy, psychology, or what? - 0 views

  • in the magazine article Joshua mentions several studies of “folk morality,” i.e. of how ordinary people think about moral problems. The results are fascinating. It turns out that people’s views are correlated with personality traits, with subjects who score high on “openness to experience” being reliably more relativists than objectivists about morality (I am not using the latter term in the infamous Randyan meaning here, but as Knobe does, to indicate the idea that morality has objective bases).
  • Other studies show that people who are capable of considering multiple options in solving mathematical puzzles also tend to be moral relativists, and — in a study co-authored by Knobe himself — the very same situation (infanticide) was judged along a sliding scale from objectivism to relativism depending on whether the hypothetical scenario involved a fellow American (presumably sharing our same general moral values), the member of an imaginary Amazonian tribe (for which infanticide was acceptable), and an alien from the planet Pentar (belonging to a race whose only goal in life is to turn everything into equilateral pentagons, and killing individuals that might get in the way of that lofty objective is a duty). Oh, and related research also shows that young children tend to be objectivists, while young adults are usually relativists — but that later in life one’s primordial objectivism apparently experiences a comeback.
  • This is all very interesting social science, but is it philosophy? Granted, the differences between various disciplines are often not clear cut, and of course whenever people engage in truly inter-disciplinary work we should simply applaud the effort and encourage further work. But I do wonder in what sense, if any, the kinds of results that Joshua and his colleagues find have much to do with moral philosophy.
  • ...6 more annotations...
  • there seems to me the potential danger of confusing various categories of moral discourse. For instance, are the “folks” studied in these cases actually relativist, or perhaps adherents to one of several versions of moral anti-realism? The two are definitely not the same, but I doubt that the subjects in question could tell the difference (and I wouldn’t expect them to, after all they are not philosophers).
  • why do we expect philosophers to learn from “folk morality” when we do not expect, say, physicists to learn from folk physics (which tends to be Aristotelian in nature), or statisticians from people’s understanding of probability theory (which is generally remarkably poor, as casino owners know very well)? Or even, while I’m at it, why not ask literary critics to discuss Shakespeare in light of what common folks think about the bard (making sure, perhaps, that they have at least read his works, and not just watched the movies)?
  • Hence, my other examples of stat (i.e., math) and literary criticism. I conceive of philosophy in general, and moral philosophy in particular, as more akin to a (science-informed, to be sure) mix between logic and criticism. Some moral philosophy consists in engaging an “if ... then” sort of scenario, akin to logical-mathematical thinking, where one begins with certain axioms and attempts to derive the consequences of such axioms. In other respects, moral philosophers exercise reflective criticism concerning those consequences as they might be relevant to practical problems.
  • For instance, we may write philosophically about abortion, and begin our discussion from a comparison of different conceptions of “person.” We might conclude that “if” one adopts conception X of what a person is, “then” abortion is justifiable under such and such conditions; while “if” one adopts conception Y of a person, “then” abortion is justifiable under a different set of conditions, or not justifiable at all. We could, of course, back up even further and engage in a discussion of what “personhood” is, thus moving from moral philosophy to metaphysics.
  • Nowhere in the above are we going to ask “folks” what they think a person is, or how they think their implicit conception of personhood informs their views on abortion. Of course people’s actual views on abortion are crucial — especially for public policy — and they are intrinsically interesting to social scientists. But they don’t seem to me to make much more contact with philosophy than the above mentioned popular opinions on Shakespeare make contact with serious literary criticism. And please, let’s not play the cheap card of “elitism,” unless we are willing to apply the label to just about any intellectual endeavor, in any discipline.
  • There is one area in which experimental philosophy can potentially contribute to philosophy proper (as opposed to social science). Once we have a more empirically grounded understanding of what people’s moral reasoning actually is, then we can analyze the likely consequences of that reasoning for a variety of societal issues. But now we would be doing something more akin to political than moral philosophy.
  •  
    My colleague Joshua Knobe at Yale University recently published an intriguing article in The Philosopher's Magazine about the experimental philosophy of moral decision making. Joshua and I have had a nice chat during a recent Rationally Speaking podcast dedicated to experimental philosophy, but I'm still not convinced about the whole enterprise.
Weiye Loh

Singapore does not have Third World Living Standards | the kent ridge common - 0 views

  • I apologise for this long overdue article to highlight the erroneous insinuations by my fellow KRC writer’s post, UBS: Singapore has Third World Living Standards.
  • The Satay Club post’s title was “UBS: Singapore has Russian Standard of Living”. The Original UBS report was even less suggestive, and in fact hardly made any value judgment at all. The original UBS report just presented a whole list of statistics, according to whichever esoteric mathematical calculation they used
  • As my JC economics teacher quipped, “If you abuse the statistics long enough, it will confess.” On one hand, UBS has not suggested that Singapore has third world living standards. On the other hand, I think it is justified to question how my KRC writer has managed to conclude from these statistics that Singapore has “Third World Living Standards”.
  • ...2 more annotations...
  • The terminology of “Third World” and “First World” are also problematic. The more “politically correct” terms used now are “developing” and “developed”. Whatever the charge, whatever your choice of terminology, Moscow and Tallinn are hardly “Third World” or “developing”. I have never been there myself, and unfortunately have no personal account to give, but a brief look at the countries listed below Singapore in the Wage Levels index- Beijing, Shanghai, Santiago de Chile, Buenos Aires, Delhi, Mexico City even – would make me cautious about abstracting from these statistics any indication at all about “living standards”.
  • The living “habits” and rhythms of life in all these various cities are as heterogeneous as these statistics are homogenizing, by placing them all on the same scale of measurement. This is not to say that we cannot have fruitful comparatives across societies – but that these statistics are not sufficient for such a venture. At the very least UBS’ mathematical methodology requires a greater analysis which was not provided in the previous KRC article. The burden of proof here is really on my fellow KRC writer to show that Singapore has Third World living standards, and the analysis that has been offered needs more to work.
Weiye Loh

Shakespeare? He's in my DNA | plus.maths.org - 0 views

  •  
    "not only can scientist read DNA sequences from biological samples, they can also "write" them. In the lab they can produce strands of DNA corresponding to particular strings of nucleotides, denoted by the letters A, G, T and C. So if you encode your information in terms of these four letters, you could theoretically store it in DNA. "We already know that DNA is a robust way to store information because we can extract it from bones of woolly mammoths, which date back tens of thousands of years, and make sense of it," explains Nick Goldman of the EMBL-European Bioinformatics Institute (EMBL-EBI). "It's also incredibly small, dense and does not need any power for storage, so shipping and keeping it is easy.""
Weiye Loh

The Origins of "Basic Research" - 0 views

  • For many scientists, "basic research" means "fundamental" or "pure" research conducted without consideration of practical applications. At the same time, policy makers see "basic research" as that which leads to societal benefits including economic growth and jobs.
  • The mechanism that has allowed such divergent views to coexist is of course the so-called "linear model" of innovation, which holds that investments in "basic research" are but the first step in a sequence that progresses through applied research, development, and application. As recently explained in a major report of the US National Academy of Sciences: "[B]asic research ... has the potential to be transformational to maintain the flow of new ideas that fuel the economy, provide security, and enhance the quality of life" (Rising Above the Gathering Storm).
  • A closer look at the actual history of Google reveals how history becomes mythology. The 1994 NSF project that funded the scientific work underpinning the search engine that became Google (as we know it today) was conducted from the start with commercialization in mind: "The technology developed in this project will provide the 'glue' that will make this worldwide collection usable as a unified entity, in a scalable and economically viable fashion." In this case, the scientist following his curiosity had at least one eye simultaneously on commercialization.
  • ...1 more annotation...
  • In their appeal for more funding for scientific research, Leshner and Cooper argued that: "Across society, we don't have to look far for examples of basic research that paid off." They cite the creation of Google as a prime example of such payoffs: "Larry Page and Sergey Brin, then a National Science Foundation [NSF] fellow, did not intend to invent the Google search engine. Originally, they were intrigued by a mathematical challenge ..." The appealing imagery of a scientist who simply follows his curiosity and then makes a discovery with a large societal payoff is part of the core mythology of post-World War II science policies. The mythology shapes how governments around the world organize, account for, and fund research. A large body of scholarship has critiqued postwar science policies and found that, despite many notable successes, the science policies that may have made sense in the middle of the last century may need updating in the 21st century. In short, investments in "basic research" are not enough. Benoit Godin has asserted (PDF) that: "The problem is that the academic lobby has successfully claimed a monopoly on the creation of new knowledge, and that policy makers have been persuaded to confuse the necessary with the sufficient condition that investment in basic research would by itself necessarily lead to successful applications." Or as Leshner and Cooper declare in The Washington Post: "Federal investments in R&D have fueled half of the nation's economic growth since World War II."
Weiye Loh

"Cancer by the Numbers" by John Allen Paulos | Project Syndicate - 0 views

  • The USPSTF recently issued an even sharper warning about the prostate-specific antigen test for prostate cancer, after concluding that the test’s harms outweigh its benefits. Chest X-rays for lung cancer and Pap tests for cervical cancer have received similar, albeit less definitive, criticism.CommentsView/Create comment on this paragraphThe next step in the reevaluation of cancer screening was taken last year, when researchers at the Dartmouth Institute for Health Policy announced that the costs of screening for breast cancer were often minimized, and that the benefits were much exaggerated. Indeed, even a mammogram (almost 40 million are given annually in the US) that detects a cancer does not necessarily save a life.CommentsView/Create comment on this paragraphThe Dartmouth researchers found that, of the estimated 138,000 breast cancers detected annually in the US, the test did not help 120,000-134,000 of the afflicted women. The cancers either were growing so slowly that they did not pose a problem, or they would have been treated successfully if discovered clinically later (or they were so aggressive that little could be done).
Weiye Loh

Is 'More Efficient' Always Better? - NYTimes.com - 1 views

  • Efficiency is the seemingly value-free standard economists use when they make the case for particular policies — say, free trade, more liberal immigration policies, cap-and-trade policies on environmental pollution, the all-volunteer army or congestion tolls. The concept of efficiency is used to justify a reliance on free-market principles, rather than the government, to organize the health care sector, or to make recommendations on taxation, government spending and monetary policy. All of these public policies have one thing in common: They create winners and losers among members of society.
  • can it be said that a more efficient resource allocation is better than a less efficient one, given the changes in the distribution of welfare among members of society that these allocations imply?
  • Suppose a restructuring of the economy has the effect of increasing the growth of average gross domestic product per capita, but that the benefits of that growth accrue disproportionately disproportionately to a minority of citizens, while others are worse off as a result, as appears to have been the case in the United States in the last several decades. Can economists judge this to be a good thing?
  • ...1 more annotation...
  • Indeed, how useful is efficiency as a normative guide to public policy? Can economists legitimately base their advocacy of particular policies on that criterion? That advocacy, especially when supported by mathematical notation and complex graphs, may look like economic science. But when greater efficiency is accompanied by a redistribution of economic privilege in society, subjective ethical dimensions inevitably get baked into the economist’s recommendations.
  •  
    Is 'More Efficient' Always Better?
Weiye Loh

Hayek, The Use of Knowledge in Society | Library of Economics and Liberty - 0 views

  • the "data" from which the economic calculus starts are never for the whole society "given" to a single mind which could work out the implications and can never be so given.
  • The peculiar character of the problem of a rational economic order is determined precisely by the fact that the knowledge of the circumstances of which we must make use never exists in concentrated or integrated form but solely as the dispersed bits of incomplete and frequently contradictory knowledge which all the separate individuals possess.
  • The economic problem of society
  • ...14 more annotations...
  • is a problem of the utilization of knowledge which is not given to anyone in its totality.
  • who is to do the planning. It is about this question that all the dispute about "economic planning" centers. This is not a dispute about whether planning is to be done or not. It is a dispute as to whether planning is to be done centrally, by one authority for the whole economic system, or is to be divided among many individuals. Planning in the specific sense in which the term is used in contemporary controversy necessarily means central planning—direction of the whole economic system according to one unified plan. Competition, on the other hand, means decentralized planning by many separate persons. The halfway house between the two, about which many people talk but which few like when they see it, is the
  • Which of these systems is likely to be more efficient depends mainly on the question under which of them we can expect that fuller use will be made of the existing knowledge.
  • It may be admitted that, as far as scientific knowledge is concerned, a body of suitably chosen experts may be in the best position to command all the best knowledge available—though this is of course merely shifting the difficulty to the problem of selecting the experts.
  • Today it is almost heresy to suggest that scientific knowledge is not the sum of all knowledge. But a little reflection will show that there is beyond question a body of very important but unorganized knowledge which cannot possibly be called scientific in the sense of knowledge of general rules: the knowledge of the particular circumstances of time and place. It is with respect to this that practically every individual has some advantage over all others because he possesses unique information of which beneficial use might be made, but of which use can be made only if the decisions depending on it are left to him or are made with his active coöperation.
  • the relative importance of the different kinds of knowledge; those more likely to be at the disposal of particular individuals and those which we should with greater confidence expect to find in the possession of an authority made up of suitably chosen experts. If it is today so widely assumed that the latter will be in a better position, this is because one kind of knowledge, namely, scientific knowledge, occupies now so prominent a place in public imagination that we tend to forget that it is not the only kind that is relevant.
  • It is a curious fact that this sort of knowledge should today be generally regarded with a kind of contempt and that anyone who by such knowledge gains an advantage over somebody better equipped with theoretical or technical knowledge is thought to have acted almost disreputably. To gain an advantage from better knowledge of facilities of communication or transport is sometimes regarded as almost dishonest, although it is quite as important that society make use of the best opportunities in this respect as in using the latest scientific discoveries.
  • The common idea now seems to be that all such knowledge should as a matter of course be readily at the command of everybody, and the reproach of irrationality leveled against the existing economic order is frequently based on the fact that it is not so available. This view disregards the fact that the method by which such knowledge can be made as widely available as possible is precisely the problem to which we have to find an answer.
  • One reason why economists are increasingly apt to forget about the constant small changes which make up the whole economic picture is probably their growing preoccupation with statistical aggregates, which show a very much greater stability than the movements of the detail. The comparative stability of the aggregates cannot, however, be accounted for—as the statisticians occasionally seem to be inclined to do—by the "law of large numbers" or the mutual compensation of random changes.
  • the sort of knowledge with which I have been concerned is knowledge of the kind which by its nature cannot enter into statistics and therefore cannot be conveyed to any central authority in statistical form. The statistics which such a central authority would have to use would have to be arrived at precisely by abstracting from minor differences between the things, by lumping together, as resources of one kind, items which differ as regards location, quality, and other particulars, in a way which may be very significant for the specific decision. It follows from this that central planning based on statistical information by its nature cannot take direct account of these circumstances of time and place and that the central planner will have to find some way or other in which the decisions depending on them can be left to the "man on the spot."
  • We need decentralization because only thus can we insure that the knowledge of the particular circumstances of time and place will be promptly used. But the "man on the spot" cannot decide solely on the basis of his limited but intimate knowledge of the facts of his immediate surroundings. There still remains the problem of communicating to him such further information as he needs to fit his decisions into the whole pattern of changes of the larger economic system.
  • The problem which we meet here is by no means peculiar to economics but arises in connection with nearly all truly social phenomena, with language and with most of our cultural inheritance, and constitutes really the central theoretical problem of all social science. As Alfred Whitehead has said in another connection, "It is a profoundly erroneous truism, repeated by all copy-books and by eminent people when they are making speeches, that we should cultivate the habit of thinking what we are doing. The precise opposite is the case. Civilization advances by extending the number of important operations which we can perform without thinking about them." This is of profound significance in the social field. We make constant use of formulas, symbols, and rules whose meaning we do not understand and through the use of which we avail ourselves of the assistance of knowledge which individually we do not possess. We have developed these practices and institutions by building upon habits and institutions which have proved successful in their own sphere and which have in turn become the foundation of the civilization we have built up.
  • To assume all the knowledge to be given to a single mind in the same manner in which we assume it to be given to us as the explaining economists is to assume the problem away and to disregard everything that is important and significant in the real world.
  • That an economist of Professor Schumpeter's standing should thus have fallen into a trap which the ambiguity of the term "datum" sets to the unwary can hardly be explained as a simple error. It suggests rather that there is something fundamentally wrong with an approach which habitually disregards an essential part of the phenomena with which we have to deal: the unavoidable imperfection of man's knowledge and the consequent need for a process by which knowledge is constantly communicated and acquired. Any approach, such as that of much of mathematical economics with its simultaneous equations, which in effect starts from the assumption that people's knowledge corresponds with the objective facts of the situation, systematically leaves out what is our main task to explain. I am far from denying that in our system equilibrium analysis has a useful function to perform. But when it comes to the point where it misleads some of our leading thinkers into believing that the situation which it describes has direct relevance to the solution of practical problems, it is high time that we remember that it does not deal with the social process at all and that it is no more than a useful preliminary to the study of the main problem.
  •  
    The Use of Knowledge in Society Hayek, Friedrich A.(1899-1992)
Weiye Loh

Lies, damned lies, and impact factors - The Dayside - 0 views

  • a journal's impact factor for a given year is the average number of citations received by papers published in the journal during the two preceding years. Letters to the editor, editorials, book reviews, and other non-papers are excluded from the impact factor calculation.
  • Review papers that don't necessarily contain new scientific knowledge yet provide useful overviews garner lots of citations. Five of the top 10 perennially highest-impact-factor journals, including the top four, are review journals.
  • Now suppose you're a journal editor or publisher. In these tough financial times, cash-strapped libraries use impact factors to determine which subscriptions to keep and which to cancel. How would you raise your journal's impact factor? Publishing fewer and better papers is one method. Or you could run more review articles. But, as a paper posted recently on arXiv describes, there's another option: You can manipulate the impact factor by publishing your own papers that cite your own journal.
  • ...1 more annotation...
  • Douglas Arnold and Kristine Fowler. "Nefarious Numbers" is the title they chose for the paper. Its abstract reads as follows: We investigate the journal impact factor, focusing on the applied mathematics category. We demonstrate that significant manipulation of the impact factor is being carried out by the editors of some journals and that the impact factor gives a very inaccurate view of journal quality, which is poorly correlated with expert opinion.
  •  
    Lies, damned lies, and impact factors
Weiye Loh

Physics Envy in Development (even worse than in Finance!) - 0 views

  • Andrew Lo and Mark Mueller at MIT have a paper called “WARNING: Physics Envy May Be Hazardous to Your Wealth,” also available as a video.
  • inability to recognize radical UNCERTAINTY is what leads to excessive confidence in mathematical models of reality, and then on to bad policy and prediction. 
  • key concept of the paper is to define a continuum of uncertainty from the less radical to the more radical. You get into trouble when you think there is a higher level of certainty than there really is. 1. Complete Certainty 2.  Risk without Uncertainty (randomness when you know the exact probability distribution) 3. Fully Reducible Uncertainty (known set of outcomes, known model, and lots of data, fits assumptions for classical statistical techniques, so you can get arbitrarily close to Type 2). 4. Partially Reducible Uncertainty (“model uncertainty”: “we are in a casino that may or may not be honest, and the rules tend to change from time to time without notice.”) 5: Irreducible Uncertainty:  Complete Ignorance (consult a priest or astrologer) Physics Envy in Development leads you to think you are in Type 2 or Type 3, when you are really in Type 4. This feeds the futile search for the Grand Unifying Theory of Development.
  •  
    Physics Envy in Development (even worse than in Finance!)
Weiye Loh

Balderdash: The problem with Liberal Utilitarianism - 0 views

  • Sam Harris's reinvention of Utilitarianism/Consequentialism has charmed many, and in my efforts to show people how pure Utilitarianism/Consequentialism fails (in the process encountering people who seem never to have read anything Harris has written or read on the subject, since I have been challenged to show where Harris has proposed Science as the foundation of our moral system, or that one can derive moral facts from facts about the world), "liberal utilitarianism" has been thrown at me as a way to resolve the problems with pure Utilitarianism/Consequentialism.
  • Liberal utilitarianism is not a position that one often encounters. I suspect this is because most philosophers recognise that unless one bites some big bullets, it is incoherent, being beholden to two separate moral theories, which brings many problems when they clash. It is much easier to stick to one foundation of morality.
  • utilitarians typically must claim that ‘the value of liberty. .. is wholly dependent on its contribution to utility. But if that is the case’, he asks, ‘how can the “right” to liberty be absolute and indefeasible when the consequences of exercising the right will surely vary with changing social circumstances?’ (1991, p. 213). His answer is that it cannot be, unless external moral considerations are imported into pure maximizing utilitarianism to guarantee the desired Millian result. In his view, the absolute barrier that Mill extcts against all forms of coercion really seems to require a non-utilitarian justification, even if ‘utilitarianism’ might somehow be defined or enlarged to subsume the requisite form of reasoning. Thus, ‘Mill is a consistent liberal’, he says, ‘whose view is inconsistent with hedonistic or preference utilitarianism’ (ibid., p. 236)...
  • ...4 more annotations...
  • From Riley's Mill on liberty:
  • Mill’s defence of liberty is not utilitarian’ because it ignores the dislike, disgust and so-called ‘moral’ disapproval which others feel as a result of self-regarding conduct.
  • Why doesn’t liberal utilitarianism consider the possibility that aggregate dislike of the individual’s self-regarding conduct might outweigh the value of his liberty, and justify suppression of his conduct? As we have seen, Mill devotes considerable effort to answering this question (111.1 , 10—1 9, IV.8— 12, pp. 260—1, 26 7—75, 280—4). Among other things, liberty in self-regarding matters is essential to the cultivation of individual character, he says, and is not incompatible with similar cultivation by others, because they remain free to think and do as they please, having directly suffered no perceptible damage against their wishes. When all is said and done, his implicit answer is that a person’s liberty in self-regarding matters is infinitely more valuable than any satisfaction the rest of us might take at suppression of his conduct. The utility of self-regarding liberty is of a higher kind than the utility of suppression based on mere dislike (no perceptible damages to others against their wishes is implicated), in that any amount (however small) of the higher kind outweighs any quantity (however large) of the lower.
  • The problem is that if you are using (implicitly or otherwise) mathematics to sum up the expected utility of different choices, you canot plug infinity into any expression, or you will get incoherent results as the expression in question will no longer be well-behaved.
1 - 20 of 31 Next ›
Showing 20 items per page