Skip to main content

Home/ New Media Ethics 2009 course/ Group items tagged Literature

Rss Feed Group items tagged

Weiye Loh

The Mechanic Muse - What Is Distant Reading? - NYTimes.com - 0 views

  • Lit Lab tackles literary problems by scientific means: hypothesis-testing, computational modeling, quantitative analysis. Similar efforts are currently proliferating under the broad rubric of “digital humanities,” but Moretti’s approach is among the more radical. He advocates what he terms “distant reading”: understanding literature not by studying particular texts, but by aggregating and analyzing massive amounts of data.
  • People recognize, say, Gothic literature based on castles, revenants, brooding atmospheres, and the greater frequency of words like “tremble” and “ruin.” Computers recognize Gothic literature based on the greater frequency of words like . . . “the.” Now, that’s interesting. It suggests that genres “possess distinctive features at every possible scale of analysis.” More important for the Lit Lab, it suggests that there are formal aspects of literature that people, unaided, cannot detect.
  • Distant reading might prove to be a powerful tool for studying literature, and I’m intrigued by some of the lab’s other projects, from analyzing the evolution of chapter breaks to quantifying the difference between Irish and English prose styles. But whatever’s happening in this paper is neither powerful nor distant. (The plot networks were assembled by hand; try doing that without reading Hamlet.) By the end, even Moretti concedes that things didn’t unfold as planned. Somewhere along the line, he writes, he “drifted from quantification to the qualitative analysis of plot.”
  • ...5 more annotations...
  • most scholars, whatever their disciplinary background, do not publish negative results.
  • I would admire it more if he didn’t elsewhere dismiss qualitative literary analysis as “a theological exercise.” (Moretti does not subscribe to literary-analytic pluralism: he has suggested that distant reading should supplant, not supplement, close reading.) The counterpoint to theology is science, and reading Moretti, it’s impossible not to notice him jockeying for scientific status. He appears now as literature’s Linnaeus (taxonomizing a vast new trove of data), now as Vesalius (exposing its essential skeleton), now as Galileo (revealing and reordering the universe of books), now as Darwin (seeking “a law of literary ­evolution”).
  • Literature is an artificial universe, and the written word, unlike the natural world, can’t be counted on to obey a set of laws. Indeed, Moretti often mistakes metaphor for fact. Those “skeletons” he perceives inside stories are as imposed as exposed; and literary evolution, unlike the biological kind, is largely an analogy. (As the author and critic Elif Batuman pointed out in an n+1 essay on Moretti’s earlier work, books actually are the result of intelligent design.)
  • Literature, he argues, is “a collective system that should be grasped as such.” But this, too, is a theology of sorts — if not the claim that literature is a system, at least the conviction that we can find meaning only in its totality.
  • The idea that truth can best be revealed through quantitative models dates back to the development of statistics (and boasts a less-than-benign legacy). And the idea that data is gold waiting to be mined; that all entities (including people) are best understood as nodes in a network; that things are at their clearest when they are least particular, most interchangeable, most aggregated — well, perhaps that is not the theology of the average lit department (yet). But it is surely the theology of the 21st century.
Weiye Loh

Rationally Speaking: Truth from fiction: truth or fiction? - 0 views

  • Literature teaches us about life. Literature helps us understand the world.
  • this belief in truth-from-fiction is the party line for those who champion the merits of literature. Eminent English professor and critic Harold Bloom proclaims, in his bestselling How to Read and Why, that one of the main reasons to read literature is because "we require knowledge, not just of self and others, but of the way things are."
  • why would we expect literature to be a reliable source of knowledge about "the way things are"? After all, the narratives which are the most gripping and satisfying to read are not the most representative of how the world actually works. They have dramatic resolutions, foreshadowing, conflict, climax, and surprise. People tend to get their comeuppance after they misbehave. People who pursue their dream passionately tend to succeed. Disaster tends to strike when you least expect it. These narratives are over-represented in literature because they're more gratifying to read; why would we expect to learn from them about "the way things are"?
  • ...2 more annotations...
  • even if authors were all trying to faithfully represent the world as they perceived it, why would we expect their perceptions to be any more universally true than anyone else's?
  • I can't see any reason to give any more weight to the implicit arguments of a novel than we would give to the explicit arguments of any individual person. And yet when we read a novel or study it in school, especially if it's a hallowed classic, we tend to treat its arguments as truths.
  •  
    FRIDAY, JUNE 18, 2010 Truth from fiction: truth or fiction?
Weiye Loh

Climategate: Hiding the Decline? - 0 views

  • Regarding the “hide the decline” email, Jones has explained that when he used the word “trick”, he simply meant “a mathematical approach brought to bear to solve a problem”. The inquiry made the following criticism of the resulting graph (its emphasis): [T]he figure supplied for the WMO Report was misleading. We do not find that it is misleading to curtail reconstructions at some point per se, or to splice data, but we believe that both of these procedures should have been made plain — ideally in the figure but certainly clearly described in either the caption or the text. [1.3.2] But this was one isolated instance that occurred more than a decade ago. The Review did not find anything wrong with the overall picture painted about divergence (or uncertainties generally) in the literature and in IPCC reports. The Review notes that the WMO report in question “does not have the status or importance of the IPCC reports”, and concludes that divergence “is not hidden” and “the subject is openly and extensively discussed in the literature, including CRU papers.” [1.3.2]
  • As for the treatment of uncertainty in the AR4’s paleoclimate chapter, the Review concludes that the central Figure 6.10 is not misleading, that “[t]he variation within and between lines, as well as the depiction of uncertainty is quite apparent to any reader”, that “there has been no exclusion of other published temperature reconstructions which would show a very different picture”, and that “[t]he general discussion of sources of uncertainty in the text is extensive, including reference to divergence”. [7.3.1]
  • Regarding CRU’s selections of tree ring series, the Review does not presume to say whether one series is better than another, though it does point out that CRU have responded to the accusation that Briffa misused the Yamal data on their website. The Review found no evidence that CRU scientists knowingly promoted non-representative series or that their input cast doubt on the IPCC’s conclusions. The much-maligned Yamal series was included in only 4 of the 12 temperature reconstructions in the AR4 (and not at all in the TAR).
  • ...1 more annotation...
  • What about the allegation that CRU withheld the Yamal data? The Review found that “CRU did not withhold the underlying raw data (having correctly directed the single request to the owners)”, although “we believe that CRU should have ensured that the data they did not own, but on which their publications relied, was archived in a more timely way.” [1.3.2]
  •  
    Regarding the "hide the decline" email, Jones has explained that when he used the word "trick", he simply meant "a mathematical approach brought to bear to solve a problem". The inquiry made the following criticism of the resulting graph (its emphasis): [T]he figure supplied for the WMO Report was misleading. We do not find that it is misleading to curtail reconstructions at some point per se, or to splice data, but we believe that both of these procedures should have been made plain - ideally in the figure but certainly clearly described in either the caption or the text. [1.3.2] But this was one isolated instance that occurred more than a decade ago. The Review did not find anything wrong with the overall picture painted about divergence (or uncertainties generally) in the literature and in IPCC reports. The Review notes that the WMO report in question "does not have the status or importance of the IPCC reports", and concludes that divergence "is not hidden" and "the subject is openly and extensively discussed in the literature, including CRU papers." [1.3.2]
Weiye Loh

Odds Are, It's Wrong - Science News - 0 views

  • science has long been married to mathematics. Generally it has been for the better. Especially since the days of Galileo and Newton, math has nurtured science. Rigorous mathematical methods have secured science’s fidelity to fact and conferred a timeless reliability to its findings.
  • a mutant form of math has deflected science’s heart from the modes of calculation that had long served so faithfully. Science was seduced by statistics, the math rooted in the same principles that guarantee profits for Las Vegas casinos. Supposedly, the proper use of statistics makes relying on scientific results a safe bet. But in practice, widespread misuse of statistical methods makes science more like a crapshoot.
  • science’s dirtiest secret: The “scientific method” of testing hypotheses by statistical analysis stands on a flimsy foundation. Statistical tests are supposed to guide scientists in judging whether an experimental result reflects some real effect or is merely a random fluke, but the standard methods mix mutually inconsistent philosophies and offer no meaningful basis for making such decisions. Even when performed correctly, statistical tests are widely misunderstood and frequently misinterpreted. As a result, countless conclusions in the scientific literature are erroneous, and tests of medical dangers or treatments are often contradictory and confusing.
  • ...24 more annotations...
  • Experts in the math of probability and statistics are well aware of these problems and have for decades expressed concern about them in major journals. Over the years, hundreds of published papers have warned that science’s love affair with statistics has spawned countless illegitimate findings. In fact, if you believe what you read in the scientific literature, you shouldn’t believe what you read in the scientific literature.
  • “There are more false claims made in the medical literature than anybody appreciates,” he says. “There’s no question about that.”Nobody contends that all of science is wrong, or that it hasn’t compiled an impressive array of truths about the natural world. Still, any single scientific study alone is quite likely to be incorrect, thanks largely to the fact that the standard statistical system for drawing conclusions is, in essence, illogical. “A lot of scientists don’t understand statistics,” says Goodman. “And they don’t understand statistics because the statistics don’t make sense.”
  • In 2007, for instance, researchers combing the medical literature found numerous studies linking a total of 85 genetic variants in 70 different genes to acute coronary syndrome, a cluster of heart problems. When the researchers compared genetic tests of 811 patients that had the syndrome with a group of 650 (matched for sex and age) that didn’t, only one of the suspect gene variants turned up substantially more often in those with the syndrome — a number to be expected by chance.“Our null results provide no support for the hypothesis that any of the 85 genetic variants tested is a susceptibility factor” for the syndrome, the researchers reported in the Journal of the American Medical Association.How could so many studies be wrong? Because their conclusions relied on “statistical significance,” a concept at the heart of the mathematical analysis of modern scientific experiments.
  • Statistical significance is a phrase that every science graduate student learns, but few comprehend. While its origins stretch back at least to the 19th century, the modern notion was pioneered by the mathematician Ronald A. Fisher in the 1920s. His original interest was agriculture. He sought a test of whether variation in crop yields was due to some specific intervention (say, fertilizer) or merely reflected random factors beyond experimental control.Fisher first assumed that fertilizer caused no difference — the “no effect” or “null” hypothesis. He then calculated a number called the P value, the probability that an observed yield in a fertilized field would occur if fertilizer had no real effect. If P is less than .05 — meaning the chance of a fluke is less than 5 percent — the result should be declared “statistically significant,” Fisher arbitrarily declared, and the no effect hypothesis should be rejected, supposedly confirming that fertilizer works.Fisher’s P value eventually became the ultimate arbiter of credibility for science results of all sorts
  • But in fact, there’s no logical basis for using a P value from a single study to draw any conclusion. If the chance of a fluke is less than 5 percent, two possible conclusions remain: There is a real effect, or the result is an improbable fluke. Fisher’s method offers no way to know which is which. On the other hand, if a study finds no statistically significant effect, that doesn’t prove anything, either. Perhaps the effect doesn’t exist, or maybe the statistical test wasn’t powerful enough to detect a small but real effect.
  • Soon after Fisher established his system of statistical significance, it was attacked by other mathematicians, notably Egon Pearson and Jerzy Neyman. Rather than testing a null hypothesis, they argued, it made more sense to test competing hypotheses against one another. That approach also produces a P value, which is used to gauge the likelihood of a “false positive” — concluding an effect is real when it actually isn’t. What  eventually emerged was a hybrid mix of the mutually inconsistent Fisher and Neyman-Pearson approaches, which has rendered interpretations of standard statistics muddled at best and simply erroneous at worst. As a result, most scientists are confused about the meaning of a P value or how to interpret it. “It’s almost never, ever, ever stated correctly, what it means,” says Goodman.
  • experimental data yielding a P value of .05 means that there is only a 5 percent chance of obtaining the observed (or more extreme) result if no real effect exists (that is, if the no-difference hypothesis is correct). But many explanations mangle the subtleties in that definition. A recent popular book on issues involving science, for example, states a commonly held misperception about the meaning of statistical significance at the .05 level: “This means that it is 95 percent certain that the observed difference between groups, or sets of samples, is real and could not have arisen by chance.”
  • That interpretation commits an egregious logical error (technical term: “transposed conditional”): confusing the odds of getting a result (if a hypothesis is true) with the odds favoring the hypothesis if you observe that result. A well-fed dog may seldom bark, but observing the rare bark does not imply that the dog is hungry. A dog may bark 5 percent of the time even if it is well-fed all of the time. (See Box 2)
    • Weiye Loh
       
      Does the problem then, lie not in statistics, but the interpretation of statistics? Is the fallacy of appeal to probability is at work in such interpretation? 
  • Another common error equates statistical significance to “significance” in the ordinary use of the word. Because of the way statistical formulas work, a study with a very large sample can detect “statistical significance” for a small effect that is meaningless in practical terms. A new drug may be statistically better than an old drug, but for every thousand people you treat you might get just one or two additional cures — not clinically significant. Similarly, when studies claim that a chemical causes a “significantly increased risk of cancer,” they often mean that it is just statistically significant, possibly posing only a tiny absolute increase in risk.
  • Statisticians perpetually caution against mistaking statistical significance for practical importance, but scientific papers commit that error often. Ziliak studied journals from various fields — psychology, medicine and economics among others — and reported frequent disregard for the distinction.
  • “I found that eight or nine of every 10 articles published in the leading journals make the fatal substitution” of equating statistical significance to importance, he said in an interview. Ziliak’s data are documented in the 2008 book The Cult of Statistical Significance, coauthored with Deirdre McCloskey of the University of Illinois at Chicago.
  • Multiplicity of mistakesEven when “significance” is properly defined and P values are carefully calculated, statistical inference is plagued by many other problems. Chief among them is the “multiplicity” issue — the testing of many hypotheses simultaneously. When several drugs are tested at once, or a single drug is tested on several groups, chances of getting a statistically significant but false result rise rapidly.
  • Recognizing these problems, some researchers now calculate a “false discovery rate” to warn of flukes disguised as real effects. And genetics researchers have begun using “genome-wide association studies” that attempt to ameliorate the multiplicity issue (SN: 6/21/08, p. 20).
  • Many researchers now also commonly report results with confidence intervals, similar to the margins of error reported in opinion polls. Such intervals, usually given as a range that should include the actual value with 95 percent confidence, do convey a better sense of how precise a finding is. But the 95 percent confidence calculation is based on the same math as the .05 P value and so still shares some of its problems.
  • Statistical problems also afflict the “gold standard” for medical research, the randomized, controlled clinical trials that test drugs for their ability to cure or their power to harm. Such trials assign patients at random to receive either the substance being tested or a placebo, typically a sugar pill; random selection supposedly guarantees that patients’ personal characteristics won’t bias the choice of who gets the actual treatment. But in practice, selection biases may still occur, Vance Berger and Sherri Weinstein noted in 2004 in ControlledClinical Trials. “Some of the benefits ascribed to randomization, for example that it eliminates all selection bias, can better be described as fantasy than reality,” they wrote.
  • Randomization also should ensure that unknown differences among individuals are mixed in roughly the same proportions in the groups being tested. But statistics do not guarantee an equal distribution any more than they prohibit 10 heads in a row when flipping a penny. With thousands of clinical trials in progress, some will not be well randomized. And DNA differs at more than a million spots in the human genetic catalog, so even in a single trial differences may not be evenly mixed. In a sufficiently large trial, unrandomized factors may balance out, if some have positive effects and some are negative. (See Box 3) Still, trial results are reported as averages that may obscure individual differences, masking beneficial or harm­ful effects and possibly leading to approval of drugs that are deadly for some and denial of effective treatment to others.
  • nother concern is the common strategy of combining results from many trials into a single “meta-analysis,” a study of studies. In a single trial with relatively few participants, statistical tests may not detect small but real and possibly important effects. In principle, combining smaller studies to create a larger sample would allow the tests to detect such small effects. But statistical techniques for doing so are valid only if certain criteria are met. For one thing, all the studies conducted on the drug must be included — published and unpublished. And all the studies should have been performed in a similar way, using the same protocols, definitions, types of patients and doses. When combining studies with differences, it is necessary first to show that those differences would not affect the analysis, Goodman notes, but that seldom happens. “That’s not a formal part of most meta-analyses,” he says.
  • Meta-analyses have produced many controversial conclusions. Common claims that antidepressants work no better than placebos, for example, are based on meta-analyses that do not conform to the criteria that would confer validity. Similar problems afflicted a 2007 meta-analysis, published in the New England Journal of Medicine, that attributed increased heart attack risk to the diabetes drug Avandia. Raw data from the combined trials showed that only 55 people in 10,000 had heart attacks when using Avandia, compared with 59 people per 10,000 in comparison groups. But after a series of statistical manipulations, Avandia appeared to confer an increased risk.
  • combining small studies in a meta-analysis is not a good substitute for a single trial sufficiently large to test a given question. “Meta-analyses can reduce the role of chance in the interpretation but may introduce bias and confounding,” Hennekens and DeMets write in the Dec. 2 Journal of the American Medical Association. “Such results should be considered more as hypothesis formulating than as hypothesis testing.”
  • Some studies show dramatic effects that don’t require sophisticated statistics to interpret. If the P value is 0.0001 — a hundredth of a percent chance of a fluke — that is strong evidence, Goodman points out. Besides, most well-accepted science is based not on any single study, but on studies that have been confirmed by repetition. Any one result may be likely to be wrong, but confidence rises quickly if that result is independently replicated.“Replication is vital,” says statistician Juliet Shaffer, a lecturer emeritus at the University of California, Berkeley. And in medicine, she says, the need for replication is widely recognized. “But in the social sciences and behavioral sciences, replication is not common,” she noted in San Diego in February at the annual meeting of the American Association for the Advancement of Science. “This is a sad situation.”
  • Most critics of standard statistics advocate the Bayesian approach to statistical reasoning, a methodology that derives from a theorem credited to Bayes, an 18th century English clergyman. His approach uses similar math, but requires the added twist of a “prior probability” — in essence, an informed guess about the expected probability of something in advance of the study. Often this prior probability is more than a mere guess — it could be based, for instance, on previous studies.
  • it basically just reflects the need to include previous knowledge when drawing conclusions from new observations. To infer the odds that a barking dog is hungry, for instance, it is not enough to know how often the dog barks when well-fed. You also need to know how often it eats — in order to calculate the prior probability of being hungry. Bayesian math combines a prior probability with observed data to produce an estimate of the likelihood of the hunger hypothesis. “A scientific hypothesis cannot be properly assessed solely by reference to the observational data,” but only by viewing the data in light of prior belief in the hypothesis, wrote George Diamond and Sanjay Kaul of UCLA’s School of Medicine in 2004 in the Journal of the American College of Cardiology. “Bayes’ theorem is ... a logically consistent, mathematically valid, and intuitive way to draw inferences about the hypothesis.” (See Box 4)
  • In many real-life contexts, Bayesian methods do produce the best answers to important questions. In medical diagnoses, for instance, the likelihood that a test for a disease is correct depends on the prevalence of the disease in the population, a factor that Bayesian math would take into account.
  • But Bayesian methods introduce a confusion into the actual meaning of the mathematical concept of “probability” in the real world. Standard or “frequentist” statistics treat probabilities as objective realities; Bayesians treat probabilities as “degrees of belief” based in part on a personal assessment or subjective decision about what to include in the calculation. That’s a tough placebo to swallow for scientists wedded to the “objective” ideal of standard statistics. “Subjective prior beliefs are anathema to the frequentist, who relies instead on a series of ad hoc algorithms that maintain the facade of scientific objectivity,” Diamond and Kaul wrote.Conflict between frequentists and Bayesians has been ongoing for two centuries. So science’s marriage to mathematics seems to entail some irreconcilable differences. Whether the future holds a fruitful reconciliation or an ugly separation may depend on forging a shared understanding of probability.“What does probability mean in real life?” the statistician David Salsburg asked in his 2001 book The Lady Tasting Tea. “This problem is still unsolved, and ... if it remains un­solved, the whole of the statistical approach to science may come crashing down from the weight of its own inconsistencies.”
  •  
    Odds Are, It's Wrong Science fails to face the shortcomings of statistics
Weiye Loh

Rationally Speaking: The problem of replicability in science - 0 views

  • The problem of replicability in science from xkcdby Massimo Pigliucci
  • In recent months much has been written about the apparent fact that a surprising, indeed disturbing, number of scientific findings cannot be replicated, or when replicated the effect size turns out to be much smaller than previously thought.
  • Arguably, the recent streak of articles on this topic began with one penned by David Freedman in The Atlantic, and provocatively entitled “Lies, Damned Lies, and Medical Science.” In it, the major character was John Ioannidis, the author of some influential meta-studies about the low degree of replicability and high number of technical flaws in a significant portion of published papers in the biomedical literature.
  • ...18 more annotations...
  • As Freedman put it in The Atlantic: “80 percent of non-randomized studies (by far the most common type) turn out to be wrong, as do 25 percent of supposedly gold-standard randomized trials, and as much as 10 percent of the platinum-standard large randomized trials.” Ioannidis himself was quoted uttering some sobering words for the medical community (and the public at large): “Science is a noble endeavor, but it’s also a low-yield endeavor. I’m not sure that more than a very small percentage of medical research is ever likely to lead to major improvements in clinical outcomes and quality of life. We should be very comfortable with that fact.”
  • Julia and I actually addressed this topic during a Rationally Speaking podcast, featuring as guest our friend Steve Novella, of Skeptics’ Guide to the Universe and Science-Based Medicine fame. But while Steve did quibble with the tone of the Atlantic article, he agreed that Ioannidis’ results are well known and accepted by the medical research community. Steve did point out that it should not be surprising that results get better and better as one moves toward more stringent protocols like large randomized trials, but it seems to me that one should be surprised (actually, appalled) by the fact that even there the percentage of flawed studies is high — not to mention the fact that most studies are in fact neither large nor properly randomized.
  • The second big recent blow to public perception of the reliability of scientific results is an article published in The New Yorker by Jonah Lehrer, entitled “The truth wears off.” Lehrer also mentions Ioannidis, but the bulk of his essay is about findings in psychiatry, psychology and evolutionary biology (and even in research on the paranormal!).
  • In these disciplines there are now several documented cases of results that were initially spectacularly positive — for instance the effects of second generation antipsychotic drugs, or the hypothesized relationship between a male’s body symmetry and the quality of his genes — that turned out to be increasingly difficult to replicate over time, with the original effect sizes being cut down dramatically, or even disappearing altogether.
  • As Lehrer concludes at the end of his article: “Such anomalies demonstrate the slipperiness of empiricism. Although many scientific ideas generate conflicting results and suffer from falling effect sizes, they continue to get cited in the textbooks and drive standard medical practice. Why? Because these ideas seem true. Because they make sense. Because we can’t bear to let them go. And this is why the decline effect is so troubling.”
  • None of this should actually be particularly surprising to any practicing scientist. If you have spent a significant time of your life in labs and reading the technical literature, you will appreciate the difficulties posed by empirical research, not to mention a number of issues such as the fact that few scientists ever actually bother to replicate someone else’s results, for the simple reason that there is no Nobel (or even funded grant, or tenured position) waiting for the guy who arrived second.
  • n the midst of this I was directed by a tweet by my colleague Neil deGrasse Tyson (who has also appeared on the RS podcast, though in a different context) to a recent ABC News article penned by John Allen Paulos, which meant to explain the decline effect in science.
  • Paulos’ article is indeed concise and on the mark (though several of the explanations he proposes were already brought up in both the Atlantic and New Yorker essays), but it doesn’t really make things much better.
  • Paulos suggests that one explanation for the decline effect is the well known statistical phenomenon of the regression toward the mean. This phenomenon is responsible, among other things, for a fair number of superstitions: you’ve probably heard of some athletes’ and other celebrities’ fear of being featured on the cover of a magazine after a particularly impressive series of accomplishments, because this brings “bad luck,” meaning that the following year one will not be able to repeat the performance at the same level. This is actually true, not because of magical reasons, but simply as a result of the regression to the mean: extraordinary performances are the result of a large number of factors that have to line up just right for the spectacular result to be achieved. The statistical chances of such an alignment to repeat itself are low, so inevitably next year’s performance will likely be below par. Paulos correctly argues that this also explains some of the decline effect of scientific results: the first discovery might have been the result of a number of factors that are unlikely to repeat themselves in exactly the same way, thus reducing the effect size when the study is replicated.
  • nother major determinant of the unreliability of scientific results mentioned by Paulos is the well know problem of publication bias: crudely put, science journals (particularly the high-profile ones, like Nature and Science) are interested only in positive, spectacular, “sexy” results. Which creates a powerful filter against negative, or marginally significant results. What you see in science journals, in other words, isn’t a statistically representative sample of scientific results, but a highly biased one, in favor of positive outcomes. No wonder that when people try to repeat the feat they often come up empty handed.
  • A third cause for the problem, not mentioned by Paulos but addressed in the New Yorker article, is the selective reporting of results by scientists themselves. This is essentially the same phenomenon as the publication bias, except that this time it is scientists themselves, not editors and reviewers, who don’t bother to submit for publication results that are either negative or not strongly conclusive. Again, the outcome is that what we see in the literature isn’t all the science that we ought to see. And it’s no good to argue that it is the “best” science, because the quality of scientific research is measured by the appropriateness of the experimental protocols (including the use of large samples) and of the data analyses — not by whether the results happen to confirm the scientist’s favorite theory.
  • The conclusion of all this is not, of course, that we should throw the baby (science) out with the bath water (bad or unreliable results). But scientists should also be under no illusion that these are rare anomalies that do not affect scientific research at large. Too much emphasis is being put on the “publish or perish” culture of modern academia, with the result that graduate students are explicitly instructed to go for the SPU’s — Smallest Publishable Units — when they have to decide how much of their work to submit to a journal. That way they maximize the number of their publications, which maximizes the chances of landing a postdoc position, and then a tenure track one, and then of getting grants funded, and finally of getting tenure. The result is that, according to statistics published by Nature, it turns out that about ⅓ of published studies is never cited (not to mention replicated!).
  • “Scientists these days tend to keep up the polite fiction that all science is equal. Except for the work of the misguided opponent whose arguments we happen to be refuting at the time, we speak as though every scientist’s field and methods of study are as good as every other scientist’s, and perhaps a little better. This keeps us all cordial when it comes to recommending each other for government grants. ... We speak piously of taking measurements and making small studies that will ‘add another brick to the temple of science.’ Most such bricks lie around the brickyard.”
    • Weiye Loh
       
      Written by John Platt in a "Science" article published in 1964
  • Most damning of all, however, is the potential effect that all of this may have on science’s already dubious reputation with the general public (think evolution-creation, vaccine-autism, or climate change)
  • “If we don’t tell the public about these problems, then we’re no better than non-scientists who falsely claim they can heal. If the drugs don’t work and we’re not sure how to treat something, why should we claim differently? Some fear that there may be less funding because we stop claiming we can prove we have miraculous treatments. But if we can’t really provide those miracles, how long will we be able to fool the public anyway? The scientific enterprise is probably the most fantastic achievement in human history, but that doesn’t mean we have a right to overstate what we’re accomplishing.”
  • Joseph T. Lapp said... But is any of this new for science? Perhaps science has operated this way all along, full of fits and starts, mostly duds. How do we know that this isn't the optimal way for science to operate?My issues are with the understanding of science that high school graduates have, and with the reporting of science.
    • Weiye Loh
       
      It's the media at fault again.
  • What seems to have emerged in recent decades is a change in the institutional setting that got science advancing spectacularly since the establishment of the Royal Society. Flaws in the system such as corporate funded research, pal-review instead of peer-review, publication bias, science entangled with policy advocacy, and suchlike, may be distorting the environment, making it less suitable for the production of good science, especially in some fields.
  • Remedies should exist, but they should evolve rather than being imposed on a reluctant sociological-economic science establishment driven by powerful motives such as professional advance or funding. After all, who or what would have the authority to impose those rules, other than the scientific establishment itself?
Weiye Loh

Lindzen debunked again: New scientific study finds his paper downplaying dang... - 0 views

  • Consistently being wrong and consistently producing one-sided analyses that are quickly debunked in the literature should lead scientific journals and the entire scientific community (and possibly the media) to start ignoring your work. But when you are one of the last remaining “serious” professional scientists spreading global warming disinformation who retains a (nano)ounce of credibility because you are associated with a major university — M.I.T. — and your name is Richard Lindzen, apparently you can just keep publishing and repeating the same crap over and over and over again.
  • is this more, or less, support for the calls of some — most notably James Annan — for journals to shift at least some of the peer review cycle to an open format? http://dotearth.blogs.nytimes.com/ 2009/ 11/ 30/ more-on-the-climate-files-and-climate-trends/
  • Also, Gavin seemed to say that — with or without flaws– this paper’s approach was “a useful contribution to the literature”: “Even if it now turns out that the analysis was not robust, it was not that the analysis was not worth trying, and the work being done to re-examine these questions is a useful contributions to the literature –- even if the conclusion is that this approach to the analysis is flawed.” http://dotearth.blogs.nytimes.com/ 2010/ 01/ 08/ a-rebuttal-to-a-cool-climate-paper/ #more-13033
  • ...2 more annotations...
  • . Is the problem less with the paper and publishing process than the tendency of commentators (whether on blogs or elsewhere) to seize on particular findings as the new “truth” — and for public not attuned to the tussles of science to swallow such proclamations?
  • its only because of the blogosphere immediately seizing on every new paper as proof that we think there’s an issue with the peer-review process. For the scientists involved, this was a useful exercise in thinking about this problem, and moved the ball forwards rather than backwards overall. But we had to put up with way too much crap in the blogosphere in between the time when the paper was published and these rebuttals came out.
Weiye Loh

Rationally Speaking: The sorry state of higher education - 0 views

  • two disconcerting articles crossed my computer screen, both highlighting the increasingly sorry state of higher education, though from very different perspectives. The first is “Ed Dante’s” (actually a pseudonym) piece in the Chronicle of Higher Education, entitled The Shadow Scholar. The second is Gregory Petsko’s A Faustian Bargain, published of all places in Genome Biology.
  • There is much to be learned by educators in the Shadow Scholar piece, except the moral that “Dante” would like us to take from it. The anonymous author writes:“Pointing the finger at me is too easy. Why does my business thrive? Why do so many students prefer to cheat rather than do their own work? Say what you want about me, but I am not the reason your students cheat.
  • The point is that plagiarism and cheating happen for a variety of reasons, one of which is the existence of people like Mr. Dante and his company, who set up a business that is clearly unethical and should be illegal. So, pointing fingers at him and his ilk is perfectly reasonable. Yes, there obviously is a “market” for cheating in higher education, and there are complex reasons for it, but he is in a position similar to that of the drug dealer who insists that he is simply providing the commodity to satisfy society’s demand. Much too easy of a way out, and one that doesn’t fly in the case of drug dealers, and shouldn’t fly in the case of ghost cheaters.
  • ...16 more annotations...
  • As a teacher at the City University of New York, I am constantly aware of the possibility that my students might cheat on their tests. I do take some elementary precautionary steps
  • Still, my job is not that of the policeman. My students are adults who theoretically are there to learn. If they don’t value that learning and prefer to pay someone else to fake it, so be it, ultimately it is they who lose in the most fundamental sense of the term. Just like drug addicts, to return to my earlier metaphor. And just as in that other case, it is enablers like Mr. Dante who simply can’t duck the moral blame.
  • n open letter to the president of SUNY-Albany, penned by molecular biologist Gregory Petsko. The SUNY-Albany president has recently announced the closing — for budgetary reasons — of the departments of French, Italian, Classics, Russian and Theater Arts at his university.
  • Petsko begins by taking on one of the alleged reasons why SUNY-Albany is slashing the humanities: low enrollment. He correctly points out that the problem can be solved overnight at the stroke of a pen: stop abdicating your responsibilities as educators and actually put constraints on what your students have to take in order to graduate. Make courses in English literature, foreign languages, philosophy and critical thinking, the arts and so on, mandatory or one of a small number of options that the students must consider in order to graduate.
  • But, you might say, that’s cheating the market! Students clearly don’t want to take those courses, and a business should cater to its customers. That type of reasoning is among the most pernicious and idiotic I’ve ever heard. Students are not clients (if anything, their parents, who usually pay the tuition, are), they are not shopping for a new bag or pair of shoes. They do not know what is best for them educationally, that’s why they go to college to begin with. If you are not convinced about how absurd the students-as-clients argument is, consider an analogy: does anyone with functioning brain cells argue that since patients in a hospital pay a bill, they should be dictating how the brain surgeon operates? I didn’t think so.
  • Petsko then tackles the second lame excuse given by the president of SUNY-Albany (and common among the upper administration of plenty of public universities): I can’t do otherwise because of the legislature’s draconian cuts. Except that university budgets are simply too complicated for there not to be any other option. I know this first hand, I’m on a special committee at my own college looking at how to creatively deal with budget cuts handed down to us from the very same (admittedly small minded and dysfunctional) New York state legislature that has prompted SUNY-Albany’s action. As Petsko points out, the president there didn’t even think of involving the faculty and staff in a broad discussion of how to deal with the crisis, he simply announced the cuts on a Friday afternoon and then ran for cover. An example of very poor leadership to say the least, and downright hypocrisy considering all the talk that the same administrator has been dishing out about the university “community.”
  • Finally, there is the argument that the humanities don’t pay for their own way, unlike (some of) the sciences (some of the time). That is indubitably true, but irrelevant. Universities are not businesses, they are places of higher learning. Yes, of course they need to deal with budgets, fund raising and all the rest. But the financial and administrative side has one goal and one goal only: to provide the best education to the students who attend that university.
  • That education simply must include the sciences, philosophy, literature, and the arts, as well as more technical or pragmatic offerings such as medicine, business and law. Why? Because that’s the kind of liberal education that makes for an informed and intelligent citizenry, without which our democracy is but empty talk, and our lives nothing but slavery to the marketplace.
  • Maybe this is not how education works in the US. I thought that general (or compulsory) education (ie. up to high school) is designed to make sure that citizens in a democratic country can perform their civil duties. A balanced and well-rounded education, which includes a healthy mixture of science and humanities, is indeed very important for this purpose. However, college-level education is for personal growth and therefore the person must have a large say about what kind of classes he or she chooses to take. I am disturbed by Massimo's hospital analogy. Students are not ill. They don't go to college to be cured, or to be good citizens. They go to college to learn things that *they* want to learn. Patients are passive. Students are not.I agree that students typically do not know what kind of education is good for them. But who does?
  • students do have a saying in their education. They pick their major, and there are electives. But I object to the idea that they can customize their major any way they want. That assumes they know what the best education for them is, they don't. That's the point of education.
  • The students are in your class to get a good grade, any learning that takes place is purely incidental. Those good grades will look good on their transcript and might convince a future employer that they are smart and thus are worth paying more.
  • I don't know what the dollar to GPA exchange rate is these days, but I don't doubt that there is one.
  • Just how many of your students do you think will remember the extensive complex jargon of philosophy more than a couple of months after they leave your classroom?
  • and our lives nothing but slavery to the marketplace.We are there. Welcome. Where have you been all this time? In a capitalistic/plutocratic society money is power (and free speech too according to the supreme court). Money means a larger/better house/car/clothing/vacation than your neighbor and consequently better mating opportunities. You can mostly blame the women for that one I think just like the peacock's tail.
  • If a student of surgery fails to learn they might maim, kill or cripple someone. If an engineer of airplanes fails to learn they might design a faulty aircraft that fails and kills people. If a student of chemistry fails to learn they might design a faulty drug with unintended and unfortunate side effects, but what exactly would be the harm if a student of philosophy fails to learn Aristotle had to say about elements or Plato had to say about perfect forms? These things are so divorced from people's everyday activities as to be rendered all but meaningless.
  • human knowledge grows by leaps and bounds every day, but human brain capacity does not, so the portion of human knowledge you can personally hold gets smaller by the minute. Learn (and remember) as much as you can as fast as you can and you will still lose ground. You certainly have your work cut out for you emphasizing the importance of Thales in the Age of Twitter and whatever follows it next year.
Weiye Loh

Roger Pielke Jr.'s Blog: Flood Disasters and Human-Caused Climate Change - 0 views

  • [UPDATE: Gavin Schmidt at Real Climate has a post on this subject that  -- surprise, surprise -- is perfectly consonant with what I write below.] [UPDATE 2: Andy Revkin has a great post on the representations of the precipitation paper discussed below by scientists and related coverage by the media.]  
  • Nature published two papers yesterday that discuss increasing precipitation trends and a 2000 flood in the UK.  I have been asked by many people whether these papers mean that we can now attribute some fraction of the global trend in disaster losses to greenhouse gas emissions, or even recent disasters such as in Pakistan and Australia.
  • I hate to pour cold water on a really good media frenzy, but the answer is "no."  Neither paper actually discusses global trends in disasters (one doesn't even discuss floods) or even individual events beyond a single flood event in the UK in 2000.  But still, can't we just connect the dots?  Isn't it just obvious?  And only deniers deny the obvious, right?
  • ...12 more annotations...
  • What seems obvious is sometime just wrong.  This of course is why we actually do research.  So why is it that we shouldn't make what seems to be an obvious connection between these papers and recent disasters, as so many have already done?
  • First, the Min et al. paper seeks to identify a GHG signal in global precipitation over the period 1950-1999.  They focus on one-day and five-day measures of precipitation.  They do not discuss streamflow or damage.  For many years, an upwards trend in precipitation has been documented, and attributed to GHGs, even back to the 1990s (I co-authored a paper on precipitation and floods in 1999 that assumed a human influence on precipitation, PDF), so I am unsure what is actually new in this paper's conclusions.
  • However, accepting that precipitation has increased and can be attributed in some part to GHG emissions, there have not been shown corresponding increases in streamflow (floods)  or damage. How can this be?  Think of it like this -- Precipitation is to flood damage as wind is to windstorm damage.  It is not enough to say that it has become windier to make a connection to increased windstorm damage -- you need to show a specific increase in those specific wind events that actually cause damage. There are a lot of days that could be windier with no increase in damage; the same goes for precipitation.
  • My understanding of the literature on streamflow is that there have not been shown increasing peak streamflow commensurate with increases in precipitation, and this is a robust finding across the literature.  For instance, one recent review concludes: Floods are of great concern in many areas of the world, with the last decade seeing major fluvial events in, for example, Asia, Europe and North America. This has focused attention on whether or not these are a result of a changing climate. Rive flows calculated from outputs from global models often suggest that high river flows will increase in a warmer, future climate. However, the future projections are not necessarily in tune with the records collected so far – the observational evidence is more ambiguous. A recent study of trends in long time series of annual maximum river flows at 195 gauging stations worldwide suggests that the majority of these flow records (70%) do not exhibit any statistically significant trends. Trends in the remaining records are almost evenly split between having a positive and a negative direction.
  • Absent an increase in peak streamflows, it is impossible to connect the dots between increasing precipitation and increasing floods.  There are of course good reasons why a linkage between increasing precipitation and peak streamflow would be difficult to make, such as the seasonality of the increase in rain or snow, the large variability of flooding and the human influence on river systems.  Those difficulties of course translate directly to a difficulty in connecting the effects of increasing GHGs to flood disasters.
  • Second, the Pall et al. paper seeks to quantify the increased risk of a specific flood event in the UK in 2000 due to greenhouse gas emissions.  It applies a methodology that was previously used with respect to the 2003 European heatwave. Taking the paper at face value, it clearly states that in England and Wales, there has not been an increasing trend in precipitation or floods.  Thus, floods in this region are not a contributor to the global increase in disaster costs.  Further, there has been no increase in Europe in normalized flood losses (PDF).  Thus, Pall et al. paper is focused attribution in the context of on a single event, and not trend detection in the region that it focuses on, much less any broader context.
  • More generally, the paper utilizes a seasonal forecast model to assess risk probabilities.  Given the performance of seasonal forecast models in actual prediction mode, I would expect many scientists to remain skeptical of this approach to attribution. Of course, if this group can show an improvement in the skill of actual seasonal forecasts by using greenhouse gas emissions as a predictor, they will have a very convincing case.  That is a high hurdle.
  • In short, the new studies are interesting and add to our knowledge.  But they do not change the state of knowledge related to trends in global disasters and how they might be related to greenhouse gases.  But even so, I expect that many will still want to connect the dots between greenhouse gas emissions and recent floods.  Connecting the dots is fun, but it is not science.
  • Jessica Weinkle said...
  • The thing about the nature articles is that Nature itself made the leap from the science findings to damages in the News piece by Q. Schiermeier through the decision to bring up the topic of insurance. (Not to mention that which is symbolically represented merely by the journal’s cover this week). With what I (maybe, naively) believe to be a particularly ballsy move, the article quoted Muir-Wood, an industry scientists. However, what he is quoted as saying is admirably clever. Initially it is stated that Dr. Muir-Wood backs the notion that one cannot put the blame of increased losses on climate change. Then, the article ends with a quote from him, “If there’s evidence that risk is changing, then this is something we need to incorporate in our models.”
  • This is a very slippery slope and a brilliant double-dog dare. Without doing anything but sitting back and watching the headlines, one can form the argument that “science” supports the remodeling of the hazard risk above the climatological average and is more important then the risks stemming from socioeconomic factors. The reinsurance industry itself has published that socioeconomic factors far outweigh changes in the hazard in concern of losses. The point is (and that which has particularly gotten my knickers in a knot) is that Nature, et al. may wish to consider what it is that they want to accomplish. Is it greater involvement of federal governments in the insurance/reinsurance industry on the premise that climate change is too great a loss risk for private industry alone regardless of the financial burden it imposes? The move of insurance mechanisms into all corners of the earth under the auspices of climate change adaptation? Or simply a move to bolster prominence, regardless of whose back it breaks- including their own, if any of them are proud owners of a home mortgage? How much faith does one have in their own model when they are told that hundreds of millions of dollars in the global economy is being bet against the odds that their models produce?
  • What Nature says matters to the world; what scientists say matters to the world- whether they care for the responsibility or not. That is after all, the game of fame and fortune (aka prestige).
Weiye Loh

'There Is No Values-Free Form Of Education,' Says U.S. Philosopher - Radio Fr... - 0 views

  • from the earliest years, education should be based primarily on exploration, understanding in depth, and the development of logical, critical thinking. Such an emphasis, she says, not only produces a citizenry capable of recognizing and rooting out political jingoism and intolerance. It also produces people capable of questioning authority and perceived wisdom in ways that enhance innovation and economic competitiveness. Nussbaum warns against a narrow educational focus on technical competence.
  • a successful, long-term democracy depends on a citizenry with certain qualities that can be fostered by education.
  • The first is the capacity we associate in the Western tradition with Socrates, but it certainly appears in all traditions -- that is, the ability to think critically about proposals that are brought your way, to analyze an argument, to distinguish a good argument from a bad argument. And just in general, to lead what Socrates called “the examined life.” Now that’s, of course, important because we know that people are very prone to go along with authority, with fashion, with peer pressure. And this kind of critical enlivened citizenry is the only thing that can keep democracy vital.
  • ...15 more annotations...
  • it can be trained from very early in a child’s education. There’re ways that you can get quite young children to recognize what’s a good argument and what’s a bad argument. And as children grow older, it can be done in a more and more sophisticated form until by the time they’re undergraduates in universities they would be studying Plato’s dialogues for example and really looking at those tricky arguments and trying to figure out how to think. And this is important not just for the individual thinking about society, but it’s important for the way people talk to each other. In all too many public discussions people just throw out slogans and they throw out insults. And what democracy needs is listening. And respect. And so when people learn how to analyze an argument, then they look at what the other person’s saying differently. And they try to take it apart, and they think: “Well, do I share some of those views and where do I differ here?” and so on. And this really does produce a much more deliberative, respectful style of public interaction.
  • The second [quality] is what I call “the ability to think as a citizen of the whole world.” We’re all narrow and this is again something that we get from our animal heritage. Most non-human animals just think about the group. But, of course, in this world we need to think, first of all, our whole nation -- its many different groups, minority and majority. And then we need to think outside the nation, about how problems involving, let’s say, the environment or global economy and so on need cooperative resolution that brings together people from many different nations.
  • That’s complicated and it requires learning a lot of history, and it means learning not just to parrot some facts about history but to think critically about how to assess historical evidence. It means learning how to think about the global economy. And then I think particularly important in this era, it means learning something about the major world religions. Learning complicated, nonstereotypical accounts of those religions because there’s so much fear that’s circulating around in every country that’s based usually on just inadequate stereotypes of what Muslims are or whatever. So knowledge can at least begin to address that.
  • the third thing, which I think goes very closely with the other two, is what I call “the narrative imagination,” which is the ability to put yourself in the shoes of another person to have some understanding of how the world looks from that point of view. And to really have that kind of educated sympathy with the lives of others. Now again this is something we come into the world with. Psychologists have now found that babies less than a year old are able to take up the perspective of another person and do things, see things from that perspective. But it’s very narrow and usually people learn how to think about what their parents are thinking and maybe other family members but we need to extend that and develop it, and learn how the world looks from the point of view of minorities in our own culture, people outside our culture, and so on.
  • since we can’t go to all the places that we need to understand -- it’s accomplished by reading narratives, reading literature, drama, participating through the arts in the thought processes of another culture. So literature and the arts are the major ways we would develop and extend that capacity.
  • For many years, the leading model of development ... used by economists and international agencies measuring welfare was simply that for a country to develop means to increase [its] gross domestic product per capita. Now, in recent years, there has been a backlash to that because people feel that it just doesn’t ask enough about what goods are really doing for people, what can people really do and be.
  • so since 1990s the United Nations’ development program has produced annually what’s called a “Human Development Report” that looks at things like access to education, access to health care. In other words, a much richer menu of human chances and opportunities that people have. And at the theoretical end I’ve worked for about 20 years now with economist Amartya Sen, who won the Nobel Prize in 1998 for economics. And we’ve developed this as account of -- so for us what it is for a country to do better is to enhance the set of capabilities meaning substantial opportunities that people have to lead meaningful, fruitful lives. And then I go on to focus on a certain core group of those capabilities that I think ought to be protected by constitutional law in every country.
  • Life; health; bodily integrity; the development of senses, imagination, and thought; the development of practical reason; opportunities to have meaningful affiliations both friendly and political with other people; the ability to have emotional health -- not to be in other words dominated by overwhelming fear and so on; the ability to have a productive relationship with the environment and the world of nature; the ability to play and have leisure time, which is something that I think people don’t think enough about; and then, finally, control over one’s material and social environment, some measure of control. Now of course, each of these is very abstract, and I specify them further. Although I also think that each country needs to finally specify them with its own particular circumstances in view.
  • when kids learn in a classroom that just makes them sit in a chair, well, they can take in something in their heads, but it doesn’t make them competent at negotiating in the world. And so starting, at least, with Jean Jacques Rousseau in the 18th century, people thought: “Well, if we really want people to be independent citizens in a democracy that means that we can’t have whole classes of people who don’t know how to do anything, who are just simply sitting there waiting to be waited on in practical matters.” And so the idea that children should participate in their practical environment came out of the initial democratizing tendencies that went running through the 18th century.
  • even countries who absolutely do not want that kind of engaged citizenry see that for the success of business these abilities are pretty important. Both Singapore and China have conducted mass education reforms over the last five years because they realized that their business cultures don’t have enough imagination and they also don’t have enough critical thinking, because you can have awfully corrupt business culture if no one is willing to say the unpleasant word or make a criticism.
  • So they have striven to introduce more critical thinking and more imagination into their curricula. But, of course, for them, they want to cordon it off -- they want to do it in the science classroom, in the business classroom, but not in the politics classroom. Well, we’ll see -- can they do that? Can they segment it that way? I think democratic thinking is awfully hard to segment as current events in the Middle East are showing us. It does have the tendency to spread.
  • so maybe the people in Singapore and China will not like the end result of what they tried to do or maybe the reform will just fail, which is equally likely -- I mean the educational reform.
  • if you really don’t want democracy, this is not the education for you. It had its origins in the ancient Athenian democracy which was a very, very strong participatory democracy and it is most at home in really true democracy, where our whole goal is to get each and every person involved and to get them thinking about things. So, of course, if politicians have ambivalence about that goal they may well not want this kind of education.
  • when we bring up children in the family or in the school, we are always engineering. I mean, there is no values-free form of education in the world. Even an education that just teaches you a list of facts has values built into it. Namely, it gives a negative value to imagination and to the critical faculties and a very high value to a kind of rote, technical competence. So, you can't avoid shaping children.
  • ncreasingly the child should be in control and should become free. And that's what the critical thinking is all about -- it's about promoting freedom as the child goes on. So, the end product should be an adult who is really thinking for him- or herself about the direction of society. But you don't get freedom just by saying, "Oh, you are free." Progressive educators that simply stopped teaching found out very quickly that that didn't produce freedom. Even some of the very extreme forms of progressive school where children were just allowed to say every day what it was they wanted to learn, they found that didn't give the child the kind of mastery of self and of the world that you really need to be a free person.
Weiye Loh

Effective media reporting of sea level rise projections: 1989-2009 - 0 views

  •  
    In the mass media, sea level rise is commonly associated with the impacts of climate change due to increasing atmospheric greenhouse gases. As this issue garners ongoing international policy attention, segments of the scientific community have expressed unease about how this has been covered by mass media. Therefore, this study examines how sea level rise projections-in IPCC Assessment Reports and a sample of the scientific literature-have been represented in seven prominent United States (US) and United Kingdom (UK) newspapers over the past two decades. The research found that-with few exceptions-journalists have accurately portrayed scientific research on sea level rise projections to 2100. Moreover, while coverage has predictably increased in the past 20 years, journalists have paid particular attention to the issue in years when an IPCC report is released or when major international negotiations take place, rather than when direct research is completed and specific projections are published. We reason that the combination of these factors has contributed to a perceived problem in the sea level rise reporting by the scientific community, although systematic empirical research shows none. In this contemporary high-stakes, high-profile and highly politicized arena of climate science and policy interactions, such results mark a particular bright spot in media representations of climate change. These findings can also contribute to more measured considerations of climate impacts and policy action at a critical juncture of international negotiations and everyday decision-making associated with the causes and consequences of climate change.
Weiye Loh

Meta-analysis - PsychWiki - A Collaborative Psychology Wiki - 0 views

  • A meta-analysis is only informative if it adequately summarizes the existing literature, so a thorough literature search is critical to retrieve every relevant study, such as database searches, ancestry approach, descendancy approach, hand searching, and the invisible college (i.e., network of researchers who know about unpublished studies, conference proceedings, etc). For more information see (Johnson & Eagly, 2000) (Handbook of Research Methods in Social and Personality Psychology) which details five general ways to retrieve relevant articles.
    • Weiye Loh
       
      How is one able to know that one has exhausted the "invisible college?" Perhaps we need an official record or a database of unpublished studies, conference proceedings, etc. 
Weiye Loh

Roger Pielke Jr.'s Blog: Breakthrough Report on Rebound - 0 views

  • Whatever one thinks about the so-called "rebound effect" or the role of efficiency in contributing to emissions reductions goals, the Breakthrough Institute (where I am a Senior Fellow) has done a great service to the discussion by publishing a new literature review on the subject.  You can find the review here in PDF and a PowerPoint overview here in PPT.  They discuss the new report on their blog here. This massive effort represents think tanks at their very best, and is likely to be the definitive literature review for years to come.  Whatever your views or level of expertise, if you want to dive into the subject, I can think of no better place to start.
Weiye Loh

Science-Based Medicine » Skepticism versus nihilism about cancer and science-... - 0 views

  • I’m a John Ioannidis convert, and I accept that there is a lot of medical literature that is erroneous. (Just search for Dr. Ioannidis’ last name on this blog, and you’ll find copious posts praising him and discussing his work.) In fact, as I’ve pointed out, most medical researchers instinctively know that most new scientific findings will not hold up to scrutiny, which is why we rarely accept the results of a single study, except in unusual circumstances, as being enough to change practice. I also have pointed out many times that this is not necessarily a bad thing. Replication is key to verification of scientific findings, and more often than not provocative scientific findings are not replicated. Does that mean they shouldn’t be published?
  • As for pseudoscience, I’m half tempted to agree with Dr. Spector, but just not in the way he thinks. Unfortunately, over the last 20 years or so, there has been an increasing amount of pseudoscience in the medical literature in the form of “complementary and alternative medicine” (CAM) studies of highly improbable remedies or even virtually impossible ones (i.e., homeopathy). However, that does not appear to be what Dr. Spector is talking about, which is why I looked up his references. The second reference is to an SI article from 2009 entitled Science and Pseudoscience in Adult Nutrition Research and Practice. There, and only there, did I find out just what it is that Dr. Spector apparently means by “pseudoscience”: By pseudoscience, I mean the use of inappropriate methods that frequently yield wrong or misleading answers for the type of question asked. In nutrition research, such methods also often misuse statistical evaluations.
  • Dr. Spector doesn’t really know the difference between inadequately rigorous science and pseudoscience! Now, don’t get me wrong. I know that it’s not always easy to distinguish science from pseudoscience, especially at the fringes, but in general bad science has to go a lot further than Dr. Spector thinks to merit the the term “pseudoscience.” It is clear (to me, at least) from his articles that Dr. Spector throws around the term “pseudoscience” around rather more loosely than he should, using it as a pejorative for any clinical science less rigorous than a randomized, double-blind, placebo-controlled trial that meets FDA standards for approval of a drug (his pharma background coming to the fore, no doubt). Pseudoscience, Dr. Spector. You keep using that word. I do not think it means what you think it means. Indeed, I almost get the impression from his articles that Dr. Spector views any study that doesn’t reach FDA-level standards for drug approval to be pseudoscience.
  • ...4 more annotations...
  • Medical science, when it works well, tends to progress from basic science, to small pilot studies, to larger randomized studies, and then–only then–to those big, rigorous, insanely expensive randomized, double-blind, placebo-controlled trials. Dr. Spector mentions hierarchies of evidence, but he seems to fall into a false dichotomy, namely that if it’s not Level I evidence, it’s crap. The problem is, as Mark pointed out, in medicine we often don’t have Level I evidence for many questions. Indeed, for some questions, we will never have Level I evidence. Clinical medicine involves making decisions in the midst of uncertainty, sometimes extreme uncertainty.
  • Dr. Spector then proceeds to paint a picture of reckless physicians proceeding on crappy studies to pump women full of hormones. Actually, it was more than a bit more complicated on than that. That was the time when I was in my medical training, and I remember the discussions we had regarding the strength (or lack thereof) of the epidemiological data and the lack of good RCTs looking at HRT. I also remember that nothing works as well to relieve menopausal symptoms as HRT, an observation we have been reminded of again since 2003, which is the year when the first big study came out implicating HRT in increasing the risk of breast cancer (more later).
  • I found a rather fascinating editorial in the New England Journal of Medicine from more than 20 years ago that discussed the state of the evidence back then with regard to estrogen and breast cancer: Evidence that estrogen increases the risk of breast cancer has been surprisingly difficult to obtain. Clinical and epidemiologic studies and studies in animals strongly suggest that endogenous estrogen plays a part in causing breast cancer. If so, exogenous estrogen should be a potent promoter of breast cancer. Although more than 20 case–control and prospective studies of the relation of breast cancer and noncontraceptive estrogen use have failed to demonstrate the expected association, relatively few women in these studies used estrogen for extended periods. Studies of the use of diethylstilbestrol and oral contraceptives suggest that a long exposure or latency may be necessary to show any association between hormone use and breast cancer. In the Swedish study, only six years of follow-up was needed to demonstrate an increased risk of breast cancer with the postmenopausal use of estradiol. It should be noted, however, that half the women in the subgroup that provided detailed data on the duration of hormone use had taken estrogen for many years before their base-line prescription status was defined. The duration of estrogen exposure in these women before the diagnosis of breast cancer was probably seriously underestimated; a short latency cannot be attributed to estradiol on the basis of these data. Other recent studies of the use of noncontraceptive estrogen suggest a slightly increased risk of breast cancer after 15 to 20 years’ use.
  • even now, the evidence is conflicting regarding HRT and breast cancer, with the preponderance of evidence suggesting that mixed HRT (estrogen and progestin) significantly increases the risk of breast cancer, while estrogen-alone HRT very well might not increase the risk of breast cancer at all or (more likely) only very little. Indeed, I was just at a conference all day Saturday where data demonstrating this very point were discussed by one of the speakers. None of this stops Dr. Spector from categorically labeling estrogen as a “carcinogen that causes breast cancers that kill women.” Maybe. Maybe not. It’s actually not that clear. The problem, of course, is that, consistent with the first primary reports of WHI results, the preponderance of evidence finding health risks due to HRT have indicted the combined progestin/estrogen combinations as unsafe.
Weiye Loh

Hamlet and the region of death - The Boston Globe - 0 views

  • To many readers — and to some of Moretti’s fellow academics — the very notion of quantitative literary studies can seem like an offense to that which made literature worth studying in the first place: its meaning and beauty. For Moretti, however, moving literary scholarship beyond reading is the key to producing new knowledge about old texts — even ones we’ve been studying for centuries.
  •  
    Franco Moretti, however, often doesn't read the books he studies. Instead, he analyzes them as data. Working with a small group of graduate students, the Stanford University English professor has fed thousands of digitized texts into databases and then mined the accumulated information for new answers to new questions. How far, on average, do characters in 19th-century English novels walk over the course of a book? How frequently are new genres of popular fiction invented? How many words does the average novel's protagonist speak? By posing these and other questions, Moretti has become the unofficial leader of a new, more quantitative kind of literary study.
Weiye Loh

BBC News - Belle de Jour's history of anonymity - 1 views

  •  
    "Anon was, as Virginia Woolf noted in one of her final unpublished essays, "the voice that broke the silence of the forest". Elsewhere she suggested that "Anonymous was a woman". For anonymity has definitely been widely used by women throughout the ages, whether they're writing about relationships, sex or anything else. Without Anonymous, there are so many classics we would not have had - Gawain and the Green Knight, virtually all of the Bible and other religious texts. Anon is allowed a greater creative freedom than a named writer is, greater political influence than a common man can ever attain, and far more longevity than we would guess. Obviously, I'm a great fan of Anon's work, but then, as a formerly anonymous author, I would say that, wouldn't I?"
  •  
    Perhaps in intentionally adopting anonymity she seeks to represent herself as everywoman; it is not the individual and what (s)he does which matters, but the "type" which has been/is being (per)formed (Can I just say also that as a result of this she implies all females seek such outlets for expression? i.e. whoring themselves (literally or otherwise). All idea of submission seems to be inherent in their nature, however much they protest and rail against it - HYPOCRISY). By removing the source (i.e. the author's name), the focus is on the words and actions (which should it not be?). Regarding anonymity and creative freedom, the lack of burden of responsibility frees writers from having to conform to any roles which may be ascribed to them by virtue of their "place".
Weiye Loh

The Death of Postmodernism And Beyond | Philosophy Now - 0 views

  • Most of the undergraduates who will take ‘Postmodern Fictions’ this year will have been born in 1985 or after, and all but one of the module’s primary texts were written before their lifetime. Far from being ‘contemporary’, these texts were published in another world, before the students were born: The French Lieutenant’s Woman, Nights at the Circus, If on a Winter’s Night a Traveller, Do Androids Dream of Electric Sheep? (and Blade Runner), White Noise: this is Mum and Dad’s culture. Some of the texts (‘The Library of Babel’) were written even before their parents were born. Replace this cache with other postmodern stalwarts – Beloved, Flaubert’s Parrot, Waterland, The Crying of Lot 49, Pale Fire, Slaughterhouse 5, Lanark, Neuromancer, anything by B.S. Johnson – and the same applies. It’s all about as contemporary as The Smiths, as hip as shoulder pads, as happening as Betamax video recorders. These are texts which are just coming to grips with the existence of rock music and television; they mostly do not dream even of the possibility of the technology and communications media – mobile phones, email, the internet, computers in every house powerful enough to put a man on the moon – which today’s undergraduates take for granted.
  • somewhere in the late 1990s or early 2000s, the emergence of new technologies re-structured, violently and forever, the nature of the author, the reader and the text, and the relationships between them.
  • Postmodernism, like modernism and romanticism before it, fetishised [ie placed supreme importance on] the author, even when the author chose to indict or pretended to abolish him or herself. But the culture we have now fetishises the recipient of the text to the degree that they become a partial or whole author of it. Optimists may see this as the democratisation of culture; pessimists will point to the excruciating banality and vacuity of the cultural products thereby generated (at least so far).
  • ...17 more annotations...
  • Pseudo-modernism also encompasses contemporary news programmes, whose content increasingly consists of emails or text messages sent in commenting on the news items. The terminology of ‘interactivity’ is equally inappropriate here, since there is no exchange: instead, the viewer or listener enters – writes a segment of the programme – then departs, returning to a passive role. Pseudo-modernism also includes computer games, which similarly place the individual in a context where they invent the cultural content, within pre-delineated limits. The content of each individual act of playing the game varies according to the particular player.
  • The pseudo-modern cultural phenomenon par excellence is the internet. Its central act is that of the individual clicking on his/her mouse to move through pages in a way which cannot be duplicated, inventing a pathway through cultural products which has never existed before and never will again. This is a far more intense engagement with the cultural process than anything literature can offer, and gives the undeniable sense (or illusion) of the individual controlling, managing, running, making up his/her involvement with the cultural product. Internet pages are not ‘authored’ in the sense that anyone knows who wrote them, or cares. The majority either require the individual to make them work, like Streetmap or Route Planner, or permit him/her to add to them, like Wikipedia, or through feedback on, for instance, media websites. In all cases, it is intrinsic to the internet that you can easily make up pages yourself (eg blogs).
  • Where once special effects were supposed to make the impossible appear credible, CGI frequently [inadvertently] works to make the possible look artificial, as in much of Lord of the Rings or Gladiator. Battles involving thousands of individuals have really happened; pseudo-modern cinema makes them look as if they have only ever happened in cyberspace.
  • Similarly, television in the pseudo-modern age favours not only reality TV (yet another unapt term), but also shopping channels, and quizzes in which the viewer calls to guess the answer to riddles in the hope of winning money.
  • The purely ‘spectacular’ function of television, as with all the arts, has become a marginal one: what is central now is the busy, active, forging work of the individual who would once have been called its recipient. In all of this, the ‘viewer’ feels powerful and is indeed necessary; the ‘author’ as traditionally understood is either relegated to the status of the one who sets the parameters within which others operate, or becomes simply irrelevant, unknown, sidelined; and the ‘text’ is characterised both by its hyper-ephemerality and by its instability. It is made up by the ‘viewer’, if not in its content then in its sequence – you wouldn’t read Middlemarch by going from page 118 to 316 to 401 to 501, but you might well, and justifiably, read Ceefax that way.
  • A pseudo-modern text lasts an exceptionally brief time. Unlike, say, Fawlty Towers, reality TV programmes cannot be repeated in their original form, since the phone-ins cannot be reproduced, and without the possibility of phoning-in they become a different and far less attractive entity.
  • If scholars give the date they referenced an internet page, it is because the pages disappear or get radically re-cast so quickly. Text messages and emails are extremely difficult to keep in their original form; printing out emails does convert them into something more stable, like a letter, but only by destroying their essential, electronic state.
  • The cultural products of pseudo-modernism are also exceptionally banal
  • Much text messaging and emailing is vapid in comparison with what people of all educational levels used to put into letters.
  • A triteness, a shallowness dominates all.
  • In music, the pseudo-modern supersedingof the artist-dominated album as monolithic text by the downloading and mix-and-matching of individual tracks on to an iPod, selected by the listener, was certainly prefigured by the music fan’s creation of compilation tapes a generation ago. But a shift has occurred, in that what was a marginal pastime of the fan has become the dominant and definitive way of consuming music, rendering the idea of the album as a coherent work of art, a body of integrated meaning, obsolete.
  • To a degree, pseudo-modernism is no more than a technologically motivated shift to the cultural centre of something which has always existed (similarly, metafiction has always existed, but was never so fetishised as it was by postmodernism). Television has always used audience participation, just as theatre and other performing arts did before it; but as an option, not as a necessity: pseudo-modern TV programmes have participation built into them.
  • Whereas postmodernism called ‘reality’ into question, pseudo-modernism defines the real implicitly as myself, now, ‘interacting’ with its texts. Thus, pseudo-modernism suggests that whatever it does or makes is what is reality, and a pseudo-modern text may flourish the apparently real in an uncomplicated form: the docu-soap with its hand-held cameras (which, by displaying individuals aware of being regarded, give the viewer the illusion of participation); The Office and The Blair Witch Project, interactive pornography and reality TV; the essayistic cinema of Michael Moore or Morgan Spurlock.
  • whereas postmodernism favoured the ironic, the knowing and the playful, with their allusions to knowledge, history and ambivalence, pseudo-modernism’s typical intellectual states are ignorance, fanaticism and anxiety
  • pseudo-modernism lashes fantastically sophisticated technology to the pursuit of medieval barbarism – as in the uploading of videos of beheadings onto the internet, or the use of mobile phones to film torture in prisons. Beyond this, the destiny of everyone else is to suffer the anxiety of getting hit in the cross-fire. But this fatalistic anxiety extends far beyond geopolitics, into every aspect of contemporary life; from a general fear of social breakdown and identity loss, to a deep unease about diet and health; from anguish about the destructiveness of climate change, to the effects of a new personal ineptitude and helplessness, which yield TV programmes about how to clean your house, bring up your children or remain solvent.
  • Pseudo-modernism belongs to a world pervaded by the encounter between a religiously fanatical segment of the United States, a largely secular but definitionally hyper-religious Israel, and a fanatical sub-section of Muslims scattered across the planet: pseudo-modernism was not born on 11 September 2001, but postmodernism was interred in its rubble.
  • pseudo-modernist communicates constantly with the other side of the planet, yet needs to be told to eat vegetables to be healthy, a fact self-evident in the Bronze Age. He or she can direct the course of national television programmes, but does not know how to make him or herself something to eat – a characteristic fusion of the childish and the advanced, the powerful and the helpless. For varying reasons, these are people incapable of the “disbelief of Grand Narratives” which Lyotard argued typified postmodernists
  •  
    Postmodern philosophy emphasises the elusiveness of meaning and knowledge. This is often expressed in postmodern art as a concern with representation and an ironic self-awareness. And the argument that postmodernism is over has already been made philosophically. There are people who have essentially asserted that for a while we believed in postmodern ideas, but not any more, and from now on we're going to believe in critical realism. The weakness in this analysis is that it centres on the academy, on the practices and suppositions of philosophers who may or may not be shifting ground or about to shift - and many academics will simply decide that, finally, they prefer to stay with Foucault [arch postmodernist] than go over to anything else. However, a far more compelling case can be made that postmodernism is dead by looking outside the academy at current cultural production.
Weiye Loh

Roger Pielke Jr.'s Blog: Mike Daisey and Higher Truths - 0 views

  • Real life is messy. And as a general rule, the more theatrical the story you hear, and the more it divides the world into goodies vs baddies, the less reliable that story is going to be.
  • some people do feel that certain issues are so important that there should be cause in political debates to overlook lies or misrepresentations in service of a "larger truth" (Yellow cake, anyone?). I have seen this attitude for years in the climate change debate (hey look, just today), and often condoned by scientists and journalists alike.
  • the "global warming: yes or no?" debate has become an obstacle to effective policy action related to climate. Several of these colleagues suggested that I should downplay the policy implications of my work showing that for a range of phenomena and places, future climate impacts depend much more on growing human vulnerability to climate than on projected changes in climate itself (under the assumptions of the Intergovernmental Panel on Climate Change). One colleague wrote, "I think we have a professional (or moral?) obligation to be very careful what we say and how we say it when the stakes are so high." In effect, some of these colleagues were intimating that ends justify means or, in other words, doing the "right thing" for the wrong reasons is OK.
  • ...3 more annotations...
  • When science is used (and misused) in political advocacy, there are frequent opportunities for such situations to arise.
  • I don't think you're being fair to Mike Lemonick. In the article by him that you cite, MIke's provocative question was framed in the context of an analogy he was making to the risks of smoking. For example, in that article, he also says: "So should the overall message be that nobody knows anything? I don’t think so. We would never want to pretend the uncertainty isn’t there, since that would be dishonest. But featuring it prominently is dishonest ,too, just as trumpeting uncertainty in the smoking-cancer connection would have been."Thus, I think you're reading way too much into Mike's piece. That said, I do agree with you that there are implications of the Daisey case for climate communicators and climate journalism. My own related post is here: http://www.collide-a-scape.com/2012/03/19/the-seduction-of-narrative/"
  • I don't want journalists shading the truth in a desire to be "effective" in some way. That is Daisey's tradeoff too.
  •  
    Recall that in the aftermath of initial revelations about Peter Gleick's phishing of the Heartland Institute, we heard defenses of his action that included claims that he was only doing the same thing that journalists do to the importance of looking beyond Gleick's misdeeds at the "larger truth." Consider also what was described in the UEA emails as "pressure to present a nice tidy story" related to climate science as well as the IPCC's outright falsification related to disasters and climate change. Such shenanigans so endemic in the climate change debate that when a journalist openly asks whether the media should tell the whole truth about climate change, no one even bats an eye. 
Weiye Loh

FEED: IDÉE FIXE: Portrait Of The Blogger As A Young Man - 0 views

  • At one time or another in the last 12 months, they have been the future of journalism, a budding branch on the tree of literature, or both. In fact, they are neither, say some members of the Web’s weary anti-hype brigades. "Sorry, buddy -- you’re just a dork who can’t come up with anything more than a paragraph or two to say every day," wrote Teeth e-zine’s Ben Brown in an open letter to Web loggers last spring. "You’re not a designer, you’re not a writer, and you’re not an editor!"
    • Weiye Loh
       
      Was he right? Or wrong about it?
Weiye Loh

The Internet Classics Archive: 441 searchable works of classical literature - 0 views

shared by Weiye Loh on 26 Sep 09 - Cached
  •  
    Home page, part of the Internet Classics Archive
Weiye Loh

nanopolitan: "Lies, Damned Lies, and Medical Science" - 0 views

  • That's the title of The Atlantic profile of Dr. John Ioannidis who "has spent his career challenging his peers by exposing their bad science." His 2005 paper in PLoS Medicine was on why most published research findings are false.
  • Ioannidis anticipated that the community might shrug off his findings: sure, a lot of dubious research makes it into journals, but we researchers and physicians know to ignore it and focus on the good stuff, so what’s the big deal? The other paper headed off that claim.
  • He zoomed in on 49 of the most highly regarded research findings in medicine over the previous 13 years, as judged by the science community’s two standard measures: the papers had appeared in the journals most widely cited in research articles, and the 49 articles themselves were the most widely cited articles in these journals.
  • ...7 more annotations...
  • Of the 49 articles, 45 claimed to have uncovered effective interventions. Thirty-four of these claims had been retested, and 14 of these, or 41 percent, had been convincingly shown to be wrong or significantly exaggerated. If between a third and a half of the most acclaimed research in medicine was proving untrustworthy, the scope and impact of the problem were undeniable. That article was published in the Journal of the American Medical Association. [here's the link.]
  • David Freedman -- has quite a bit on the sociology of research in medical science. Here are a few quotes:
  • Even when the evidence shows that a particular research idea is wrong, if you have thousands of scientists who have invested their careers in it, they’ll continue to publish papers on it,” he says. “It’s like an epidemic, in the sense that they’re infected with these wrong ideas, and they’re spreading it to other researchers through journals.”
  • the peer-review process often pressures researchers to shy away from striking out in genuinely new directions, and instead to build on the findings of their colleagues (that is, their potential reviewers) in ways that only seem like breakthroughs—as with the exciting-sounding gene linkages (autism genes identified!) and nutritional findings (olive oil lowers blood pressure!) that are really just dubious and conflicting variations on a theme.
  • The ultimate protection against research error and bias is supposed to come from the way scientists constantly retest each other’s results—except they don’t. Only the most prominent findings are likely to be put to the test, because there’s likely to be publication payoff in firming up the proof, or contradicting it.
  • Doctors may notice that their patients don’t seem to fare as well with certain treatments as the literature would lead them to expect, but the field is appropriately conditioned to subjugate such anecdotal evidence to study findings.
  • [B]eing wrong in science is fine, and even necessary—as long as scientists recognize that they blew it, report their mistake openly instead of disguising it as a success, and then move on to the next thing, until they come up with the very occasional genuine breakthrough. But as long as careers remain contingent on producing a stream of research that’s dressed up to seem more right than it is, scientists will keep delivering exactly that.
  •  
    "Lies, Damned Lies, and Medical Science"
1 - 20 of 37 Next ›
Showing 20 items per page