Skip to main content

Home/ Maritime News/ Group items tagged However

Rss Feed Group items tagged

Jérôme OLLIER

The Efficacy of Management Measures to Reduce Vessel Noise in Critical Habitat of South... - 0 views

  •  
    The inland waters around southern Vancouver Island and northern Washington State, known as the Salish Sea, host critical habitat for endangered southern resident killer whales (SRKW). This is, however, a highly traversed area, with approaches to industrial ports and coastal cities, international shipping lanes, ferry routes, and considerable recreational vessel traffic. Vessel noise is a key threat to SRKW prosperity, and so conservation measures directed to mitigate its effects have been explored annually since 2017. Here, we describe trials undertaken in 2020, which included spatially limited slowdown zones, exclusion areas as Interim whale Sanctuary Zones (ISZs), and a lateral displacement of tug transits to increase the distance between their route and SRKW foraging areas. To assess each of the measures we first considered the level of mariner participation using data from the Automated Identification Systems (AIS), mandatory for commercial vessels. Knowing this, the changes in soundscape were examined, focused on impacts on broadband (10 Hz to 100 kHz) ambient noise and the frequencies used by SRKW for communication (500 Hz to 15 kHz) and echolocation (15 to 100 kHz). A control period of two-months prior to trial initiation was used to quantify the changes. High levels (> 80%) of compliance were found for each measure, except ISZs, where observance was low. Median reduction in speeds ranged from 0.2-3.5 knots. Resulting sound reductions were most notable in the lower frequencies, although reductions were also recorded in SRKW pertinent ranges. Tug displacement also reduced ambient noise in these frequencies, despite making up a small portion of the overall traffic. The management trials were effective in reducing potential impacts singularly and in concert. Greater awareness and stakeholder engagement may increase compliance and, therefore, the efficacy of measures in the future.
Jérôme OLLIER

Large Vessel Activity and Low-Frequency Underwater Sound Benchmarks in United States Wa... - 0 views

  •  
    Chronic low-frequency noise from commercial shipping is a worldwide threat to marine animals that rely on sound for essential life functions. Although the U.S. National Oceanic and Atmospheric Administration recognizes the potential negative impacts of shipping noise in marine environments, there are currently no standard metrics to monitor and quantify shipping noise in U.S. marine waters. However, one-third octave band acoustic measurements centered at 63 and 125 Hz are used as international (European Union Marine Strategy Framework Directive) indicators for underwater ambient noise levels driven by shipping activity. We apply these metrics to passive acoustic monitoring data collected over 20 months in 2016-2017 at five dispersed sites throughout the U.S. Exclusive Economic Zone: Alaskan Arctic, Hawaii, Gulf of Mexico, Northeast Canyons and Seamounts Marine National Monument (Northwest Atlantic), and Cordell Bank National Marine Sanctuary (Northeast Pacific). To verify the relationship between shipping activity and underwater sound levels, vessel movement data from the Automatic Identification System (AIS) were paired to each passive acoustic monitoring site. Daily average sound levels were consistently near to or higher than 100 dB re 1 μPa in both the 63 and 125 Hz one-third octave bands at sites with high levels of shipping traffic (Gulf of Mexico, Northeast Canyons and Seamounts, and Cordell Bank). Where cargo vessels were less common (the Arctic and Hawaii), daily average sound levels were comparatively lower. Specifically, sound levels were ∼20 dB lower year-round in Hawaii and ∼10-20 dB lower in the Alaskan Arctic, depending on the season. Although these band-level measurements can only generally facilitate differentiation of sound sources, these results demonstrate that international acoustic indicators of commercial shipping can be applied to data collected in U.S. waters as a unified metric to approximate the influence of shipping as a driver of
Jérôme OLLIER

AUV planning and calibration method considering concealment in uncertain environments -... - 0 views

  •  
    Introduction: Autonomous underwater vehicles (AUVs) are required to thoroughly scan designated areas during underwater missions. They typically follow a zig-zag trajectory to achieve full coverage. However, effective coverage can be challenging in complex environments due to the accumulation and drift of navigation errors. Possible solutions include surfacing for satellite positioning or underwater acoustic positioning using transponders on other vehicles. Nevertheless, surfacing or active acoustics can compromise stealth during reconnaissance missions in hostile areas by revealing the vehicle's location.
Jérôme OLLIER

Balancing the consequences of in-water cleaning of biofouling to improve ship efficienc... - 0 views

  •  
    Effective environmental policy often involves introducing and maintaining important activities with positive outcomes while minimizing environmental consequences; essentially decoupling a positive activity from its negative impacts. In-water cleaning (IWC) of biofouling from ships' submerged surfaces is an example of an activity with positive outcomes (e.g., maintaining optimal ship energy efficiency and decreased biosecurity risk) and unintended negative consequences (e.g., release of living organisms, biocides, and microplastics). Several approaches exist to mitigate these negative consequences, including debris capture, with primary and secondary treatment of removed particulate and dissolved materials. However, it is unlikely that these approaches will eliminate environmental risk. Policy makers should be aware of the full suite of risks related to ship IWC and the tradeoffs to consider when balancing mitigation approaches.
Jérôme OLLIER

Methods to get more information from sparse vessel monitoring systems data - @FrontMari... - 0 views

  •  
    Vessel Monitoring Systems (VMS) and other vessel tracking data have been used for many years to map the distribution of fishing activities. Mapping areas with low levels of fishing activity can be of particular interest; for example to avoid conflicts between fishing and other ocean uses like offshore renewable energy or to protect relatively pristine ecosystems from increasing fishing pressure. A particular problem when trying to delineate areas that are lightly fished, is the relative sparsity of vessel monitoring data in these areas. This paper explores three novel methods for estimating the distribution of fishing activity from VMS data, with particular focus on lightly impacted areas. The first new method divides the area of interest into a nested grid with varying cell sizes (depending on the density of data at each location); the second new method uses Voronoi diagrams to define polygons around observations and the third method applies a local regression to generate a smooth map of fishing intensity. The new methods are compared with two established methods: applying spatial grids and interpolating fishing tracks. The track interpolation method generally performs better than any of the new methods, however it is not always possible or appropriate to apply track interpolation; in those cases the local regression method is the best alternative.
Jérôme OLLIER

Ocean highways in the Western Mediterranean: Which are the areas with increased exposur... - 0 views

  •  
    Many marine megafauna taxa are tied to the sea surface for breathing which makes them vulnerable to vessel collisions. Sea turtles have developed efficient mechanisms to reduce surface time for breathing to a few seconds, but they can extend their surface periods to rest or to rewarm after diving into deep and colder waters. However, knowledge of collision occurrences is limited to data of turtles stranded along the coastline worldwide, whereas events occurring offshore go likely underestimated due to the sinking of carcasses. Here we performed a spatially explicit assessment to identify, for the first time, oceanic areas of higher exposure for sea turtles from maritime traffic in the Tyrrhenian Sea, Western Mediterranean. Satellite-tracking data were used to estimate utilization distributions of loggerhead turtles using Brownian bridge kernel density estimation. Maritime traffic density maps based on Automatic Identification System (AIS) data were extracted from open-access data layers, provided by the European Maritime Safety Agency, summarized, and used for the exposure analysis. Turtle occurrences were also investigated in response to vessel densities and seasonal patterns by fitting a generalized additive model to the data. Our results demonstrated that loggerhead turtles are potentially exposed to maritime traffic across the entire basin, especially in the easternmost part. The exposure varies among spring/summer and autumn/winter months. Highest turtle occurrences were found in regions primarily subjected to cargo, tanker, and passenger transportation. This study represents the first-ever effort to characterize the exposure of oceanic loggerhead turtles to maritime traffic and highlights oceanic areas of higher exposure where research and conservation efforts should be directed to understand the effective impact of this stressor on the species.
Jérôme OLLIER

Comparing spatial patterns of marine vessels between vessel-tracking data and satellite... - 0 views

  •  
    Monitoring marine use is essential to effective management but is extremely challenging, particularly where capacity and resources are limited. To overcome these limitations, satellite imagery has emerged as a promising tool for monitoring marine vessel activities that are difficult to observe through publicly available vessel-tracking data. However, the broader use of satellite imagery is hindered by the lack of a clear understanding of where and when it would bring novel information to existing vessel-tracking data. Here, we outline an analytical framework to (1) automatically detect marine vessels in optical satellite imagery using deep learning and (2) statistically contrast geospatial distributions of vessels with the vessel-tracking data. As a proof of concept, we applied our framework to the coastal regions of Peru, where vessels without the Automatic Information System (AIS) are prevalent. Quantifying differences in spatial information between disparate datasets-satellite imagery and vessel-tracking data-offers insight into the biases of each dataset and the potential for additional knowledge through data integration. Our study lays the foundation for understanding how satellite imagery can complement existing vessel-tracking data to improve marine oversight and due diligence.
Jérôme OLLIER

Research on non-contact wet mateable connector for optical communication and power tran... - 0 views

  •  
    At present, contact watertight connectors are commonly utilized for the connection between underwater electromechanical equipment and the seabed observation network. Such traditional watertight connectors are easy to be irreversibly worn when plugging and unplugging, however, they have complicated sealing structures and limited service life. This paper designs a Non-contact Wet Mateable connector for Optical Communication and Power Transmission (OCPT-NWMC), which is based on technology of Contactless Power Transmission (CLPT) and optical communication. Docking structure of the sockets and plugs are designed, facilitating Remotely Operated Vehicle (ROV) to operate. A prototype of the OCPT-NWMC was established. The experimental results show that the connector designed can achieve 200W power transmission, with a maximum power transmission efficiency of 94%. The communication bandwidth reaches 18MHz. The OCPT-NWMC can assist the rapid and safe deployment and operation of seabed observation network.
Jérôme OLLIER

New approach for designing an underwater free-space optical communication system - @Fro... - 0 views

  •  
    Ocean observation system that involves multiple underwater vehicles and seafloor nodes plays an important role in better learning the ocean, where underwater wireless communication is mandatory for massive data interaction. Optical communication that has wide bandwidth and comprehensive working distance is the preferred method compared to acoustic and other methods. However, the presence of directionality makes the optical method difficult to use especially when the transceiver is equipped on a motive vehicle. In this study, an underwater free-space optical communication method of transmitting information is proposed. Characteristics of underwater optical transmission, as well as the photoelectric signal processing and modulation and demodulation algorithms, are studied and modeled. New approach for realizing underwater free-space optical communication is proposed and simulated. A prototype including a free-space optical transmitter and a receiver is developed; tests in different scenarios were carried out, and the results were observed: (1) by using the minimum number of LEDs, the effect of uniform lighting in space is achieved, and the transmitter coverage reaches 160°. (2) When the power of the transmitter is 10 W and the communication rate is 1 Mbps, the maximum communication distance reaches 13 m.
Jérôme OLLIER

The removal of atmospheric aerosols in a heavy industrial coastal city in China with fr... - 0 views

  •  
    Rapid urbanization and heavy industrialization generally result in serious aerosol pollution. Contrary to this conventional wisdom, Zhanjiang, one industrial city in the southernmost point of the Chinese mainland, is not accompanied by aerosol pollution and its air quality index always ranks high compared to other cities in China. To investigate this contradiction, 72-hour total suspended particles (TSPs) and water-soluble inorganic ions (WSIIs; including Mg2+, Ca2+, K+, Na+, NH4+, Cl-, NO3-, and SO42-) were collected in Zhanjiang, China, from November 2018 to November 2019. The relative humidity (RH) was higher than 80% throughout the whole year in Zhanjiang. However, the TSPs and WSIIs were not correlated with RH, indicating that RH can increase the particle size, but this had a minor impact on the dry deposition rate. The larger particles induced by RH were easily captured by wet precipitation, leading to a seasonal pattern with higher TSP and WSII mass concentrations during the dry and cool season and lower values during the hot and rainy season. This seasonal pattern and high aerosol acidity indicate that TSPs, WSIIs, and acidic gaseous precursors from the local sources were preferentially scavenged by the abundant rainfall and high precipitation frequency. Principal component analysis (PCA) results suggest that relatively clean marine emissions and secondary aerosols were the most important sources of TSPs and WSIIs. Our results indicate that the inconsistency between the heavy industrial activities and excellent air quality in Zhanjiang may be related to the high precipitation frequency (63%) and the marine dilution effect (27%).
Jérôme OLLIER

Via @WhySharksMatter - #coronavirus - Seafarers' mental health during the #Covid19 pand... - 0 views

  •  
    As the current COVID-19 pandemic and the resulting crew change crisis exacerbates the mental health problem faced by seafarers, various maritime stakeholders have mobilised their resources and strengths to provide a variety of supportive measures to address the issue. This paper aims to find out what measures have been adopted in the industry and how widely they have been experienced/received by seafarers and evaluate their effectiveness. To achieve this aim, this research employed a mixed methods design involving qualitative interviews with 26 stakeholders and a quantitative questionnaire survey of 817 seafarers. The research identified a total number of 22 mental health support measures, all of which were perceived to have contributed positively to seafarers' mental health. However, not all of them were widely available to or utilised by seafarers. The findings also highlighted the importance of family, colleagues, shipping companies, and government agencies, as they are associated with the most effective support measures, namely communication with family, timely crew changes, being prioritised for vaccination, being vaccinated, and a positive and collegial atmosphere on-board. Based on the findings, recommendations are provided.
Jérôme OLLIER

Porpoises after dark: Seasonal and diel patterns in Pacific harbour porpoise (Phocoena ... - 0 views

  •  
    Pacific Harbour Porpoise (Phocoena phocoena vomerina) occupy a large range throughout coastal waters of British Columbia. Despite their wide distribution, they remain largely data-deficient regarding abundance and population trends, and as such are listed as Special Concern under the Species At Risk Act. Harbour porpoises are also particularly sensitive to disturbance, especially vessel-related acoustic disturbance. Large aggregations of harbour porpoise have been documented in waters around the entrance to the Port of Prince Rupert during the winter months, however little is known about the annual fine-scale activity of this species in this highly trafficked area. In this multi-year study, we used a combination of land-based visual surveys and passive acoustic monitoring (PAM) devices (C-PODs and F-PODs) to address data gaps regarding density, diel patterns, and seasonality of harbour porpoise around Prince Rupert. Echolocation activity was detected during 96% of the 1086 C-POD deployment days and 100% of the 727 F-POD deployment days, with 86% of visual surveys recording harbour porpoise presence. We detected strong seasonal and diel trends in activity, with echolocation peaks between April and June and during the hours of darkness throughout the year. There was a notable increase in daytime activity of harbour porpoise between January and March, which coincides with the months of large aggregation observations. This study indicates that despite the constant presence of large vessels, harbour porpoise continue to persist within waters surrounding Prince Rupert. This suggests the area is an important habitat for this species and also may indicate some extent of acclimatization to localized disturbance.
Jérôme OLLIER

Remediation of Water Contaminated with Polycyclic Aromatic Hydrocarbons Using Liquid Ph... - 0 views

  •  
    Although the number of vessels with exhaust gas cleaning systems (EGCSs or scrubbers) has sharply increased to comply with strengthened regulations for marine environment, secondary pollutions are caused by discharged polycyclic aromatic hydrocarbons (PAHs) from scrubber effluent. Here, liquid-phase plasma (LPP) is employed to remediate water contaminated with PAHs. The increased frequency and pulse width enhanced the degradation efficiency, and 93.3, 90.7, 86.0, and 85.4% for naphthalene (Nap), acenaphthene (Ace), fluorene (Flu), and phenanthrene (Phe), respectively, are degraded at a frequency of 30 kHz and pulse width of 3 μs in 10 min. Considering physical condition of the plasma, long pulse width accelerated electrons, leading to increased generation of active species from intensified collision between electrons and surrounding molecules. Conversely, high frequency decelerated electrons due to the excessive changes in the polarity. However, the increased number of plasma discharges results in the generation of numerous active species. Generations of *OH and O radicals are confirmed by optical emission spectrometry and electron paramagnetic resonance. In addition, changes in functional groups which are corresponding to hydroxyl and oxygen groups are identified by Fourier transform infrared spectroscopy. Total PAHs in real scrubber are reduced from 1.1 to 0.4 μgL-1 with degradation efficiency of 63.6% after 10 min of LPP treatment. This study suggests LPP can be a promising method to protect diverse aqueous environments and provides optimal electrical discharge condition for degradation of organic pollutants.
Jérôme OLLIER

Classification of inbound and outbound ships using convolutional neural networks - @Fro... - 0 views

  •  
    In general, a single scalar hydrophone cannot determine the orientation of an underwater acoustic target. However, through a study of sea trial experimental data, the authors found that the sound field interference structures of inbound and outbound ships differ owing to changes in the topography of the shallow continental shelf. Based on this difference, four different convolutional neural networks (CNNs), AlexNet, visual geometry group, residual network (ResNet), and dense convolutional network (DenseNet), are trained to classify inbound and outbound ships using only a single scalar hydrophone. Two datasets, a simulation and a sea trial, are used in the CNNs. Each dataset is divided into a training set and a test set according to the proportion of 40% to 60%. The simulation dataset is generated using underwater acoustic propagation software, with surface ships of different parameters (tonnage, speed, draft) modeled as various acoustic sources. The experimental dataset is obtained using submersible buoys placed near Qingdao Port, including 321 target ships. The ships in the dataset are labeled inbound or outbound using ship automatic identification system data. The results showed that the accuracy of the four CNNs based on the sea trial dataset in judging vessels' inbound and outbound situations is above 90%, among which the accuracy of DenseNet is as high as 99.2%. This study also explains the physical principle of classifying inbound and outbound ships by analyzing the low-frequency analysis and recording diagram of the broadband noise radiated by the ships. This method can monitor ships entering and leaving ports illegally and with abnormal courses in specific sea areas.
Jérôme OLLIER

Polar class ship accessibility to Arctic seas north of the BERING Strait in a decade of... - 0 views

  •  
    Surface atmospheric temperatures over the Arctic Ocean are rising faster than the global average, and sea-ice coverage has declined, making some areas newly accessible to ocean-going ships. Even so, Arctic waters remain hazardous to ships, in part, because of the highly variable nature of sea-ice formation and drift in some areas. In this study, we investigated interannual variability in polar class (PC) ship accessibility in the northern BERING Sea and seas north of the BERING Strait (East Siberian, Chukchi, Beaufort) from February 2012 to February 2022. We used sea-ice charts from the U.S. National Ice Center and calculations of the Risk Index Outcome (RIO) for PC3, PC5, and PC7 ships to characterize spatiotemporal trends in PC ship accessibility during the months of February, June, September, and November over the last 10 to 11 years. We also characterized shipping activity on select days in 2021. Overall, PC ship accessibility during the months of February and June increased over the last decade, especially for PC7 ships. However, areas that became more accessible over time did not support heavy ship traffic, possibly because they were not located on preferred transit routes or because they were surrounded by unnavigable ice, which made them inaccessible in practice. Ship accessibility was highly variable in the northernmost, offshore regions of the study site. During June, PC7 ship accessibility was interannually variable in waters south of the BERING Strait, and ships were active in those regions (most were fishing vessels), indicating potentially hazardous conditions during this time of year. Accessibility was considerably less variable over space and time (months, years) for PC5 (ice capable) ships and for PC3 ships (heavy icebreakers). Information from this study can be used by PC ship operators planning safe and successful shipping routes and by coastal states preparing emergency services to protect the maritime community. As governments and the private se
Jérôme OLLIER

Compound Effects of Flood Drivers, Sea Level Rise, and Dredging Protocols on Vessel Nav... - 0 views

  •  
    Maritime transportation is crucial to national economic development as it offers a low-cost, safe, and efficient alternative for movement of freight compared to its land or air counterparts. River and channel dredging protocols are often adopted in many ports and harbors of the world to meet the increasing demand for freight and ensure safe passage of larger vessels. However, such protocols may have unintended adverse consequences on flood risks and functioning of coastal ecosystems and thereby compromising the valuable services they provide to society and the environment. This study analyzes the compound effects of dredging protocols under a range of terrestrial and coastal flood drivers, including the effects of sea level rise (SLR) on compound flood risk, vessel navigability, and coastal wetland inundation dynamics in Mobile Bay (MB), Alabama. We develop a set of hydrodynamic simulation scenarios for a range of river flow and coastal water level regimes, SLR projections, and dredging protocols designed by the U.S. Army Corps of Engineers. We show that channel dredging helps increase bottom ('underkeel') clearances by a factor of 3.33 under current mean sea level and from 4.20 to 4.60 under SLR projections. We find that both low and high water surface elevations (WSEs) could be detrimental, with low WSE (< -1.22 m) hindering safe navigation whereas high WSE (> 0.87 m) triggering minor to major flooding in the surrounding urban and wetland areas. Likewise, we identify complex inundation patterns emerging from nonlinear interactions of SLR, flood drivers, and dredging protocols, and additionally estimate probability density functions (PDFs) of wetland inundation. We show that changes in mean sea level due to SLR diminish any effects of channel dredging on wetland inundation dynamics and shift the PDFs beyond pre-established thresholds for moderate and major flooding. In light of our results, we recommend the need for integrated analyses that account for compound
Jérôme OLLIER

#Brexit and its Impact on the Co-Operation Along with the 21st Century Maritime Silk Ro... - 0 views

  •  
    Since the Brexit happened in January 2020, it is likely to impact the United Kingdom (UK) and the whole of Europe in different ways. The UK and other European countries will revise their preferences concerning fisheries, ports access and governance, and bilateral diplomatic relationships with the countries alongside the 21st Century Maritime Silk Road (MSR). However, this is not an end to uncertainties, but the beginning to show the double-edged effects of Brexit. This paper focuses on the opportunities and challenges for Sino-UK as well as European Union (EU) relations arising from Brexit. The present study considers Brexit's impact on the MSR countries, especially China, Pakistan, and India. It examines what Brexit means for the Sino-UK/EU relationship, politically, economically, and culturally. It concludes with the potential impacts of Brexit on Sino-UK/EU trade relations, maritime security, marine resources usage, the safety of navigation, port governance and cooperation, and suggests the appropriate strategies that can be put in place to capitalise on opportunities to reap benefits while mitigating the challenges.
Jérôme OLLIER

Anchor boxes adaptive optimization algorithm for maritime object detection in video sur... - 0 views

  •  
    With the development of the marine economy, video surveillance has become an important technical guarantee in the fields of marine engineering, marine public safety, marine supervision, and maritime traffic safety. In video surveillance, maritime object detection (MOD) is one of the most important core technologies. Affected by the size of maritime objects, distance, day and night weather, and changes in sea conditions, MOD faces challenges such as false detection, missed detection, slow detection speed, and low accuracy. However, the existing object detection algorithms usually adopt predefined anchor boxes to search and locate for objects of interest, making it difficult to adapt to maritime objects' complex features, including the varying scale and large aspect ratio difference. Therefore, this paper proposes a maritime object detection algorithm based on the improved convolutional neural network (CNN). Firstly, a differential-evolutionary-based K-means (DK-means) anchor box clustering algorithm is proposed to obtain adaptive anchor boxes to satisfy the maritime object characteristics. Secondly, an adaptive spatial feature fusion (ASFF) module is added in the neck network to enhance multi-scale feature fusion. Finally, focal loss and efficient intersection over union (IoU) loss are adopted to replace the original loss function to improve the network convergence speed. The experimental results on the Singapore maritime dataset show that our proposed algorithm improves the average precision by 7.1%, achieving 72.7%, with a detection speed of 113 frames per second, compared with You Only Look Once v5 small (YOLOv5s). Moreover, compared to other counterparts, it can achieve a better speed-accuracy balance, which is superior and feasible for the complex maritime environment.
Jérôme OLLIER

Via @WhySharksMatter - COVID-related anthropause highlights the impact of marine traffi... - 0 views

  •  
    The COVID-19 pandemic and its lock-down measures have resulted in periods of reduced human activity, known as anthropause. While this period was expected to be favorable for the marine ecosystem, due to a probable reduction of pollution, shipping traffic, industrial activity and fishing pressure, negative counterparts such as reduced fisheries surveillance could counterbalance these positive effects. Simultaneously, on-land pressure due to human disturbance and tourism should have drastically decreased, potentially benefiting land-breeding marine animals such as seabirds. We analyzed 11 breeding seasons of data on several biological parameters of little penguins from a popular tourist attraction at Phillip Island, Australia. We investigated the impact of anthropogenic activities on penguin behavior during the breeding season measured by (1) distribution at sea, (2) colony attendance, (3) isotopic niche (4) chick meal mass, and (5) offspring investment against shipping traffic and number of tourists. The 2020 lock-downs resulted in a near absence of tourists visiting the Penguin Parade®, which was otherwise visited by 800,000+ visitors on average per breeding season. However, our long-term analysis showed no effect of the presence of visitors on little penguins' activities. Surprisingly, the anthropause did not trigger any changes in maritime traffic intensity and distribution in the region. We found inter- and intra-annual variations for most parameters, we detected a negative effect of marine traffic on the foraging efficiency. Our results suggest that environmental variations have a greater influence on the breeding behavior of little penguins compared to short-term anthropause events. Our long-term dataset was key to test whether changes in anthropogenic activities affected the wildlife during the COVID-19 pandemic.
Jérôme OLLIER

Uncrewed Surface Vessel Technological Diffusion Depends on Cross-Sectoral Investment in... - 0 views

  •  
    Accessing the world's oceans is essential for monitoring and sustainable management of the maritime domain. Difficulty in reaching remote locations has resulted in sparse coverage, undermining our capacity to deter illegal activities and gather data for physical and biological processes. Uncrewed Surface Vessels (USVs) have existed for over two decades and offer the potential to overcome difficulties associated with monitoring and surveillance in remote regions. However, they are not yet an integral component of maritime infrastructure. We analyse 15 years of non-autonomous and semi-autonomous USV-related literature to determine the factors limiting technological diffusion into everyday maritime operations. We systematically categorised over 1,000 USV-related publications to determine how government, academia and industry sectors use USVs and what drives their uptake. We found a striking overlap between these sectors for 11 applications and nine drivers. Low cost was a consistent and central driver for USV uptake across the three sectors. Product 'compatibility' and lack of 'complexity' appear to be major factors limiting USV technological diffusion amongst early adopters. We found that the majority (21 of 27) of commercially available USVs lacked the complexity required for multiple applications in beyond the horizon operations. We argue that the best value for money to advance USV uptake is for designs that offer cross-disciplinary applications and the ability to operate in an unsheltered open ocean without an escort or mothership. The benefits from this technological advancement can excel under existing collaborative governance frameworks and are most significant for remote and developing maritime nations.
‹ Previous 21 - 40 of 69 Next › Last »
Showing 20 items per page