Skip to main content

Home/ Groups/ Larvata
張 旭

MetalLB, bare metal load-balancer for Kubernetes - 0 views

  • it allows you to create Kubernetes services of type “LoadBalancer” in clusters that don’t run on a cloud provider
  • In a cloud-enabled Kubernetes cluster, you request a load-balancer, and your cloud platform assigns an IP address to you.
  • MetalLB cannot create IP addresses out of thin air, so you do have to give it pools of IP addresses that it can use.
  • ...6 more annotations...
  • MetalLB lets you define as many address pools as you want, and doesn’t care what “kind” of addresses you give it.
  • Once MetalLB has assigned an external IP address to a service, it needs to make the network beyond the cluster aware that the IP “lives” in the cluster.
  • In layer 2 mode, one machine in the cluster takes ownership of the service, and uses standard address discovery protocols (ARP for IPv4, NDP for IPv6) to make those IPs reachable on the local network
  • From the LAN’s point of view, the announcing machine simply has multiple IP addresses.
  • In BGP mode, all machines in the cluster establish BGP peering sessions with nearby routers that you control, and tell those routers how to forward traffic to the service IPs.
  • Using BGP allows for true load balancing across multiple nodes, and fine-grained traffic control thanks to BGP’s policy mechanisms.
張 旭

MetalLB, bare metal load-balancer for Kubernetes - 0 views

  • Kubernetes does not offer an implementation of network load-balancers (Services of type LoadBalancer) for bare metal clusters
  • If you’re not running on a supported IaaS platform (GCP, AWS, Azure…), LoadBalancers will remain in the “pending” state indefinitely when created.
  • Bare metal cluster operators are left with two lesser tools to bring user traffic into their clusters, “NodePort” and “externalIPs” services.
張 旭

ALB vs ELB | Differences Between an ELB and an ALB on AWS | Sumo Logic - 0 views

  • If you use AWS, you have two load-balancing options: ELB and ALB.
  • An ELB is a software-based load balancer which can be set up and configured in front of a collection of AWS Elastic Compute (EC2) instances.
  • The load balancer serves as a single entry point for consumers of the EC2 instances and distributes incoming traffic across all machines available to receive requests.
  • ...14 more annotations...
  • the ELB also performs a vital role in improving the fault tolerance of the services which it fronts.
  • he Open Systems Interconnection Model, or OSI Model, is a conceptual model which is used to facilitate communications between different computing systems.
  • Layer 1 is the physical layer, and represents the physical medium across which the request is sent.
  • Layer 2 describes the data link layer
  • Layer 3 (the network layer)
  • Layer 7, which serves the application layer.
  • The Classic ELB operates at Layer 4. Layer 4 represents the transport layer, and is controlled by the protocol being used to transmit the request.
  • A network device, of which the Classic ELB is an example, reads the protocol and port of the incoming request, and then routes it to one or more backend servers.
  • the ALB operates at Layer 7. Layer 7 represents the application layer, and as such allows for the redirection of traffic based on the content of the request.
  • Whereas a request to a specific URL backed by a Classic ELB would only enable routing to a particular pool of homogeneous servers, the ALB can route based on the content of the URL, and direct to a specific subgroup of backing servers existing in a heterogeneous collection registered with the load balancer.
  • The Classic ELB is a simple load balancer, is easy to configure
  • As organizations move towards microservice architecture or adopt a container-based infrastructure, the ability to merely map a single address to a specific service becomes more complicated and harder to maintain.
  • the ALB manages routing based on user-defined rules.
  • oute traffic to different services based on either the host or the content of the path contained within that URL.
張 旭

Open source load testing tool review 2020 - 0 views

  • Hey is a simple tool, written in Go, with good performance and the most common features you'll need to run simple static URL tests.
  • Hey supports HTTP/2, which neither Wrk nor Apachebench does
  • Apachebench is very fast, so often you will not need more than one CPU core to generate enough traffic
  • ...16 more annotations...
  • Hey has rate limiting, which can be used to run fixed-rate tests.
  • Vegeta was designed to be run on the command line; it reads from stdin a list of HTTP transactions to generate, and sends results in binary format to stdout,
  • Vegeta is a really strong tool that caters to people who want a tool to test simple, static URLs (perhaps API end points) but also want a bit more functionality.
  • Vegeta can even be used as a Golang library/package if you want to create your own load testing tool.
  • Wrk is so damn fast
  • being fast and measuring correctly is about all that Wrk does
  • k6 is scriptable in plain Javascript
  • k6 is average or better. In some categories (documentation, scripting API, command line UX) it is outstanding.
  • Jmeter is a huge beast compared to most other tools.
  • Siege is a simple tool, similar to e.g. Apachebench in that it has no scripting and is primarily used when you want to hit a single, static URL repeatedly.
  • A good way of testing the testing tools is to not test them on your code, but on some third-party thing that is sure to be very high-performing.
  • use a tool like e.g. top to keep track of Nginx CPU usage while testing. If you see just one process, and see it using close to 100% CPU, it means you could be CPU-bound on the target side.
  • If you see multiple Nginx processes but only one is using a lot of CPU, it means your load testing tool is only talking to that particular worker process.
  • Network delay is also important to take into account as it sets an upper limit on the number of requests per second you can push through.
  • If, say, the Nginx default page requires a transfer of 250 bytes to load, it means that if the servers are connected via a 100 Mbit/s link, the theoretical max RPS rate would be around 100,000,000 divided by 8 (bits per byte) divided by 250 => 100M/2000 = 50,000 RPS. Though that is a very optimistic calculation - protocol overhead will make the actual number a lot lower so in the case above I would start to get worried bandwidth was an issue if I saw I could push through max 30,000 RPS, or something like that.
  • Wrk managed to push through over 50,000 RPS and that made 8 Nginx workers on the target system consume about 600% CPU.
crazylion lee

GitHub - pyroscope-io/pyroscope: - 0 views

  •  
    "Pyroscope is an open source continuous profiling platform. It will help you: "
crazylion lee

Firecracker - 0 views

  •  
    "Firecracker is an open source virtualization technology that is purpose-built for creating and managing secure, multi-tenant container and function-based services."
張 旭

Run the Docker daemon as a non-root user (Rootless mode) | Docker Documentation - 0 views

  • running the Docker daemon and containers as a non-root user
  • Rootless mode does not require root privileges even during the installation of the Docker daemon
  • Rootless mode executes the Docker daemon and containers inside a user namespace.
  • ...9 more annotations...
  • in rootless mode, both the daemon and the container are running without root privileges.
  • Rootless mode does not use binaries with SETUID bits or file capabilities, except newuidmap and newgidmap, which are needed to allow multiple UIDs/GIDs to be used in the user namespace.
  • expose privileged ports (< 1024)
  • add net.ipv4.ip_unprivileged_port_start=0 to /etc/sysctl.conf (or /etc/sysctl.d) and run sudo sysctl --system
  • dockerd-rootless.sh uses slirp4netns (if installed) or VPNKit as the network stack by default.
  • These network stacks run in userspace and might have performance overhead
  • This error occurs when the number of available entries in /etc/subuid or /etc/subgid is not sufficient.
  • This error occurs mostly when the host is running in cgroup v2. See the section Fedora 31 or later for information on switching the host to use cgroup v1.
  • --net=host doesn’t listen ports on the host network namespace This is an expected behavior, as the daemon is namespaced inside RootlessKit’s network namespace. Use docker run -p instead.
crazylion lee

Amazon.com:Creative Selection: Inside Apple's Design Process During the Golde... - 0 views

  •  
    "Creative Selection: Inside Apple's Design Process During the Golden Age of Steve Jobs"
crazylion lee

Deskreen - 0 views

« First ‹ Previous 141 - 160 of 1422 Next › Last »
Showing 20 items per page