Skip to main content

Home/ New Media Ethics 2009 course/ Group items tagged Cryonics

Rss Feed Group items tagged

Weiye Loh

Paul Crowley's Blog - A survey of anti-cryonics writing - 0 views

  • cryonics offers almost eternal life. To its critics, cryonics is pseudoscience; the idea that we could freeze someone today in such a way that future technology might be able to re-animate them is nothing more than wishful thinking on the desire to avoid death. Many who battle nonsense dressed as science have spoken out against it: see for example Nano Nonsense and Cryonics, a 2001 article by celebrated skeptic Michael Shermer; or check the Skeptic’s Dictionary or Quackwatch entries on the subject, or for more detail read the essay Cryonics–A futile desire for everlasting life by “Invisible Flan”.
  • And of course the pro-cryonics people have written reams and reams of material such as Ben Best’s Scientific Justification of Cryonics Practice on why they think this is exactly as plausible as I might think, and going into tremendous technical detail setting out arguments for its plausibility and addressing particular difficulties. It’s almost enough to make you want to sign up on the spot. Except, of course, that plenty of totally unscientific ideas are backed by reams of scientific-sounding documents good enough to fool non-experts like me. Backed by the deep pockets of the oil industry, global warming denialism has produced thousands of convincing-sounding arguments against the scientific consensus on CO2 and AGW. T
  • Nano Nonsense and Cryonics goes for the nitty-gritty right away in the opening paragraph:To see the flaw in this system, thaw out a can of frozen strawberries. During freezing, the water within each cell expands, crystallizes, and ruptures the cell membranes. When defrosted, all the intracellular goo oozes out, turning your strawberries into runny mush. This is your brain on cryonics.This sounds convincing, but doesn’t address what cryonicists actually claim. Ben Best, President and CEO of the Cryonics Institute, replies in the comments:Strawberries (and mammalian tissues) are not turned to mush by freezing because water expands and crystallizes inside the cells. Water crystallizes in the extracellular space because more nucleators are found extracellularly. As water crystallizes in the extracellular space, the extracellular salt concentration increases causing cells to lose water osmotically and shrink. Ultimately the cell membranes are broken by crushing from extracellular ice and/or high extracellular salt concentration. […] Cryonics organizations use vitrification perfusion before cooling to cryogenic temperatures. With good brain perfusion, vitrification can reduce ice formation to negligible amounts.
  • ...6 more annotations...
  • The Skeptic’s Dictionary entry is no advance. Again, it refers erroneously to a “mushy brain”. It points out that the technology to reanimate those in storage does not already exist, but provides no help for us non-experts in assessing whether it is a plausible future technology, like super-fast computers or fusion power, or whether it is as crazy as the sand-powered tank; it simply asserts baldly and to me counterintuitively that it is the latter. Again, perhaps cryonic reanimation is a sand-powered tank, but I can explain to you why a sand-powered tank is implausible if you don’t already know, and if cryonics is in the same league I’d appreciate hearing the explanation.
  • Another part of the article points out the well-known difficulties with whole-body freezing — because the focus is on achieving the best possible preservation of the brain, other parts suffer more. But the reason why the brain is the focus is that you can afford to be a lot bolder in repairing other parts of the body — unlike the brain, if my liver doesn’t survive the freezing, it can be replaced altogether.
  • Further, the article ignores one of the most promising possibilities for reanimation, that of scanning and whole-brain emulation, a route that requires some big advances in computer and scanning technology as well as our understanding of the lowest levels of the brain’s function, but which completely sidesteps any problems with repairing either damage from the freezing process or whatever it was that led to legal death.
  • Sixteen years later, it seems that hasn’t changed; in fact, as far as the issue of technical feasability goes it is starting to look as if on all the Earth, or at least all the Internet, there is not one person who has ever taken the time to read and understand cryonics claims in any detail, still considers it pseudoscience, and has written a paper, article or even a blog post to rebut anything that cryonics advocates actually say. In fact, the best of the comments on my first blog post on the subject are already a higher standard than anything my searches have turned up.
  • I don’t have anything useful to add, I just wanted to say that I feel exactly as you do about cryonics and living forever. And I thought that this statement: I know that I don’t know enough to judge. shows extreme wisdom. If only people wishing to comment on global warming would apply the same test.
  • WRT global warming, the mistake people make is trying to go direct to the first-order evidence, which is much too complicated and too easy to misrepresent to hope to directly interpret unless you make it your life’s work, and even then only in a particular area. The correct thing to do is to collect second-order evidence, such as that every major scientific academy has backed the IPCC.
    • Weiye Loh
       
      First-order evidence vs second-order evidence...
  •  
    Cryonics
Weiye Loh

Rationally Speaking: Evolution as pseudoscience? - 0 views

  • I have been intrigued by an essay by my colleague Michael Ruse, entitled “Evolution and the idea of social progress,” published in a collection that I am reviewing, Biology and Ideology from Descartes to Dawkins (gotta love the title!), edited by Denis Alexander and Ronald Numbers.
  • Ruse's essay in the Alexander-Numbers collection questions the received story about the early evolution of evolutionary theory, which sees the stuff that immediately preceded Darwin — from Lamarck to Erasmus Darwin — as protoscience, the immature version of the full fledged science that biology became after Chuck's publication of the Origin of Species. Instead, Ruse thinks that pre-Darwinian evolutionists really engaged in pseudoscience, and that it took a very conscious and precise effort on Darwin’s part to sweep away all the garbage and establish a discipline with empirical and theoretical content analogous to that of the chemistry and physics of the time.
  • Ruse asserts that many serious intellectuals of the late 18th and early 19th century actually thought of evolution as pseudoscience, and he is careful to point out that the term “pseudoscience” had been used at least since 1843 (by the physiologist Francois Magendie)
  • ...17 more annotations...
  • Ruse’s somewhat surprising yet intriguing claim is that “before Charles Darwin, evolution was an epiphenomenon of the ideology of [social] progress, a pseudoscience and seen as such. Liked by some for that very reason, despised by others for that very reason.”
  • Indeed, the link between evolution and the idea of human social-cultural progress was very strong before Darwin, and was one of the main things Darwin got rid of.
  • The encyclopedist Denis Diderot was typical in this respect: “The Tahitian is at a primary stage in the development of the world, the European is at its old age. The interval separating us is greater than that between the new-born child and the decrepit old man.” Similar nonsensical views can be found in Lamarck, Erasmus, and Chambers, the anonymous author of The Vestiges of the Natural History of Creation, usually considered the last protoscientific book on evolution to precede the Origin.
  • On the other side of the divide were social conservatives like the great anatomist George Cuvier, who rejected the idea of evolution — according to Ruse — not as much on scientific grounds as on political and ideological ones. Indeed, books like Erasmus’ Zoonomia and Chambers’ Vestiges were simply not much better than pseudoscientific treatises on, say, alchemy before the advent of modern chemistry.
  • people were well aware of this sorry situation, so much so that astronomer John Herschel referred to the question of the history of life as “the mystery of mysteries,” a phrase consciously adopted by Darwin in the Origin. Darwin set out to solve that mystery under the influence of three great thinkers: Newton, the above mentioned Herschel, and the philosopher William Whewell (whom Darwin knew and assiduously frequented in his youth)
  • Darwin was a graduate of the University of Cambridge, which had also been Newton’s home. Chuck got drilled early on during his Cambridge education with the idea that good science is about finding mechanisms (vera causa), something like the idea of gravitational attraction underpinning Newtonian mechanics. He reflected that all the talk of evolution up to then — including his grandfather’s — was empty, without a mechanism that could turn the idea into a scientific research program.
  • The second important influence was Herschel’s Preliminary Discourse on the Study of Natural Philosophy, published in 1831 and read by Darwin shortly thereafter, in which Herschel sets out to give his own take on what today we would call the demarcation problem, i.e. what methodology is distinctive of good science. One of Herschel’s points was to stress the usefulness of analogical reasoning
  • Finally, and perhaps most crucially, Darwin also read (twice!) Whewell’s History of the Inductive Sciences, which appeared in 1837. In it, Whewell sets out his notion that good scientific inductive reasoning proceeds by a consilience of ideas, a situation in which multiple independent lines of evidence point to the same conclusion.
  • the first part of the Origin, where Darwin introduces the concept of natural selection by way of analogy with artificial selection can be read as the result of Herschel’s influence (natural selection is the vera causa of evolution)
  • the second part of the book, constituting Darwin's famous “long argument,” applies Whewell’s method of consilience by bringing in evidence from a number of disparate fields, from embryology to paleontology to biogeography.
  • What, then, happened to the strict coupling of the ideas of social and biological progress that had preceded Darwin? While he still believed in the former, the latter was no longer an integral part of evolution, because natural selection makes things “better” only in a relative fashion. There is no meaningful sense in which, say, a large brain is better than very fast legs or sharp claws, as long as you still manage to have dinner and avoid being dinner by the end of the day (or, more precisely, by the time you reproduce).
  • Ruse’s claim that evolution transitioned not from protoscience to science, but from pseudoscience, makes sense to me given the historical and philosophical developments. It wasn’t the first time either. Just think about the already mentioned shift from alchemy to chemistry
  • Of course, the distinction between pseudoscience and protoscience is itself fuzzy, but we do have what I think are clear examples of the latter that cannot reasonably be confused with the former, SETI for one, and arguably Ptolemaic astronomy. We also have pretty obvious instances of pseudoscience (the usual suspects: astrology, ufology, etc.), so the distinction — as long as it is not stretched beyond usefulness — is interesting and defensible.
  • It is amusing to speculate which, if any, of the modern pseudosciences (cryonics, singularitarianism) might turn out to be able to transition in one form or another to actual sciences. To do so, they may need to find their philosophically and scientifically savvy Darwin, and a likely bet — if history teaches us anything — is that, should they succeed in this transition, their mature form will look as different from the original as chemistry and alchemy. Or as Darwinism and pre-Darwinian evolutionism.
  • Darwin called the Origin "one long argument," but I really do think that recognizing that the book contains (at least) two arguments could help to dispel that whole "just a theory" canard. The first half of the book is devoted to demonstrating that natural selection is the true cause of evolution; vera causa arguments require proof that the cause's effect be demonstrated as fact, so the second half of the book is devoted to a demonstration that evolution has really happened. In other words, evolution is a demonstrable fact and natural selection is the theory that explains that fact, just as the motion of the planets is a fact and gravity is a theory that explains it.
  • Cryogenics is the study of the production of low temperatures and the behavior of materials at those temperatures. It is a legitimate branch of physics and has been for a long time. I think you meant 'cryonics'.
  • The Singularity means different things to different people. It is uncharitable to dismiss all "singularitarians" by debunking Kurzweil. He is low hanging fruit. Reach for something higher.
  •  
    "before Charles Darwin, evolution was an epiphenomenon of the ideology of [social] progress, a pseudoscience and seen as such. Liked by some for that very reason, despised by others for that very reason."
1 - 2 of 2
Showing 20 items per page