Skip to main content

Home/ Larvata/ Group items tagged where

Rss Feed Group items tagged

張 旭

DNS Records: An Introduction - 0 views

  • Domain names are best understood by reading from right to left.
  • the top-level domain, or TLD
  • Every term to the left of the TLD is separated by a period and considered a more specific subdomain
  • ...40 more annotations...
  • Name servers host a domain’s DNS information in a text file called a zone file.
  • Start of Authority (SOA) records
  • specifying DNS records, which match domain names to IP addresses.
  • Every domain’s zone file contains the domain administrator’s email address, the name servers, and the DNS records.
  • Your ISP’s DNS resolver queries a root nameserver for the proper TLD nameserver. In other words, it asks the root nameserver, *Where can I find the nameserver for .com domains?*
  • In actuality, ISPs cache a lot of DNS information after they’ve looked it up the first time.
  • caching is a good thing, but it can be a problem if you’ve recently made a change to your DNS information
  • An A record points your domain or subdomain to your Linode’s IP address,
  • use an asterisk (*) as your subdomain
  • An AAAA record is just like an A record, but for IPv6 IP addresses.
  • An AXFR record is a type of DNS record used for DNS replication
  • DNS Certification Authority Authorization uses DNS to allow the holder of a domain to specify which certificate authorities are allowed to issue certificates for that domain.
  • A CNAME record or Canonical Name record matches a domain or subdomain to a different domain.
  • Some mail servers handle mail oddly for domains with CNAME records, so you should not use a CNAME record for a domain that gets email.
  • MX records cannot reference CNAME-defined hostnames.
  • Chaining or looping CNAME records is not recommended.
  • a CNAME record does not function the same way as a URL redirect.
  • A DKIM record or DomainKeys Identified Mail record displays the public key for authenticating messages that have been signed with the DKIM protocol
  • DKIM records are implemented as text records.
  • An MX record or mail exchanger record sets the mail delivery destination for a domain or subdomain.
  • An MX record should ideally point to a domain that is also the hostname for its server.
  • Priority allows you to designate a fallback server (or servers) for mail for a particular domain. Lower numbers have a higher priority.
  • NS records or name server records set the nameservers for a domain or subdomain.
  • You can also set up different nameservers for any of your subdomains
  • Primary nameservers get configured at your registrar and secondary subdomain nameservers get configured in the primary domain’s zone file.
  • The order of NS records does not matter. DNS requests are sent randomly to the different servers
  • A PTR record or pointer record matches up an IP address to a domain or subdomain, allowing reverse DNS queries to function.
  • opposite service an A record does
  • PTR records are usually set with your hosting provider. They are not part of your domain’s zone file.
  • An SOA record or Start of Authority record labels a zone file with the name of the host where it was originally created.
  • Minimum TTL: The minimum amount of time other servers should keep data cached from this zone file.
  • An SPF record or Sender Policy Framework record lists the designated mail servers for a domain or subdomain.
  • An SPF record for your domain tells other receiving mail servers which outgoing server(s) are valid sources of email so they can reject spoofed mail from your domain that has originated from unauthorized servers.
  • Make sure your SPF records are not too strict.
  • An SRV record or service record matches up a specific service that runs on your domain or subdomain to a target domain.
  • Service: The name of the service must be preceded by an underscore (_) and followed by a period (.)
  • Protocol: The name of the protocol must be proceeded by an underscore (_) and followed by a period (.)
  • Port: The TCP or UDP port on which the service runs.
  • Target: The target domain or subdomain. This domain must have an A or AAAA record that resolves to an IP address.
  • A TXT record or text record provides information about the domain in question to other resources on the internet.
  •  
    "Domain names are best understood by reading from right to left."
張 旭

Running Terraform in Automation | Terraform - HashiCorp Learn - 0 views

  • In default usage, terraform init downloads and installs the plugins for any providers used in the configuration automatically, placing them in a subdirectory of the .terraform directory.
  • allows each configuration to potentially use different versions of plugins.
  • In automation environments, it can be desirable to disable this behavior and instead provide a fixed set of plugins already installed on the system where Terraform is running. This then avoids the overhead of re-downloading the plugins on each execution
  • ...12 more annotations...
  • the desire for an interactive approval step between plan and apply.
  • terraform init -input=false to initialize the working directory.
  • terraform plan -out=tfplan -input=false to create a plan and save it to the local file tfplan.
  • terraform apply -input=false tfplan to apply the plan stored in the file tfplan.
  • the environment variable TF_IN_AUTOMATION is set to any non-empty value, Terraform makes some minor adjustments to its output to de-emphasize specific commands to run.
  • it can be difficult or impossible to ensure that the plan and apply subcommands are run on the same machine, in the same directory, with all of the same files present.
  • to allow only one plan to be outstanding at a time.
  • forcing plans to be approved (or dismissed) in sequence
  • -auto-approve
  • The -auto-approve option tells Terraform not to require interactive approval of the plan before applying it.
  • obtain the archive created in the previous step and extract it at the same absolute path. This re-creates everything that was present after plan, avoiding strange issues where local files were created during the plan step.
  • a "build artifact"
  •  
    "In default usage, terraform init downloads and installs the plugins for any providers used in the configuration automatically, placing them in a subdirectory of the .terraform directory. "
張 旭

- 0 views

  • A fast-forward merge can happen when the current branch has no extra commits compared to the branch we’re merging.
  • With a no-fast-forward merge, Git creates a new merging commit on the active branch.
  • We can manually remove the changes we don't want to keep, save the changes, add the changed file again, and commit the changes
  • ...14 more annotations...
  • A git rebase copies the commits from the current branch, and puts these copied commits on top of the specified branch.
  • The branch that we're rebasing always has the latest changes that we want to keep!
  • A git rebase changes the history of the project as new hashes are created for the copied commits!
  • Rebasing is great whenever you're working on a feature branch, and the master branch has been updated.
  • An interactive rebase can also be useful on the branch you're currently working on, and want to modify some commits.
  • A git reset gets rid of all the current staged files and gives us control over where HEAD should point to.
  • A soft reset moves HEAD to the specified commit (or the index of the commit compared to HEAD)
  • Git should simply reset its state back to where it was on the specified commit: this even includes the changes in your working directory and staged files!
  • By reverting a certain commit, we create a new commit that contains the reverted changes!
  • Performing a git revert is very useful in order to undo a certain commit, without modifying the history of the branch.
  • By cherry-picking a commit, we create a new commit on our active branch that contains the changes that were introduced by the cherry-picked commit.
  • a fetch simply downloads new data.
  • A git pull is actually two commands in one: a git fetch, and a git merge
  • git reflog is a very useful command in order to show a log of all the actions that have been taken
張 旭

Helm | - 0 views

  • Templates generate manifest files, which are YAML-formatted resource descriptions that Kubernetes can understand.
  • service.yaml: A basic manifest for creating a service endpoint for your deployment
  • In Kubernetes, a ConfigMap is simply a container for storing configuration data.
  • ...88 more annotations...
  • deployment.yaml: A basic manifest for creating a Kubernetes deployment
  • using the suffix .yaml for YAML files and .tpl for helpers.
  • It is just fine to put a plain YAML file like this in the templates/ directory.
  • helm get manifest
  • The helm get manifest command takes a release name (full-coral) and prints out all of the Kubernetes resources that were uploaded to the server. Each file begins with --- to indicate the start of a YAML document
  • Names should be unique to a release
  • The name: field is limited to 63 characters because of limitations to the DNS system.
  • release names are limited to 53 characters
  • {{ .Release.Name }}
  • A template directive is enclosed in {{ and }} blocks.
  • The values that are passed into a template can be thought of as namespaced objects, where a dot (.) separates each namespaced element.
  • The leading dot before Release indicates that we start with the top-most namespace for this scope
  • The Release object is one of the built-in objects for Helm
  • When you want to test the template rendering, but not actually install anything, you can use helm install ./mychart --debug --dry-run
  • Using --dry-run will make it easier to test your code, but it won’t ensure that Kubernetes itself will accept the templates you generate.
  • Objects are passed into a template from the template engine.
  • create new objects within your templates
  • Objects can be simple, and have just one value. Or they can contain other objects or functions.
  • Release is one of the top-level objects that you can access in your templates.
  • Release.Namespace: The namespace to be released into (if the manifest doesn’t override)
  • Values: Values passed into the template from the values.yaml file and from user-supplied files. By default, Values is empty.
  • Chart: The contents of the Chart.yaml file.
  • Files: This provides access to all non-special files in a chart.
  • Files.Get is a function for getting a file by name
  • Files.GetBytes is a function for getting the contents of a file as an array of bytes instead of as a string. This is useful for things like images.
  • Template: Contains information about the current template that is being executed
  • BasePath: The namespaced path to the templates directory of the current chart
  • The built-in values always begin with a capital letter.
  • Go’s naming convention
  • use only initial lower case letters in order to distinguish local names from those built-in.
  • If this is a subchart, the values.yaml file of a parent chart
  • Individual parameters passed with --set
  • values.yaml is the default, which can be overridden by a parent chart’s values.yaml, which can in turn be overridden by a user-supplied values file, which can in turn be overridden by --set parameters.
  • While structuring data this way is possible, the recommendation is that you keep your values trees shallow, favoring flatness.
  • If you need to delete a key from the default values, you may override the value of the key to be null, in which case Helm will remove the key from the overridden values merge.
  • Kubernetes would then fail because you can not declare more than one livenessProbe handler.
  • When injecting strings from the .Values object into the template, we ought to quote these strings.
  • quote
  • Template functions follow the syntax functionName arg1 arg2...
  • While we talk about the “Helm template language” as if it is Helm-specific, it is actually a combination of the Go template language, some extra functions, and a variety of wrappers to expose certain objects to the templates.
  • Drawing on a concept from UNIX, pipelines are a tool for chaining together a series of template commands to compactly express a series of transformations.
  • pipelines are an efficient way of getting several things done in sequence
  • The repeat function will echo the given string the given number of times
  • default DEFAULT_VALUE GIVEN_VALUE. This function allows you to specify a default value inside of the template, in case the value is omitted.
  • all static default values should live in the values.yaml, and should not be repeated using the default command
  • Operators are implemented as functions that return a boolean value.
  • To use eq, ne, lt, gt, and, or, not etcetera place the operator at the front of the statement followed by its parameters just as you would a function.
  • if and
  • if or
  • with to specify a scope
  • range, which provides a “for each”-style loop
  • block declares a special kind of fillable template area
  • A pipeline is evaluated as false if the value is: a boolean false a numeric zero an empty string a nil (empty or null) an empty collection (map, slice, tuple, dict, array)
  • incorrect YAML because of the whitespacing
  • When the template engine runs, it removes the contents inside of {{ and }}, but it leaves the remaining whitespace exactly as is.
  • {{- (with the dash and space added) indicates that whitespace should be chomped left, while -}} means whitespace to the right should be consumed.
  • Newlines are whitespace!
  • an * at the end of the line indicates a newline character that would be removed
  • Be careful with the chomping modifiers.
  • the indent function
  • Scopes can be changed. with can allow you to set the current scope (.) to a particular object.
  • Inside of the restricted scope, you will not be able to access the other objects from the parent scope.
  • range
  • The range function will “range over” (iterate through) the pizzaToppings list.
  • Just like with sets the scope of ., so does a range operator.
  • The toppings: |- line is declaring a multi-line string.
  • not a YAML list. It’s a big string.
  • the data in ConfigMaps data is composed of key/value pairs, where both the key and the value are simple strings.
  • The |- marker in YAML takes a multi-line string.
  • range can be used to iterate over collections that have a key and a value (like a map or dict).
  • In Helm templates, a variable is a named reference to another object. It follows the form $name
  • Variables are assigned with a special assignment operator: :=
  • {{- $relname := .Release.Name -}}
  • capture both the index and the value
  • the integer index (starting from zero) to $index and the value to $topping
  • For data structures that have both a key and a value, we can use range to get both
  • Variables are normally not “global”. They are scoped to the block in which they are declared.
  • one variable that is always global - $ - this variable will always point to the root context.
  • $.
  • $.
  • Helm template language is its ability to declare multiple templates and use them together.
  • A named template (sometimes called a partial or a subtemplate) is simply a template defined inside of a file, and given a name.
  • when naming templates: template names are global.
  • If you declare two templates with the same name, whichever one is loaded last will be the one used.
  • you should be careful to name your templates with chart-specific names.
  • templates in subcharts are compiled together with top-level templates
  • naming convention is to prefix each defined template with the name of the chart: {{ define "mychart.labels" }}
  • Helm has over 60 available functions.
張 旭

Trunk-based Development | Atlassian - 0 views

  • Trunk-based development is a version control management practice where developers merge small, frequent updates to a core “trunk” or main branch.
  • Gitflow and trunk-based development. 
  • Gitflow, which was popularized first, is a stricter development model where only certain individuals can approve changes to the main code. This maintains code quality and minimizes the number of bugs.
  • ...20 more annotations...
  • Trunk-based development is a more open model since all developers have access to the main code. This enables teams to iterate quickly and implement CI/CD.
  • Developers can create short-lived branches with a few small commits compared to other long-lived feature branching strategies.
  • Gitflow is an alternative Git branching model that uses long-lived feature branches and multiple primary branches.
  • Gitflow also has separate primary branch lines for development, hotfixes, features, and releases.
  • Trunk-based development is far more simplified since it focuses on the main branch as the source of fixes and releases.
  • Trunk-based development eases the friction of code integration.
  • trunk-based development model reduces these conflicts.
  • Adding an automated test suite and code coverage monitoring for this stream of commits enables continuous integration.
  • When new code is merged into the trunk, automated integration and code coverage tests run to validate the code quality.
  • Trunk-based development strives to keep the trunk branch “green”, meaning it's ready to deploy at any commit.
  • With continuous integration, developers perform trunk-based development in conjunction with automated tests that run after each committee to a trunk.
  • If trunk-based development was like music it would be a rapid staccato -- short, succinct notes in rapid succession, with the repository commits being the notes.
  • Instead of creating a feature branch and waiting to build out the complete specification, developers can instead create a trunk commit that introduces the feature flag and pushes new trunk commits that build out the feature specification within the flag.
  • Automated testing is necessary for any modern software project intending to achieve CI/CD.
  • Short running unit and integration tests are executed during development and upon code merge.
  • Automated tests provide a layer of preemptive code review.
  • Once a branch merges, it is best practice to delete it.
  • A repository with a large amount of active branches has some unfortunate side effects
  • Merge branches to the trunk at least once a day
  • The “continuous” in CI/CD implies that updates are constantly flowing.
張 旭

Probably Done Before: Visualizing Docker Containers and Images - 0 views

  •  In my opinion, understanding how a technology works under the hood is the best way to achieve learning speed and to build confidence that you are using the tool in the correct way.
  • union view
    • 張 旭
       
      把多層 image layer 串接起來,看上去就像是在讀一個 image 檔案而已。
  • The top-level layer may be read by a union-ing file system (AUFS on my docker implementation) to present a single cohesive view of all the changes as one read-only file system
  • ...36 more annotations...
  • it is nearly the same thing as an image, except that the top layer is read-write
  • A container is defined only as a read-write layer atop an image (of read-only layers itself).  It does not have to be running.
  • a running container
    • 張 旭
       
      之前一直搞錯了!不是 run 起來的才會叫 container,只要有 read-write layer 就是了!
  • the the isolated process-space and processes within
  • A running container is defined as a read-write "union view" and
  • kernel-level technologies like cgroups, namespaces
  • The processes within this process-space may change, delete or create files within the "union view" file that will be captured in the read-write layer
  • there is no longer a running container
    • 張 旭
       
      這行指令執行結束之後,running container 就停掉了,但是該 container 還在!
  • each layer contains a pointer to a parent layer using the Id
  • The 'docker create' command adds a read-write layer to the top stack based on the image id.  It does not run this container.
  • The command 'docker start' creates a process space around the union view of the container's layers.
  • can only be one process space per container.
  • the docker run command starts with an image, creates a container, and starts the container
  • 'git pull' (which is a combination of 'git fetch' and 'git merge')
  • 'docker ps' lists out the inventory of running containers on your system
  • 'docker ps -a' where the 'a' is short for 'all' lists out all the containers on your system, whether stopped or running.
  • Only those images that have containers attached to them or that have been pulled are considered top-level.
  • 'docker stop' issues a SIGTERM to a running container which politely stops all the processes in that process-space.
  • results is a normal, but non-running, container
  • 'docker kill' issues a non-polite SIGKILL command to all the processes in a running container.
  • 'docker stop' and 'docker kill' which send actual UNIX signals to a running process
  • 'docker pause' uses a special cgroups feature to freeze/pause a running process-space
  • 'docker rm' removes the read-write layer that defines a container from your host system
  • It effectively deletes files
  • 'docker rmi' removes the read-layer that defines a "union view" of an image.
  • 'docker commit' takes a container's top-level read-write layer and burns it into a read-only layer.
  • turns a container (whether running or stopped) into an immutable image
  • uses the FROM directive in the Dockerfile file as the starting image and iteratively 1) runs (create and start) 2) modifies and 3) commits.
  • At each step in the iteration a new layer is created.
  • 'docker exec' command runs on a running container and executes a process in that running container's process space
  • 'docker inspect' fetches the metadata that has been associated with the top-layer of the container or image
  • 'docker save' creates a single tar file that can be used to import on a different host system
  • only be run on an image
  • 'docker export' command creates a tar file of the contents of the "union view" and flattens it for consumption for non-Docker usages
  • This command removes the metadata and the layers.  This command can only be run on containers.
  • 'docker history' command takes an image-id and recursively prints out the read-only layers
張 旭

How to write excellent Dockerfiles - 0 views

  • minimize image size, build time and number of layers.
  • maximize build cache usage
  • Container should do one thing
    • 張 旭
       
      這個有待商榷,在 baseimage 的 blog 介紹中有詳細的討論。
  • ...25 more annotations...
  • Use COPY and RUN commands in proper order
  • Merge multiple RUN commands into one
  • alpine versions should be enough
  • Use exec inside entrypoint script
  • Prefer COPY over ADD
  • Specify default environment variables, ports and volumes inside Dockerfile
  • problems with zombie processes
  • prepare separate Docker image for each component, and use Docker Compose to easily start multiple containers at the same time
  • Layers are cached and reused
  • Layers are immutable
  • They both makes you cry
  • rely on our base image updates
  • make a cleanup
  • alpine is a very tiny linux distribution, just about 4 MB in size.
  • Your disk will love you :)
  • WORKDIR command changes default directory, where we run our RUN / CMD / ENTRYPOINT commands.
  • CMD is a default command run after creating container without other command specified.
  • put your command inside array
  • entrypoint adds complexity
  • Entrypoint is a script, that will be run instead of command, and receive command as arguments
  • Without it, we would not be able to stop our application grecefully (SIGTERM is swallowed by bash script).
  • Use "exec" inside entrypoint script
  • ADD has some logic for downloading remote files and extracting archives.
  • stick with COPY.
  • ADD
    • 張 旭
       
      不是說要用 COPY 嗎?
張 旭

OmniAuth: Overview · plataformatec/devise Wiki - 0 views

  • omniauth-provider
  • add the columns "provider" and "uid" to your User model
  • declare the provider in your config/initializers/devise.rb and require it
  • ...17 more annotations...
  • set it explicitly with the :strategy_class option
  • explicitly tell OmniAuth where to locate your ca_certificates file
  • make your model (e.g. app/models/user.rb) omniauthable
  • devise_for :users was already added to your config/routes.rb
  • user_omniauth_authorize_path(provider) user_omniauth_callback_path(provider)
  • devise does not create *_url methods
  • The symbol passed to the user_omniauth_authorize_path method matches the symbol of the provider passed to Devise's config block
  • After inserting their credentials, they will be redirected back to your application's callback method
  • tell Devise in which controller we will implement Omniauth callbacks
  • find_for_facebook_oauth
  • implement the method below in your model
  • All information retrieved from Facebook by OmniAuth is available as a hash at request.env["omniauth.auth"]
  • Devise removes all the data starting with "devise." from the session whenever a user signs in, so we get automatic session clean up
  • We pass the :event => :authentication to the sign_in_and_redirect method to force all authentication callbacks to be called
  • tries to find an existing user by provider and uid or create one with a random password otherwise.
  • Devise's RegistrationsController by default calls "User.new_with_session" before building a resource
  • if we need to copy data from session whenever a user is initialized before sign up, we just need to implement new_with_session in our model
張 旭

Docker Explained: Using Dockerfiles to Automate Building of Images | DigitalOcean - 0 views

  • CMD would be running an application upon creation of a container which is already installed using RUN (e.g. RUN apt-get install …) inside the image
  • ENTRYPOINT argument sets the concrete default application that is used every time a container is created using the image.
  • ENV command is used to set the environment variables (one or more).
  • ...6 more annotations...
  • EXPOSE command is used to associate a specified port to enable networking between the running process inside the container and the outside world
  • defines the base image to use to start the build process
  • Unlike CMD, it actually is used to build the image (forming another layer on top of the previous one which is committed).
  • VOLUME command is used to enable access from your container to a directory on the host machine
  • set where the command defined with CMD is to be executed
  • To detach yourself from the container, use the escape sequence CTRL+P followed by CTRL+Q
張 旭

Run Reference - Docker Documentation - 0 views

  • In detached mode (-d=true or just -d), all I/O should be done through network connections or shared volumes because the container is no longer listening to the command line where you executed docker run.
  • start the process in the container and attach the console to the process's standard input, output, and standard error. It can even pretend to be a TTY (this is what most command line executables expect) and pass along signals.
  • For interactive processes (like a shell) you will typically want a tty as well as persistent standard input (STDIN), so you'll use -i -t together in most interactive cases.
張 旭

Managing files | Django documentation | Django - 0 views

  • By default, Django stores files locally, using the MEDIA_ROOT and MEDIA_URL settings.
  • use a FileField or ImageField, Django provides a set of APIs you can use to deal with that file.
  • Behind the scenes, Django delegates decisions about how and where to store files to a file storage system.
  • ...1 more annotation...
  • Django uses a django.core.files.File instance any time it needs to represent a file.
張 旭

Docker ARG, ENV and .env - a Complete Guide · vsupalov.com - 1 views

  • understand and use Docker build-time variables, environment variables and docker-compose templating the right way.
  • ARG is only available during the build of a Docker image (RUN etc), not after the image is created and containers are started from it (ENTRYPOINT, CMD).
  • ENV values are available to containers, but also RUN-style commands during the Docker build starting with the line where they are introduced.
  • ...20 more annotations...
  • set an environment variable in an intermediate container using bash (RUN export VARI=5 && …) it will not persist in the next command.
  • An env_file, is a convenient way to pass many environment variables to a single command in one batch.
  • not be confused with a .env file
  • the dot in front of env - .env, not an “env_file”.
  • If you have a file named .env in your project, it’s only used to put values into the docker-compose.yml file which is in the same folder. Those are used with Docker Compose and Docker Stack.
  • Just type docker-compose config. This way you’ll see how the docker-compose.yml file content looks after the substitution step has been performed without running anything else.
  • ARG are also known as build-time variables. They are only available from the moment they are ‘announced’ in the Dockerfile with an ARG instruction up to the moment when the image is built.
  • Running containers can’t access values of ARG variables.
  • ENV variables are also available during the build, as soon as you introduce them with an ENV instruction. However, unlike ARG, they are also accessible by containers started from the final image.
  • ENV values can be overridden when starting a container,
  • If you don’t provide a value to expected ARG variables which don’t have a default, you’ll get an error message.
  • args block
  • You can use ARG to set the default values of ENV vars.
  • dynamic on-build env values
  • 2. Pass environment variable values from your host
  • 1. Provide values one by one
  • 3. Take values from a file (env_file)
  • for each RUN statement, a new container is launched from an intermediate image.
  • An image is saved by the end of the command, but environment variables do not persist that way.
  • The precedence is, from stronger to less-strong: stuff the containerized application sets, values from single environment entries, values from the env_file(s) and finally Dockerfile defaults.
張 旭

What is DevOps? | Atlassian - 0 views

  • DevOps is a set of practices that automates the processes between software development and IT teams, in order that they can build, test, and release software faster and more reliably.
  • increased trust, faster software releases, ability to solve critical issues quickly, and better manage unplanned work.
  • bringing together the best of software development and IT operations.
  • ...39 more annotations...
  • DevOps is a culture, a movement, a philosophy.
  • a firm handshake between development and operations
  • DevOps isn’t magic, and transformations don’t happen overnight.
  • Infrastructure as code
  • Culture is the #1 success factor in DevOps.
  • Building a culture of shared responsibility, transparency and faster feedback is the foundation of every high performing DevOps team.
  •  'not our problem' mentality
  • DevOps is that change in mindset of looking at the development process holistically and breaking down the barrier between Dev and Ops.
  • Speed is everything.
  • Lack of automated test and review cycles block the release to production and poor incident response time kills velocity and team confidence
  • Open communication helps Dev and Ops teams swarm on issues, fix incidents, and unblock the release pipeline faster.
  • Unplanned work is a reality that every team faces–a reality that most often impacts team productivity.
  • “cross-functional collaboration.”
  • All the tooling and automation in the world are useless if they aren’t accompanied by a genuine desire on the part of development and IT/Ops professionals to work together.
  • DevOps doesn’t solve tooling problems. It solves human problems.
  • Forming project- or product-oriented teams to replace function-based teams is a step in the right direction.
  • sharing a common goal and having a plan to reach it together
  • join sprint planning sessions, daily stand-ups, and sprint demos.
  • DevOps culture across every department
  • open channels of communication, and talk regularly
  • DevOps isn’t one team’s job. It’s everyone’s job.
  • automation eliminates repetitive manual work, yields repeatable processes, and creates reliable systems.
  • Build, test, deploy, and provisioning automation
  • continuous delivery: the practice of running each code change through a gauntlet of automated tests, often facilitated by cloud-based infrastructure, then packaging up successful builds and promoting them up toward production using automated deploys.
  • automated deploys alert IT/Ops to server “drift” between environments, which reduces or eliminates surprises when it’s time to release.
  • “configuration as code.”
  • when DevOps uses automated deploys to send thoroughly tested code to identically provisioned environments, “Works on my machine!” becomes irrelevant.
  • A DevOps mindset sees opportunities for continuous improvement everywhere.
  • regular retrospectives
  • A/B testing
  • failure is inevitable. So you might as well set up your team to absorb it, recover, and learn from it (some call this “being anti-fragile”).
  • Postmortems focus on where processes fell down and how to strengthen them – not on which team member f'ed up the code.
  • Our engineers are responsible for QA, writing, and running their own tests to get the software out to customers.
  • How long did it take to go from development to deployment? 
  • How long does it take to recover after a system failure?
  • service level agreements (SLAs)
  • Devops isn't any single person's job. It's everyone's job.
  • DevOps is big on the idea that the same people who build an application should be involved in shipping and running it.
  • developers and operators pair with each other in each phase of the application’s lifecycle.
張 旭

Setup ProxySQL for High Availability (not a Single Point of Failure) - Percona Database... - 0 views

  • ProxySQL doesn’t natively support any high availability solution
  • most common solution is setting up ProxySQL as part of a tile architecture, where Application/ProxySQL are deployed together.
    • 張 旭
       
      直接把 ProxySQL 跟 App 捆綁發佈
  • If we have 400 instances of ProxySQL, we end up keeping our databases busy just performing the checks.
  • ...5 more annotations...
  • Another possible approach is to have two layers of ProxySQL, one close to the application and another in the middle to connect to the database.
  • creates additional complexity in the management of the platform, and it adds network hops.
  • combining existing solutions and existing blocks: KeepAlived + ProxySQl + MySQL.
  • Keepalived implements a set of checkers to dynamically and adaptively maintain and manage load-balanced server pool according to their health.
  • Keepalived implements a set of hooks to the VRRP finite state machine providing low-level and high-speed protocol interactions.
張 旭

The Caddyfile Syntax - 0 views

  • A Caddyfile can be used to configure any Caddy server type: HTTP, DNS, etc.
  • The Caddyfile is plain Unicode text encoded with UTF-8.
  • lowercase and uppercase characters are different.
  • ...17 more annotations...
  • A token that starts with quotes " is read literally (including whitespace) until the next instance of quotes " that is not escaped.
  • Only quotes are escapable.
  • Blank, unquoted lines are allowed and ignored.
  • Tokens are then evaluated by the parser for structure.
  • A Caddyfile has no global scope.
  • A label is a string identifier, and a definition is a body (one or more lines) of tokens grouped together in a block
  • a Caddyfile with more than one entry must enclose each definition in curly braces { }.
  • The first line of a Caddyfile is always a label line.
  • If many labels are to head a block, the labels may be suffixed with a comma.
  • as long as the last label of the line has a comma if the next line is to continue the list of labels
  • Commas are not acceptable delimiters for arguments
  • Arguments are delimited solely by same-line whitespace
  • Subdirectives cannot open new blocks.
  • nested directive blocks are not supported
  • Any token (label, directive, argument, etc.) may contain or consist solely of an environment variable
  • Where an import line is, that line will be replaced with the contents of the imported file, unmodified.
  • define snippets to be reused later in your Caddyfile by defining a block with a single-token label surrounded by parentheses
張 旭

How services work | Docker Documentation - 0 views

  • a service is the image for a microservice within the context of some larger application.
  • When you create a service, you specify which container image to use and which commands to execute inside running containers.
  • an overlay network for the service to connect to other services in the swarm
  • ...13 more annotations...
  • In the swarm mode model, each task invokes exactly one container
  • A task is analogous to a “slot” where the scheduler places a container.
  • A task is the atomic unit of scheduling within a swarm.
  • A task is a one-directional mechanism. It progresses monotonically through a series of states: assigned, prepared, running, etc.
  • Docker swarm mode is a general purpose scheduler and orchestrator.
  • Hypothetically, you could implement other types of tasks such as virtual machine tasks or non-containerized process tasks.
  • If all nodes are paused or drained, and you create a service, it is pending until a node becomes available.
  • reserve a specific amount of memory for a service.
  • impose placement constraints on the service
  • As the administrator of a swarm, you declare the desired state of your swarm, and the manager works with the nodes in the swarm to create that state.
  • two types of service deployments, replicated and global.
  • A global service is a service that runs one task on every node.
  • Good candidates for global services are monitoring agents, an anti-virus scanners or other types of containers that you want to run on every node in the swarm.
張 旭

10 Common Git Problems and How to Fix Them - DEV Community - 0 views

  • Please keep in mind that --amend actually will create a new commit which replaces the previous one, so don’t use it for modifying commits which already have been pushed to a central repository.
  • git rebase --interactive
  • Just pick the commit(s) you want to update, change pick to reword (or r for short), and you will be taken to a new view where you can edit the message.
  • ...8 more annotations...
  • you can completely remove commits by deleting them from the list, as well as edit, reorder, and squash them.
  • Squashing allows you to merge several commits into one
  • In case you don’t want to create additional revert commits but only apply the necessary changes to your working tree, you can use the --no-commit/-n option.
  • reuse recorded resolution
  • Unfortunately it turns out that one of the branches isn’t quite there yet, so you decide to un-merge it again. Several days (or weeks) later when the branch is finally ready you merge it again, but thanks to the recorded resolutions, you won’t have to resolve the same merge conflicts again.
  • You can also define global hooks to use in all your projects by creating a template directory that git will use when initializing a new repository
  • removing sensitive data
  • Keep in mind that this will rewrite your project’s entire history, which can be very disruptive in a distributed workflow.
張 旭

Basics - Træfik - 0 views

  • Modifier rules only modify the request. They do not have any impact on routing decisions being made.
  • A frontend consists of a set of rules that determine how incoming requests are forwarded from an entrypoint to a backend.
  • Entrypoints are the network entry points into Træfik
  • ...27 more annotations...
  • Modifiers and matchers
  • Matcher rules determine if a particular request should be forwarded to a backend
  • if any rule matches
  • if all rules match
  • In order to use regular expressions with Host and Path matchers, you must declare an arbitrarily named variable followed by the colon-separated regular expression, all enclosed in curly braces.
  • Use a *Prefix* matcher if your backend listens on a particular base path but also serves requests on sub-paths. For instance, PathPrefix: /products would match /products but also /products/shoes and /products/shirts. Since the path is forwarded as-is, your backend is expected to listen on /products
  • Use Path if your backend listens on the exact path only. For instance, Path: /products would match /products but not /products/shoes.
  • Modifier rules ALWAYS apply after the Matcher rules.
  • A backend is responsible to load-balance the traffic coming from one or more frontends to a set of http servers
  • wrr: Weighted Round Robin
  • drr: Dynamic Round Robin: increases weights on servers that perform better than others.
  • A circuit breaker can also be applied to a backend, preventing high loads on failing servers.
  • To proactively prevent backends from being overwhelmed with high load, a maximum connection limit can also be applied to each backend.
  • Sticky sessions are supported with both load balancers.
  • When sticky sessions are enabled, a cookie is set on the initial request.
  • The check is defined by a path appended to the backend URL and an interval (given in a format understood by time.ParseDuration) specifying how often the health check should be executed (the default being 30 seconds). Each backend must respond to the health check within 5 seconds.
  • The static configuration is the global configuration which is setting up connections to configuration backends and entrypoints.
  • We only need to enable watch option to make Træfik watch configuration backend changes and generate its configuration automatically.
  • Separate the regular expression and the replacement by a space.
  • a comma-separated key/value pair where both key and value must be literals.
  • namespacing of your backends happens on the basis of hosts in addition to paths
  • Modifiers will be applied in a pre-determined order regardless of their order in the rule configuration section.
  • customize priority
  • Custom headers can be configured through the frontends, to add headers to either requests or responses that match the frontend's rules.
  • Security related headers (HSTS headers, SSL redirection, Browser XSS filter, etc) can be added and configured per frontend in a similar manner to the custom headers above.
  • Servers are simply defined using a url. You can also apply a custom weight to each server (this will be used by load-balancing).
  • Maximum connections can be configured by specifying an integer value for maxconn.amount and maxconn.extractorfunc which is a strategy used to determine how to categorize requests in order to evaluate the maximum connections.
張 旭

A Complete Beginner's Guide to Django - Part 1 - 0 views

  • are Python functions that receive an HttpRequest object and returns an HttpResponse object. Receive a request as a parameter and returns a response as a result.
  • is a Web application that does something. An app usually is composed of a set of models (database tables), views, templates, tests.
  • One project can be composed of multiple apps, or a single app.
  • ...1 more annotation...
  • this is the file where we handle the request/response cycle of our Web application.
張 旭

Let's Encrypt & Docker - Træfik - 0 views

  • automatically discover any services on the Docker host and let Træfik reconfigure itself automatically when containers get created (or shut down) so HTTP traffic can be routed accordingly.
  • use Træfik as a layer-7 load balancer with SSL termination for a set of micro-services used to run a web application.
  • Docker containers can only communicate with each other over TCP when they share at least one network.
  • ...15 more annotations...
  • Docker under the hood creates IPTable rules so containers can't reach other containers unless you'd want to
  • Træfik can listen to Docker events and reconfigure its own internal configuration when containers are created (or shut down).
  • Enable the Docker provider and listen for container events on the Docker unix socket we've mounted earlier.
  • Enable automatic request and configuration of SSL certificates using Let's Encrypt. These certificates will be stored in the acme.json file, which you can back-up yourself and store off-premises.
  • there isn't a single container that has any published ports to the host -- everything is routed through Docker networks.
  • Thanks to Docker labels, we can tell Træfik how to create its internal routing configuration.
  • container labels and service labels
  • With the traefik.enable label, we tell Træfik to include this container in its internal configuration.
  • tell Træfik to use the web network to route HTTP traffic to this container.
  • Service labels allow managing many routes for the same container.
  • When both container labels and service labels are defined, container labels are just used as default values for missing service labels but no frontend/backend are going to be defined only with these labels.
  • In the example, two service names are defined : basic and admin. They allow creating two frontends and two backends.
  • Always specify the correct port where the container expects HTTP traffic using traefik.port label.
  • all containers that are placed in the same network as Træfik will automatically be reachable from the outside world
  • With the traefik.frontend.auth.basic label, it's possible for Træfik to provide a HTTP basic-auth challenge for the endpoints you provide the label for.
‹ Previous 21 - 40 of 75 Next › Last »
Showing 20 items per page