Skip to main content

Home/ Groups/ Mind & Brain
Amira .

Memories are made of this. Kandel outlines how brains manage data, and are changed by i... - 0 views

  • “The brain is a creativity machine,” Columbia University neuroscientist Eric Kandel told his Harvard audience on Feb. 8. “We get incomplete information from the outside world, and we make a whole lot of things up. This is why the brain can be deceived so easily — because it’s guessing all the time.”
  • “If you remember anything about this lecture, it’s because genes in your brain will be altered,” said the Columbia University professor, who shared the 2000 Nobel Prize in physiology or medicine for his studies on memory. “If you remember this tomorrow, or the next day, a week later, you will have a different brain than when you walked into this lecture.”
  • “Memory, as you know, makes us who we are,” Kandel said. “It’s the glue that binds our mental life together. Without the unifying force of memory, we would be broken into as many fragments as there are moments in the day.”
  • ...4 more annotations...
  • “Long-term memory differs from short-term memory in requiring the synthesis of new proteins,” Kandel said, adding that there’s a high threshold for information to be entered into long-term memory. “Something really has to be important to be remembered,” he said. Long-term memory stimulates protein syntheses, Kandel said, by altering gene expression. While the genes themselves remain unchanged, their activity levels are tweaked by the molecules involved in the creation of long-term memory.
  • “Many of us are accustomed, naively, to thinking that genes are the determinants of our behavior,” he said. “We are not accustomed to thinking that genes are also the servants of the mind.” The genes affected, he said, lead the brain’s 100 billion neurons to grow new synapses, or connections with other neurons. A typical neuron, he said, connects to about 1,200 others. But neurons that are subject to repeated stimuli have been found to have much denser networks, with up to 2,800 synapses.
  • The brain is especially susceptible to forming such new connections early in life, he said, when its structure is highly malleable, or plastic. “This is why almost all great musicians, all great basketball players, all great anything, all get started very early in life,” Kandel said.
  • “There are a lot of cells up there,” he said. “Each one of them connects to 1,000 other cells, so you’ve got more synapses than there are stars in the universe. When you finish counting those stars in the universe, I will be ready for the connectome.”
Amira .

Human brain uses grid to represent space | UCL Institute of Cognitive Neuroscience - 0 views

  • ‘Grid cells’ that act like a spatial map in the brain have been identified for the first time in humans, according to new research by UCL scientists which may help to explain how we create internal maps of new environments. The study is by a team from the UCL Institute of Cognitive Neuroscience and was funded by the Medical Research Council and the European Union. Published today in Nature, it uses brain imaging and virtual reality techniques to try to identify grid cells in the human brain. These specialised neurons are thought to be involved in spatial memory and have previously been identified in rodent brains, but evidence of them in humans has not been documented until now.
  • Grid cells represent where an animal is located within its environment, which the researchers liken to having a satnav in the brain. They fire in patterns that show up as geometrically regular, triangular grids when plotted on a map of a navigated surface. They were discovered by a Norwegian lab in 2005 whose research suggested that rats create virtual grids to help them orient themselves in their surroundings, and remember new locations in unfamiliar territory. Study co-author Dr Caswell Barry said: “It is as if grid cells provide a cognitive map of space. In fact, these cells are very much like the longitude and latitude lines we’re all familiar with on normal maps, but instead of using square grid lines it seems the brain uses triangles.”
  •  
    "'Grid cells' that act like a spatial map in the brain have been identified for the first time in humans, according to new research by UCL scientists which may help to explain how we create internal maps of new environments. The study is by a team from the UCL Institute of Cognitive Neuroscience and was funded by the Medical Research Council and the European Union. Published today in Nature, it uses brain imaging and virtual reality techniques to try to identify grid cells in the human brain. These specialised neurons are thought to be involved in spatial memory and have previously been identified in rodent brains, but evidence of them in humans has not been documented until now."
Amira .

Mapping the brain. MIT neuroscientists are making computers smart enough to see the con... - 0 views

  • The scientists, including several at MIT, are working on technologies needed to accelerate the slow and laborious process that the C. elegans researchers originally applied to worms. With these technologies, they intend to map the connectomes of our animal cousins, and eventually perhaps even those of humans. Their results could fundamentally alter our understanding of the brain. Mapping the millions of miles of neuronal “wires” in the brain could help researchers understand how those neurons give rise to intelligence, personality and memory, says Sebastian Seung, professor of computational neuroscience at MIT. For the past three years, Seung and his students have been building tools that they hope will allow researchers to unravel some of those connections. To find connectomes, researchers will need to employ vast computing power to process images of the brain. But first, they need to teach the computers what to look for.
  • “Instead of specifying the details of how the computer does something, you give it an example of what you want it to do and an algorithm that tries to figure out how to do what you want,” says Jain. After the computer is trained on the human tracings, it is applied to electron micrographs that have not been traced by humans. This new technique represents the first time that computers have been effectively taught to segment any kind of images, not just neurons.
  • “Doing such a microscopic level of resolution seemed to be infeasible at the time,” he says. “But now I’m coming around to the idea that something like that may well be possible.” The machine learning technology that Seung and his students are developing could be “a big leap forward” in making that kind of diagram a reality, Sporns adds.
  • ...1 more annotation...
  • Some neuroscientists believe that mapping connectomes could have just as much impact as sequencing the human genome. Much as genetic researchers can now compare individuals’ genes to look for variability that might account for diseases, brain researchers could discover which differences in the wiring diagrams are important in diseases like Alzheimer’s and schizophrenia, says Turaga
  •  
    The scientists, including several at MIT, are working on technologies needed to accelerate the slow and laborious process that the C. elegans researchers originally applied to worms. With these technologies, they intend to map the connectomes of our animal cousins, and eventually perhaps even those of humans. Their results could fundamentally alter our understanding of the brain. Mapping the millions of miles of neuronal "wires" in the brain could help researchers understand how those neurons give rise to intelligence, personality and memory, says Sebastian Seung, professor of computational neuroscience at MIT. For the past three years, Seung and his students have been building tools that they hope will allow researchers to unravel some of those connections. To find connectomes, researchers will need to employ vast computing power to process images of the brain. But first, they need to teach the computers what to look for.
Amira .

Our brains are confused about time by Lin Edwards | Physorg.com January 8, 2010 - 0 views

  •  
    A recent study published in the journal Psychological Science has found our concept of time is distorted, and we consistently underestimate how much time has passed since events in the past, condensing the time.
Amira .

Malcolm Gladwell - If what I.Q. tests measure is immutable and innate, what explains th... - 0 views

  •  
    "One Saturday in November of 1984, James Flynn, a social scientist at the University of Otago, in New Zealand, received a large package in the mail. It was from a colleague in Utrecht, and it contained the results of I.Q. tests given to two generations of Dutch eighteen-year-olds. When Flynn looked through the data, he found something puzzling. The Dutch eighteen-year-olds from the nineteen-eighties scored better than those who took the same tests in the nineteen-fifties-and not just slightly better, much better."
Amira .

Religion and the Brain: A Debate | The Dana Foundation - 1 views

  • Does evolution explain why the human brain supports religious belief? Dimitrios Kapogiannis and Jordan Grafman, scientists at the National Institutes of Health, follow up on a recent scientific paper by stating that brain networks that evolved for other purposes have given rise to our capacity for religious belief and experience. Andrew Newberg, the radiologist and psychiatrist who wrote How God Changes Your Brain, takes a different approach. He argues that the brain may be an instrument of religious experience but is not necessarily the origin of that experience. Each side of the debate first wrote a position statement; the sides then exchanged statements and wrote rejoinders.
  •  
    Does evolution explain why the human brain supports religious belief? Dimitrios Kapogiannis and Jordan Grafman, scientists at the National Institutes of Health, follow up on a recent scientific paper by stating that brain networks that evolved for other purposes have given rise to our capacity for religious belief and experience. Andrew Newberg, the radiologist and psychiatrist who wrote How God Changes Your Brain, takes a different approach. He argues that the brain may be an instrument of religious experience but is not necessarily the origin of that experience. Each side of the debate first wrote a position statement; the sides then exchanged statements and wrote rejoinders.
Amira .

Portrait of a Multitasking Mind By Naomi Kenner & Russell Poldrack | Scientific American - 0 views

  • new research by EyalOphir, Clifford Nass, and Anthony D. Wagner at Stanford University suggests that people who multitask suffer from a problem: weaker self-control ability.
  • then recruited people who had scores that were extremely high or low and asked them perform a series of tests designed to measure the ability to control one's attention, one's responses, and the contents of one's memory. They found that the high- and low- media-multitasking groups were equally able to control their responses, but that the heavy media-multitasking group had difficulties, compared to the low media-multitasking group, when asked to ignore information that was in the environment or in their recent memory. They also had greater trouble relative to their counterparts when asked to switch rapidly between two different tasks. This last finding was surprising, because psychologists know that multitasking involves switching rapidly between tasks rather than actually performing multiple tasks simultaneously.
  • It seems that chronic media-multitaskers are more susceptible to distractions. In contrast, people who do not usually engage in media-multitasking showed a greater ability to focus on important information. According to the researchers, this reflects two fundamentally different strategies of information processing. Those who engage in media-multitasking more frequently are "breadth-biased," preferring to explore any available information rather than restrict themselves. AsLin Lin at the University of North Texas puts it in a review of the article, they develop a habit of treating all information equally. On the other extreme are those who avoid breadth in favor of information that is relevant to an immediate goal.
  • ...1 more annotation...
  • While the researchers focused on a type of control known as "top-down" attention, meaning that control is initiated by higher-level mental processes such as cognition in service of a specific goal, they suggest that heavy media-multitaskers might be better at "bottom-up" attention. In this type of control, cues from the external world drive your attention through lower-level mental processes such as perception and habit. In our fast-paced and technologically advancing society, it may be that having a single goal on which to focus our efforts is a luxury. We may often be better served by a control strategy that is cued by the demands of our surroundings. Look around yourself - do you see notes and to-do lists? Piles of objects meant to remind you about tasks and goals? These sorts of reminders are a great way to take advantage of bottom-up attentional control, and this type of control might in fact be more influential in our lives than we realize.
  •  
    What happens when you try to do three things at once?
Amira .

The Root of Thought: What Do Glial Cells Do? Nearly 90 percent of the brain is composed... - 0 views

  •  
    Nearly 90 percent of the brain is composed of glial cells, not neurons. Andrew Koob argues that these overlooked cells just might be the source of the imagination
Amira .

The New Science of Temptation. What happens when Harvard scientists use a brain scanner... - 0 views

  •  
    The power to resist temptation has been extolled by philosophers, psychologists, teachers, coaches, and mothers. Anyone with advice on how you should live your life has surely spoken to you of its benefits.
Amira .

What the web is teaching our brains by Anastasia Stephens | The Independent - 0 views

  •  
    Spending hours on the net isn't only changing the way we work, shop and socialise. A leading neurologist says it is subtly re-wiring the way we think and behave - often for the better.
Amira .

Our Minds Are Black Boxes - Even to Ourselves | PsyBlog - 0 views

  •  
    The stories we weave about our mental processes are logically appealing but fatally flawed more often than we'd like to think.
‹ Previous 21 - 34 of 34
Showing 20 items per page