Archimedes - 1 views
fakebook - 1 views
The Thirty Greatest Mathematicians - 3 views
The Thirty Greatest Mathematicians - 0 views
Archimedes - Wikipedia, the free encyclopedia - 0 views
-
Archimedes was born c. 287 BC in the seaport city of Syracuse, Sicily
Mathematicians - Thales of Milet - 0 views
Fathers of Mathematics - 0 views
Leonhard Euler - Wikipedia, the free encyclopedia - 0 views
-
Euler was born on April 15, 1707, in Basel to Paul Euler, a pastor of the Reformed Church. His mother was Marguerite Brucker, a pastor's daughter. He had two younger sisters named Anna Maria and Maria Magdalena. Soon after the birth of Leonhard, the Eulers moved from Basel to the town of Riehen, where Euler spent most of his childhood.
-
Euler's eyesight worsened throughout his mathematical career. Three years after suffering a near-fatal fever in 1735 he became nearly blind in his right eye, but Euler rather blamed his condition on the painstaking work on cartography he performed for the St. Petersburg Academy. Euler's sight in that eye worsened throughout his stay in Germany, so much so that Frederick referred to him as "Cyclops". Euler later suffered a cataract in his good left eye, rendering him almost totally blind a few weeks after its discovery in 1766. Even so, his condition appeared to have little effect on his productivity, as he compensated for it with his mental calculation skills and photographic memory. For example, Euler could repeat the Aeneid of Virgil from beginning to end without hesitation, and for every page in the edition he could indicate which line was the first and which the last. With the aid of his scribes, Euler's productivity on many areas of study actually increased. He produced on average one mathematical paper every week in the year 1775.[3]
Muḥammad ibn Jābir al-Ḥarrānī al-Battānī - Wikipedia, the free encyclopedia - 1 views
The Thirty Greatest Mathematicians - 0 views
-
Euclid may have been a student of Aristotle. He founded the school of mathematics at the great university of Alexandria. He was the first to prove that there are infinitely many prime numbers; he stated and proved the unique factorization theorem; and he devised Euclid's algorithm for computing gcd. He introduced the Mersenne primes and observed that (M2+M)/2 is always perfect (in the sense of Pythagoras) if M is Mersenne. (The converse, that any even perfect number has such a corresponding Mersenne prime, was tackled by Alhazen and proven by Euler.) He proved that there are only five "Platonic solids," as well as theorems of geometry far too numerous to summarize; among many with special historical interest is the proof that rigid-compass constructions can be implemented with collapsing-compass constructions. Although notions of trigonometry were not in use, Euclid's theorems include some closely related to the Laws
-
of Sines and Cosines. Among several books attributed to Euclid are The Division of the Scale (a mathematical discussion of music), The Optics, The Cartoptrics (a treatise on the theory of mirrors), a book on spherical geometry, a book on logic fallacies, and his comprehensive math textbook The Elements. Several of his masterpieces have been lost, including works on conic sections and other advanced geometric topics. Apparently Desargues' Homology Theorem (a pair of triangles is coaxial if and only if it is copolar) was proved in one of these lost works; this is the fundamental theorem which initiated the study of projective geometry. Euclid ranks #14 on Michael Hart's famous list of the Most Influential Persons in History. The Elements introduced the notions of axiom and theorem; was used as a textbook for 2000 years; and in fact is still the basis for high school geometry, making Euclid the leading mathematics teacher of all time. Some think his best inspiration was recognizing that the Parallel Postulate must be an axiom rather than a theorem. There are many famous quotations about Euclid and his books. Abraham Lincoln abandoned his law studies when he didn't know what "demonstrate" meant and "went home to my father's house [to read Euclid], and stayed there till I could give any proposition in the six books of Euclid at sight. I then found out what demonstrate means, and went back to my law studies."