Skip to main content

Home/ Larvata/ Group items tagged track

Rss Feed Group items tagged

張 旭

Helm | - 0 views

  • Helm is a tool for managing Kubernetes packages called charts
  • Install and uninstall charts into an existing Kubernetes cluster
  • The chart is a bundle of information necessary to create an instance of a Kubernetes application.
  • ...12 more annotations...
  • The config contains configuration information that can be merged into a packaged chart to create a releasable object.
  • A release is a running instance of a chart, combined with a specific config.
  • The Helm Client is a command-line client for end users.
  • Interacting with the Tiller server
  • The Tiller Server is an in-cluster server that interacts with the Helm client, and interfaces with the Kubernetes API server.
  • Combining a chart and configuration to build a release
  • Installing charts into Kubernetes, and then tracking the subsequent release
  • the client is responsible for managing charts, and the server is responsible for managing releases.
  • The Helm client is written in the Go programming language, and uses the gRPC protocol suite to interact with the Tiller server.
  • The Tiller server is also written in Go. It provides a gRPC server to connect with the client, and it uses the Kubernetes client library to communicate with Kubernetes.
  • The Tiller server stores information in ConfigMaps located inside of Kubernetes.
  • Configuration files are, when possible, written in YAML.
  •  
    "Helm is a tool for managing Kubernetes packages called charts"
張 旭

Introduction to GitLab Flow | GitLab - 0 views

  • GitLab flow as a clearly defined set of best practices. It combines feature-driven development and feature branches with issue tracking.
  • In Git, you add files from the working copy to the staging area. After that, you commit them to your local repo. The third step is pushing to a shared remote repository.
  • branching model
  • ...68 more annotations...
  • The biggest problem is that many long-running branches emerge that all contain part of the changes.
  • It is a convention to call your default branch master and to mostly branch from and merge to this.
  • Nowadays, most organizations practice continuous delivery, which means that your default branch can be deployed.
  • Continuous delivery removes the need for hotfix and release branches, including all the ceremony they introduce.
  • Merging everything into the master branch and frequently deploying means you minimize the amount of unreleased code, which is in line with lean and continuous delivery best practices.
  • GitHub flow assumes you can deploy to production every time you merge a feature branch.
  • You can deploy a new version by merging master into the production branch. If you need to know what code is in production, you can just checkout the production branch to see.
  • Production branch
  • Environment branches
  • have an environment that is automatically updated to the master branch.
  • deploy the master branch to staging.
  • To deploy to pre-production, create a merge request from the master branch to the pre-production branch.
  • Go live by merging the pre-production branch into the production branch.
  • Release branches
  • work with release branches if you need to release software to the outside world.
  • each branch contains a minor version
  • After announcing a release branch, only add serious bug fixes to the branch.
  • merge these bug fixes into master, and then cherry-pick them into the release branch.
  • Merging into master and then cherry-picking into release is called an “upstream first” policy
  • Tools such as GitHub and Bitbucket choose the name “pull request” since the first manual action is to pull the feature branch.
  • Tools such as GitLab and others choose the name “merge request” since the final action is to merge the feature branch.
  • If you work on a feature branch for more than a few hours, it is good to share the intermediate result with the rest of the team.
  • the merge request automatically updates when new commits are pushed to the branch.
  • If the assigned person does not feel comfortable, they can request more changes or close the merge request without merging.
  • In GitLab, it is common to protect the long-lived branches, e.g., the master branch, so that most developers can’t modify them.
  • if you want to merge into a protected branch, assign your merge request to someone with maintainer permissions.
  • After you merge a feature branch, you should remove it from the source control software.
  • Having a reason for every code change helps to inform the rest of the team and to keep the scope of a feature branch small.
  • If there is no issue yet, create the issue
  • The issue title should describe the desired state of the system.
  • For example, the issue title “As an administrator, I want to remove users without receiving an error” is better than “Admin can’t remove users.”
  • create a branch for the issue from the master branch
  • If you open the merge request but do not assign it to anyone, it is a “Work In Progress” merge request.
  • Start the title of the merge request with [WIP] or WIP: to prevent it from being merged before it’s ready.
  • When they press the merge button, GitLab merges the code and creates a merge commit that makes this event easily visible later on.
  • Merge requests always create a merge commit, even when the branch could be merged without one. This merge strategy is called “no fast-forward” in Git.
  • Suppose that a branch is merged but a problem occurs and the issue is reopened. In this case, it is no problem to reuse the same branch name since the first branch was deleted when it was merged.
  • At any time, there is at most one branch for every issue.
  • It is possible that one feature branch solves more than one issue.
  • GitLab closes these issues when the code is merged into the default branch.
  • If you have an issue that spans across multiple repositories, create an issue for each repository and link all issues to a parent issue.
  • use an interactive rebase (rebase -i) to squash multiple commits into one or reorder them.
  • you should never rebase commits you have pushed to a remote server.
  • Rebasing creates new commits for all your changes, which can cause confusion because the same change would have multiple identifiers.
  • if someone has already reviewed your code, rebasing makes it hard to tell what changed since the last review.
  • never rebase commits authored by other people.
  • it is a bad idea to rebase commits that you have already pushed.
  • If you revert a merge commit and then change your mind, revert the revert commit to redo the merge.
  • Often, people avoid merge commits by just using rebase to reorder their commits after the commits on the master branch.
  • Using rebase prevents a merge commit when merging master into your feature branch, and it creates a neat linear history.
  • every time you rebase, you have to resolve similar conflicts.
  • Sometimes you can reuse recorded resolutions (rerere), but merging is better since you only have to resolve conflicts once.
  • A good way to prevent creating many merge commits is to not frequently merge master into the feature branch.
  • keep your feature branches short-lived.
  • Most feature branches should take less than one day of work.
  • If your feature branches often take more than a day of work, try to split your features into smaller units of work.
  • You could also use feature toggles to hide incomplete features so you can still merge back into master every day.
  • you should try to prevent merge commits, but not eliminate them.
  • Your codebase should be clean, but your history should represent what actually happened.
  • If you rebase code, the history is incorrect, and there is no way for tools to remedy this because they can’t deal with changing commit identifiers
  • Commit often and push frequently
  • You should push your feature branch frequently, even when it is not yet ready for review.
  • A commit message should reflect your intention, not just the contents of the commit.
  • each merge request must be tested before it is accepted.
  • test the master branch after each change.
  • If new commits in master cause merge conflicts with the feature branch, merge master back into the branch to make the CI server re-run the tests.
  • When creating a feature branch, always branch from an up-to-date master.
  • Do not merge from upstream again if your code can work and merge cleanly without doing so.
張 旭

How to Write a Git Commit Message - 1 views

  • a well-crafted Git commit message is the best way to communicate context about a change to fellow developers (and indeed to their future selves).
  • A diff will tell you what changed, but only the commit message can properly tell you why.
  • a commit message shows whether a developer is a good collaborator
  • ...22 more annotations...
  • a well-cared for log is a beautiful and useful thing
  • Reviewing others’ commits and pull requests becomes something worth doing, and suddenly can be done independently.
  • Understanding why something happened months or years ago becomes not only possible but efficient.
  • how to write an individual commit message.
  • Markup syntax, wrap margins, grammar, capitalization, punctuation.
  • What should it not contain?
  • issue tracking IDs
  • pull request numbers
  • The seven rules of a great Git commit message
  • Use the body to explain what and why vs. how
  • Use the imperative mood in the subject line
  • it’s a good idea to begin the commit message with a single short (less than 50 character) line summarizing the change, followed by a blank line and then a more thorough description.
  • forces the author to think for a moment about the most concise way to explain what’s going on.
  • If you’re having a hard time summarizing, you might be committing too many changes at once.
  • shoot for 50 characters, but consider 72 the hard limit
  • Imperative mood just means “spoken or written as if giving a command or instruction”.
  • Git itself uses the imperative whenever it creates a commit on your behalf.
  • when you write your commit messages in the imperative, you’re following Git’s own built-in conventions.
  • A properly formed Git commit subject line should always be able to complete the following sentence: If applied, this commit will your subject line here
  • explaining what changed and why
  • Code is generally self-explanatory in this regard (and if the code is so complex that it needs to be explained in prose, that’s what source comments are for).
  • there are tab completion scripts that take much of the pain out of remembering the subcommands and switches.
張 旭

Open source load testing tool review 2020 - 0 views

  • Hey is a simple tool, written in Go, with good performance and the most common features you'll need to run simple static URL tests.
  • Hey supports HTTP/2, which neither Wrk nor Apachebench does
  • Apachebench is very fast, so often you will not need more than one CPU core to generate enough traffic
  • ...16 more annotations...
  • Hey has rate limiting, which can be used to run fixed-rate tests.
  • Vegeta was designed to be run on the command line; it reads from stdin a list of HTTP transactions to generate, and sends results in binary format to stdout,
  • Vegeta is a really strong tool that caters to people who want a tool to test simple, static URLs (perhaps API end points) but also want a bit more functionality.
  • Vegeta can even be used as a Golang library/package if you want to create your own load testing tool.
  • Wrk is so damn fast
  • being fast and measuring correctly is about all that Wrk does
  • k6 is scriptable in plain Javascript
  • k6 is average or better. In some categories (documentation, scripting API, command line UX) it is outstanding.
  • Jmeter is a huge beast compared to most other tools.
  • Siege is a simple tool, similar to e.g. Apachebench in that it has no scripting and is primarily used when you want to hit a single, static URL repeatedly.
  • A good way of testing the testing tools is to not test them on your code, but on some third-party thing that is sure to be very high-performing.
  • use a tool like e.g. top to keep track of Nginx CPU usage while testing. If you see just one process, and see it using close to 100% CPU, it means you could be CPU-bound on the target side.
  • If you see multiple Nginx processes but only one is using a lot of CPU, it means your load testing tool is only talking to that particular worker process.
  • Network delay is also important to take into account as it sets an upper limit on the number of requests per second you can push through.
  • If, say, the Nginx default page requires a transfer of 250 bytes to load, it means that if the servers are connected via a 100 Mbit/s link, the theoretical max RPS rate would be around 100,000,000 divided by 8 (bits per byte) divided by 250 => 100M/2000 = 50,000 RPS. Though that is a very optimistic calculation - protocol overhead will make the actual number a lot lower so in the case above I would start to get worried bandwidth was an issue if I saw I could push through max 30,000 RPS, or something like that.
  • Wrk managed to push through over 50,000 RPS and that made 8 Nginx workers on the target system consume about 600% CPU.
張 旭

MongoDB Performance Tuning: Everything You Need to Know - Stackify - 0 views

  • db.serverStatus().globalLock
  • db.serverStatus().locks
  • globalLock.currentQueue.total: This number can indicate a possible concurrency issue if it’s consistently high. This can happen if a lot of requests are waiting for a lock to be released.
  • ...35 more annotations...
  • globalLock.totalTime: If this is higher than the total database uptime, the database has been in a lock state for too long.
  • Unlike relational databases such as MySQL or PostgreSQL, MongoDB uses JSON-like documents for storing data.
  • Databases operate in an environment that consists of numerous reads, writes, and updates.
  • When a lock occurs, no other operation can read or modify the data until the operation that initiated the lock is finished.
  • locks.deadlockCount: Number of times the lock acquisitions have encountered deadlocks
  • Is the database frequently locking from queries? This might indicate issues with the schema design, query structure, or system architecture.
  • For version 3.2 on, WiredTiger is the default.
  • MMAPv1 locks whole collections, not individual documents.
  • WiredTiger performs locking at the document level.
  • When the MMAPv1 storage engine is in use, MongoDB will use memory-mapped files to store data.
  • All available memory will be allocated for this usage if the data set is large enough.
  • db.serverStatus().mem
  • mem.resident: Roughly equivalent to the amount of RAM in megabytes that the database process uses
  • If mem.resident exceeds the value of system memory and there’s a large amount of unmapped data on disk, we’ve most likely exceeded system capacity.
  • If the value of mem.mapped is greater than the amount of system memory, some operations will experience page faults.
  • The WiredTiger storage engine is a significant improvement over MMAPv1 in performance and concurrency.
  • By default, MongoDB will reserve 50 percent of the available memory for the WiredTiger data cache.
  • wiredTiger.cache.bytes currently in the cache – This is the size of the data currently in the cache.
  • wiredTiger.cache.tracked dirty bytes in the cache – This is the size of the dirty data in the cache.
  • we can look at the wiredTiger.cache.bytes read into cache value for read-heavy applications. If this value is consistently high, increasing the cache size may improve overall read performance.
  • check whether the application is read-heavy. If it is, increase the size of the replica set and distribute the read operations to secondary members of the set.
  • write-heavy, use sharding within a sharded cluster to distribute the load.
  • Replication is the propagation of data from one node to another
  • Replication sets handle this replication.
  • Sometimes, data isn’t replicated as quickly as we’d like.
  • a particularly thorny problem if the lag between a primary and secondary node is high and the secondary becomes the primary
  • use the db.printSlaveReplicationInfo() or the rs.printSlaveReplicationInfo() command to see the status of a replica set from the perspective of the secondary member of the set.
  • shows how far behind the secondary members are from the primary. This number should be as low as possible.
  • monitor this metric closely.
  • watch for any spikes in replication delay.
  • Always investigate these issues to understand the reasons for the lag.
  • One replica set is primary. All others are secondary.
  • it’s not normal for nodes to change back and forth between primary and secondary.
  • use the profiler to gain a deeper understanding of the database’s behavior.
  • Enabling the profiler can affect system performance, due to the additional activity.
  •  
    "globalLock.currentQueue.total: This number can indicate a possible concurrency issue if it's consistently high. This can happen if a lot of requests are waiting for a lock to be released."
張 旭

Controllers | Kubernetes - 0 views

  • In robotics and automation, a control loop is a non-terminating loop that regulates the state of a system.
  • controllers are control loops that watch the state of your cluster, then make or request changes where needed
  • Each controller tries to move the current cluster state closer to the desired state.
  • ...12 more annotations...
  • A controller tracks at least one Kubernetes resource type.
  • The controller(s) for that resource are responsible for making the current state come closer to that desired state.
  • in Kubernetes, a controller will send messages to the API server that have useful side effects.
  • Built-in controllers manage state by interacting with the cluster API server.
  • By contrast with Job, some controllers need to make changes to things outside of your cluster.
  • the controller makes some change to bring about your desired state, and then reports current state back to your cluster's API server. Other control loops can observe that reported data and take their own actions.
  • As long as the controllers for your cluster are running and able to make useful changes, it doesn't matter if the overall state is stable or not.
  • Kubernetes uses lots of controllers that each manage a particular aspect of cluster state.
  • a particular control loop (controller) uses one kind of resource as its desired state, and has a different kind of resource that it manages to make that desired state happen.
  • There can be several controllers that create or update the same kind of object.
  • you can have Deployments and Jobs; these both create Pods. The Job controller does not delete the Pods that your Deployment created, because there is information (labels) the controllers can use to tell those Pods apart.
  • Kubernetes comes with a set of built-in controllers that run inside the kube-controller-manager.
  •  
    "In robotics and automation, a control loop is a non-terminating loop that regulates the state of a system. "
張 旭

第 05 章 - 計算機概論 - 主機系統與 I/O 界面 - 0 views

  • 接受使用者輸入指令與資料,經由中央處理器的數學與邏輯單元運算處理後,以產生或儲存成有用的資訊
  • CPU 為一個具有特定功能的晶片, 裡頭含有微指令集,如果你想要讓主機進行什麼特異的功能,就得要參考這顆 CPU 是否有相關內建的微指令集才可以。
  • CPU 讀取的資料都是從主記憶體來的! 主記憶體內的資料則是從輸入單元所傳輸進來!而 CPU 處理完畢的資料也必須要先寫回主記憶體中,最後資料才從主記憶體傳輸到輸出單元。
  • ...49 more annotations...
  • 算數邏輯單元與控制單元。其中算數邏輯單元主要負責程式運算與邏輯判斷,控制單元則主要在協調各周邊元件與各單元間的工作。
  • 資料會先寫入到主記憶體,然後 CPU 才能開始應用
  • CPU 其實內部已經含有一些微指令,我們所使用的軟體都要經過 CPU 內部的微指令集來達成才行。
  • 世界上常見到的兩種主要 CPU 架構, 分別是:精簡指令集 (RISC) 與複雜指令集 (CISC) 系統。
  • 微指令集較為精簡,每個指令的執行時間都很短,完成的動作也很單純,指令的執行效能較佳; 但是若要做複雜的事情,就要由多個指令來完成。
  • CISC在微指令集的每個小指令可以執行一些較低階的硬體操作,指令數目多而且複雜, 每條指令的長度並不相同。因為指令執行較為複雜所以每條指令花費的時間較長, 但每條個別指令可以處理的工作較為豐富。
  • 最早的那顆Intel發展出來的CPU代號稱為8086
  • AMD依此架構修改新一代的CPU為64位元
  • CPU 位元指的是CPU一次資料讀取的最大量!64位元CPU代表CPU一次可以讀寫64bits這麼多的資料
  • 因為CPU讀取資料量有限制,因此能夠從記憶體中讀寫的資料也就有所限制
  • :(1)北橋:負責連結速度較快的CPU、主記憶體與顯示卡界面等元件;
  • (2)南橋:負責連接速度較慢的裝置介面, 包括硬碟、USB、網路卡等等。不過由於北橋最重要的就是 CPU 與主記憶體之間的橋接,因此目前的主流架構中, 大多將北橋記憶體控制器整合到 CPU 封裝當中
  • CPU 與可接受的晶片組是有搭配性的,尤其目前每種 CPU 的腳位都不一樣
  • 時脈越高,代表單位時間內可進行的工作越多
  • 大概都只看總頻寬或基準時脈
  • CPU 時脈越高的情況下,會產生很多諸如散熱、設計及與週邊元件溝通的問題。
  • 其他的程序還在等待 CPU ,但是 CPU 又在等待 I/O
  • Intel 在同一個運算核心底下安裝兩個暫存器來模擬出另一個核心,實際上是兩個暫存器 (可以想成是程式的執行器) 共用一個實體核心。 這就是超執行緒的簡易認知
  • 時脈的意思是每秒鐘能夠進行的工作次數,而每次工作能夠讀進的資料量就是位元數
  • 每個用戶端大多是短時間的大運算,所以通常不會有一隻程序一直佔用著系統資源。
  • CPU 的所有資料都是從記憶體讀寫來的,所以記憶體的容量與頻寬就相當的重要了
  • DRAM 根據技術的更新又分好幾代,而使用上較廣泛的有所謂的 SDRAM 與 DDR SDRAM 兩種。 這兩種記憶體的差別除了在於腳位與工作電壓上的不同之外,DDR 是所謂的雙倍資料傳送速度 (Double Data Rate)
  • 晶片組廠商就將兩個主記憶體彙整在一起,如果一支記憶體可達 64 位元,兩支記憶體就可以達到 128 位元了,這就是雙通道的設計理念。 在某些比較多核心的伺服器主機上面,甚至還使用了 3 通道到 4 通道的設計
  • CPU 內部的暫存器與少量記憶體被稱為第一、第二層快取 (L1, L2 cache),而放在核心間的快取記憶體就被稱為第三層快取記憶體 (L3 cache)
  • CPU 的暫存器是直接設計在 CPU 核心內部,可以用來幫助 CPU 的運算。
  • 在多核心 CPU 的核心之間,會有另一個共享的快取記憶體存在,讓所有的 CPU 核心可以共享某些資源。
  • 靜態隨機存取記憶體 (Static Random Access Memory, SRAM)
  • 各項參數, 是被記錄到主機板上頭的一個稱為 CMOS 的晶片上,這個晶片需要藉著額外的電源來發揮記錄功能, 這也是為什麼你的主機板上面會有一顆電池的緣故。
  • BIOS(Basic Input Output System)是一套程式,這套程式是寫死到主機板上面的一個記憶體晶片中, 這個記憶體晶片在沒有通電時也能夠將資料記錄下來,那就是唯讀記憶體(Read Only Memory, ROM)。
  • BIOS對於個人電腦來說是非常重要的, 因為他是系統在開機的時候首先會去讀取的一個小程式喔
  • 韌體(firmware)很多也是使用ROM來進行軟體的寫入的。 韌體像軟體一樣也是一個被電腦所執行的程式,然而他是對於硬體內部而言更加重要的部分。例如BIOS就是一個韌體, BIOS雖然對於我們日常操作電腦系統沒有什麼太大的關係,但是他卻控制著開機時各項硬體參數的取得!
  • 現在的 BIOS 通常是寫入類似快閃記憶體 (flash) 或 EEPROM
  • 顯示卡能夠傳輸的資料量當然也是越大越好!這時就得要考慮到傳輸的界面了!當前 (2018) 主流的傳輸界面為 PCI-E,這個 PCI-E 又有三種版本, version 1, 2, 3 ,這三個版本的速度並不相同
  • PCI-E (PCI-Express) 使用的是類似管線的概念來處理,在 PCI-E 第一版中,每條管線可以具有 250MBytes/s 的頻寬效能,管線越多(通常設計到 x16 管線)則總頻寬越高
  • 通常 CPU 製造商會根據 CPU 來設計搭配的南橋晶片,由於現在只有一個晶片 (北橋整合到 CPU 內了),所以目前只有一顆主機板晶片組。
  • 插槽上面的資料要傳輸到 CPU 就得要經過晶片組,然後透過 DMI 通道傳上去!所以,在某些情況下,系統的效能會被卡住在這條通道上喔!
  • 晶片組接的設備相當多喔!有 PCI-E 插槽、USB設備、網路設備、音效設備、硬碟設備等,這全部的裝置共用那一條 DMI 喔! 所以,整個系統效能的瓶頸通常不在 CPU 啦!通常就是在南橋接的設備上面!所以,當你有非常複雜的程式要運作的時候,讓這些程式越少通過南橋, 他的系統效能就會比較好一點
  • 物理組成
  • 讀寫主要是透過在機械手臂上的讀取頭(head)來達成
  • 由於磁碟盤是圓的,並且透過機器手臂去讀寫資料,磁碟盤要轉動才能夠讓機器手臂讀寫。
  • 磁碟的最小物理儲存單位,稱之為磁區 (sector),那同一個同心圓的磁區組合成的圓就是所謂的磁軌(track)。 由於磁碟裡面可能會有多個磁碟盤,因此在所有磁碟盤上面的同一個磁軌可以組合成所謂的磁柱 (cylinder)。
  • 通常資料的讀寫會由外圈開始往內寫
  • 目前主流的硬碟連接界面就是 SATA
  • 雖然 SATA III 界面理論傳輸可到達 600Mbytes/s,不過傳統硬碟由於物理設計的限制因素,通常存取速度效能大多在 150~200Mbytes/s 之間
  • 串列式 SCSI (Serial Attached SCSI, SAS)
  • 傳統硬碟有個很致命的問題,就是需要驅動馬達去轉動磁碟盤~這會造成很嚴重的磁碟讀取延遲
  • 快閃記憶體去製作成高容量的設備
  • 沒有讀寫頭與磁碟盤啊!都是記憶體!
  • 各個繪圖卡的運算晶片 (GPU) 設計的理念不同,加上驅動程式與軟體搭配的問題,並不是一張高效能繪圖卡就可以完勝其他的繪圖卡, 還得要注意相關的軟體才行。
張 旭

鳥哥的 Linux 私房菜 -- 第零章、計算機概論 - 0 views

  • 但因為 CPU 的運算速度比其他的設備都要來的快,又為了要滿足 FSB 的頻率,因此廠商就在 CPU 內部再進行加速, 於是就有所謂的外頻與倍頻了。
  • 中央處理器 (Central Processing Unit, CPU),CPU 為一個具有特定功能的晶片, 裡頭含有微指令集,如果你想要讓主機進行什麼特異的功能,就得要參考這顆 CPU 是否有相關內建的微指令集才可以。
  • CPU 內又可分為兩個主要的單元,分別是: 算數邏輯單元與控制單元。
  • ...63 more annotations...
  • CPU 讀取的資料都是從主記憶體來的! 主記憶體內的資料則是從輸入單元所傳輸進來!而 CPU 處理完畢的資料也必須要先寫回主記憶體中,最後資料才從主記憶體傳輸到輸出單元。
  • 重點在於 CPU 與主記憶體。 特別要看的是實線部分的傳輸方向,基本上資料都是流經過主記憶體再轉出去的!
  • CPU 實際要處理的資料則完全來自於主記憶體 (不管是程式還是一般文件資料)!這是個很重要的概念喔! 這也是為什麼當你的記憶體不足時,系統的效能就很糟糕!
  • 常見到的兩種主要 CPU 架構, 分別是:精簡指令集 (RISC) 與複雜指令集 (CISC) 系統。
  • 微指令集較為精簡,每個指令的執行時間都很短,完成的動作也很單純,指令的執行效能較佳; 但是若要做複雜的事情,就要由多個指令來完成。
  • CISC在微指令集的每個小指令可以執行一些較低階的硬體操作,指令數目多而且複雜, 每條指令的長度並不相同。因為指令執行較為複雜所以每條指令花費的時間較長, 但每條個別指令可以處理的工作較為豐富。
  • 多媒體微指令集:MMX, SSE, SSE2, SSE3, SSE4, AMD-3DNow! 虛擬化微指令集:Intel-VT, AMD-SVM 省電功能:Intel-SpeedStep, AMD-PowerNow! 64/32位元相容技術:AMD-AMD64, Intel-EM64T
  • 若光以效能來說,目前的個人電腦效能已經夠快了,甚至已經比工作站等級以上的電腦運算速度還要快! 但是工作站電腦強調的是穩定不當機,並且運算過程要完全正確,因此工作站以上等級的電腦在設計時的考量與個人電腦並不相同啦
  • 1 Byte = 8 bits
  • 檔案容量使用的是二進位的方式,所以 1 GBytes 的檔案大小實際上為:1024x1024x1024 Bytes 這麼大! 速度單位則常使用十進位,例如 1GHz 就是 1000x1000x1000 Hz 的意思。
  • CPU的運算速度常使用 MHz 或者是 GHz 之類的單位,這個 Hz 其實就是秒分之一
  • 在網路傳輸方面,由於網路使用的是 bit 為單位,因此網路常使用的單位為 Mbps 是 Mbits per second,亦即是每秒多少 Mbit
  • (1)北橋:負責連結速度較快的CPU、主記憶體與顯示卡界面等元件
  • (2)南橋:負責連接速度較慢的裝置介面, 包括硬碟、USB、網路卡等等
  • CPU內部含有微指令集,不同的微指令集會導致CPU工作效率的優劣
  • 時脈就是CPU每秒鐘可以進行的工作次數。 所以時脈越高表示這顆CPU單位時間內可以作更多的事情。
  • 早期的 CPU 架構主要透過北橋來連結系統最重要的 CPU、主記憶體與顯示卡裝置。因為所有的設備都得掉透過北橋來連結,因此每個設備的工作頻率應該要相同。
  • 前端匯流排 (FSB)
  • 外頻指的是CPU與外部元件進行資料傳輸時的速度
  • 倍頻則是 CPU 內部用來加速工作效能的一個倍數
  • 新的 CPU 設計中, 已經將記憶體控制器整合到 CPU 內部,而連結 CPU 與記憶體、顯示卡的控制器的設計,在Intel部份使用 QPI (Quick Path Interconnect) 與 DMI 技術,而 AMD 部份則使用 Hyper Transport 了,這些技術都可以讓 CPU 直接與主記憶體、顯示卡等設備分別進行溝通,而不需要透過外部的連結晶片了。
  • 如何知道主記憶體能提供的資料量呢?此時還是得要藉由 CPU 內的記憶體控制晶片與主記憶體間的傳輸速度『前端匯流排速度(Front Side Bus, FSB)
  • 主記憶體也是有其工作的時脈,這個時脈限制還是來自於 CPU 內的記憶體控制器所決定的。
  • CPU每次能夠處理的資料量稱為字組大小(word size), 字組大小依據CPU的設計而有32位元與64位元。我們現在所稱的電腦是32或64位元主要是依據這個 CPU解析的字組大小而來的
  • 早期的32位元CPU中,因為CPU每次能夠解析的資料量有限, 因此由主記憶體傳來的資料量就有所限制了。這也導致32位元的CPU最多只能支援最大到4GBytes的記憶體。
  • 在每一個 CPU 內部將重要的暫存器 (register) 分成兩群, 而讓程序分別使用這兩群暫存器。
  • 可以有兩個程序『同時競爭 CPU 的運算單元』,而非透過作業系統的多工切換!
  • 大多發現 HT 雖然可以提昇效能,不過,有些情況下卻可能導致效能降低喔!因為,實際上明明就僅有一個運算單元
  • 個人電腦的主記憶體主要元件為動態隨機存取記憶體(Dynamic Random Access Memory, DRAM), 隨機存取記憶體只有在通電時才能記錄與使用,斷電後資料就消失了。因此我們也稱這種RAM為揮發性記憶體。
  • 要啟用雙通道的功能你必須要安插兩支(或四支)主記憶體,這兩支記憶體最好連型號都一模一樣比較好, 這是因為啟動雙通道記憶體功能時,資料是同步寫入/讀出這一對主記憶體中,如此才能夠提升整體的頻寬啊!
  • 第二層快取(L2 cache)整合到CPU內部,因此這個L2記憶體的速度必須要CPU時脈相同。 使用DRAM是無法達到這個時脈速度的,此時就需要靜態隨機存取記憶體(Static Random Access Memory, SRAM)的幫忙了。
  • BIOS(Basic Input Output System)是一套程式,這套程式是寫死到主機板上面的一個記憶體晶片中, 這個記憶體晶片在沒有通電時也能夠將資料記錄下來,那就是唯讀記憶體(Read Only Memory, ROM)。
  • BIOS對於個人電腦來說是非常重要的, 因為他是系統在開機的時候首先會去讀取的一個小程式
  • 由於磁碟盤是圓的,並且透過機器手臂去讀寫資料,磁碟盤要轉動才能夠讓機器手臂讀寫。因此,通常資料寫入當然就是以圓圈轉圈的方式讀寫囉! 所以,當初設計就是在類似磁碟盤同心圓上面切出一個一個的小區塊,這些小區塊整合成一個圓形,讓機器手臂上的讀寫頭去存取。 這個小區塊就是磁碟的最小物理儲存單位,稱之為磁區 (sector),那同一個同心圓的磁區組合成的圓就是所謂的磁軌(track)。 由於磁碟裡面可能會有多個磁碟盤,因此在所有磁碟盤上面的同一個磁軌可以組合成所謂的磁柱 (cylinder)。
  • 原本硬碟的磁區都是設計成 512byte 的容量,但因為近期以來硬碟的容量越來越大,為了減少資料量的拆解,所以新的高容量硬碟已經有 4Kbyte 的磁區設計
  • 拿快閃記憶體去製作成高容量的設備,這些設備的連接界面也是透過 SATA 或 SAS,而且外型還做的跟傳統磁碟一樣
  • 固態硬碟最大的好處是,它沒有馬達不需要轉動,而是透過記憶體直接讀寫的特性,因此除了沒資料延遲且快速之外,還很省電
  • 硬碟主要是利用主軸馬達轉動磁碟盤來存取,因此轉速的快慢會影響到效能
  • 使用作業系統的正常關機方式,才能夠有比較好的硬碟保養啊!因為他會讓硬碟的機械手臂歸回原位啊!
  • I/O位址有點類似每個裝置的門牌號碼,每個裝置都有他自己的位址,一般來說,不能有兩個裝置使用同一個I/O位址, 否則系統就會不曉得該如何運作這兩個裝置了。
  • IRQ就可以想成是各個門牌連接到郵件中心(CPU)的專門路徑囉! 各裝置可以透過IRQ中斷通道來告知CPU該裝置的工作情況,以方便CPU進行工作分配的任務。
  • BIOS為寫入到主機板上某一塊 flash 或 EEPROM 的程式,他可以在開機的時候執行,以載入CMOS當中的參數, 並嘗試呼叫儲存裝置中的開機程式,進一步進入作業系統當中。
  • 電腦都只有記錄0/1而已,甚至記錄的資料都是使用byte/bit等單位來記錄的
  • 常用的英文編碼表為ASCII系統,這個編碼系統中, 每個符號(英文、數字或符號等)都會佔用1bytes的記錄, 因此總共會有28=256種變化
  • 中文字當中的編碼系統早期最常用的就是big5這個編碼表了。 每個中文字會佔用2bytes,理論上最多可以有216=65536,亦即最多可達6萬多個中文字。
  • 國際組織ISO/IEC跳出來制訂了所謂的Unicode編碼系統, 我們常常稱呼的UTF8或萬國碼的編碼
  • CPU其實是具有微指令集的。因此,我們需要CPU幫忙工作時,就得要參考微指令集的內容, 然後撰寫讓CPU讀的懂的指令碼給CPU執行,這樣就能夠讓CPU運作了。
  • 編譯器』來將這些人類能夠寫的程式語言轉譯成為機器能看懂得機器碼
  • 當你需要將運作的資料寫入記憶體中,你就得要自行分配一個記憶體區塊出來讓自己的資料能夠填上去, 所以你還得要瞭解到記憶體的位址是如何定位的,啊!眼淚還是不知不覺的流了下來... 怎麼寫程式這麼麻煩啊!
  • 作業系統(Operating System, OS)其實也是一組程式, 這組程式的重點在於管理電腦的所有活動以及驅動系統中的所有硬體。
  • 作業系統的功能就是讓CPU可以開始判斷邏輯與運算數值、 讓主記憶體可以開始載入/讀出資料與程式碼、讓硬碟可以開始被存取、讓網路卡可以開始傳輸資料、 讓所有周邊可以開始運轉等等。
  • 只有核心有提供的功能,你的電腦系統才能幫你完成!舉例來說,你的核心並不支援TCP/IP的網路協定, 那麼無論你購買了什麼樣的網卡,這個核心都無法提供網路能力的!
  • 核心程式所放置到記憶體當中的區塊是受保護的! 並且開機後就一直常駐在記憶體當中。
  • 作業系統通常會提供一整組的開發介面給工程師來開發軟體! 工程師只要遵守該開發介面那就很容易開發軟體了!
  • 系統呼叫介面(System call interface)
  • 程序管理(Process control)
  • 記憶體管理(Memory management)
  • 檔案系統管理(Filesystem management)
  • 通常核心會提供虛擬記憶體的功能,當記憶體不足時可以提供記憶體置換(swap)的功能
  • 裝置的驅動(Device drivers)
  • 『可載入模組』功能,可以將驅動程式編輯成模組,就不需要重新的編譯核心
  • 驅動程式可以說是作業系統裡面相當重要的一環
  • 作業系統通常會提供一個開發介面給硬體開發商, 讓他們可以根據這個介面設計可以驅動他們硬體的『驅動程式』,如此一來,只要使用者安裝驅動程式後, 自然就可以在他們的作業系統上面驅動這塊顯示卡了。
  •  
    "但因為 CPU 的運算速度比其他的設備都要來的快,又為了要滿足 FSB 的頻率,因此廠商就在 CPU 內部再進行加速, 於是就有所謂的外頻與倍頻了。"
張 旭

LXC vs Docker: Why Docker is Better | UpGuard - 0 views

  • LXC (LinuX Containers) is a OS-level virtualization technology that allows creation and running of multiple isolated Linux virtual environments (VE) on a single control host.
  • Docker, previously called dotCloud, was started as a side project and only open-sourced in 2013. It is really an extension of LXC’s capabilities.
  • run processes in isolation.
  • ...35 more annotations...
  • Docker is developed in the Go language and utilizes LXC, cgroups, and the Linux kernel itself. Since it’s based on LXC, a Docker container does not include a separate operating system; instead it relies on the operating system’s own functionality as provided by the underlying infrastructure.
  • Docker acts as a portable container engine, packaging the application and all its dependencies in a virtual container that can run on any Linux server.
  • a VE there is no preloaded emulation manager software as in a VM.
  • In a VE, the application (or OS) is spawned in a container and runs with no added overhead, except for a usually minuscule VE initialization process.
  • LXC will boast bare metal performance characteristics because it only packages the needed applications.
  • the OS is also just another application that can be packaged too.
  • a VM, which packages the entire OS and machine setup, including hard drive, virtual processors and network interfaces. The resulting bloated mass usually takes a long time to boot and consumes a lot of CPU and RAM.
  • don’t offer some other neat features of VM’s such as IaaS setups and live migration.
  • LXC as supercharged chroot on Linux. It allows you to not only isolate applications, but even the entire OS.
  • Libvirt, which allows the use of containers through the LXC driver by connecting to 'lxc:///'.
  • 'LXC', is not compatible with libvirt, but is more flexible with more userspace tools.
  • Portable deployment across machines
  • Versioning: Docker includes git-like capabilities for tracking successive versions of a container
  • Component reuse: Docker allows building or stacking of already created packages.
  • Shared libraries: There is already a public registry (http://index.docker.io/ ) where thousands have already uploaded the useful containers they have created.
  • Docker taking the devops world by storm since its launch back in 2013.
  • LXC, while older, has not been as popular with developers as Docker has proven to be
  • LXC having a focus on sys admins that’s similar to what solutions like the Solaris operating system, with its Solaris Zones, Linux OpenVZ, and FreeBSD, with its BSD Jails virtualization system
  • it started out being built on top of LXC, Docker later moved beyond LXC containers to its own execution environment called libcontainer.
  • Unlike LXC, which launches an operating system init for each container, Docker provides one OS environment, supplied by the Docker Engine
  • LXC tooling sticks close to what system administrators running bare metal servers are used to
  • The LXC command line provides essential commands that cover routine management tasks, including the creation, launch, and deletion of LXC containers.
  • Docker containers aim to be even lighter weight in order to support the fast, highly scalable, deployment of applications with microservice architecture.
  • With backing from Canonical, LXC and LXD have an ecosystem tightly bound to the rest of the open source Linux community.
  • Docker Swarm
  • Docker Trusted Registry
  • Docker Compose
  • Docker Machine
  • Kubernetes facilitates the deployment of containers in your data center by representing a cluster of servers as a single system.
  • Swarm is Docker’s clustering, scheduling and orchestration tool for managing a cluster of Docker hosts. 
  • rkt is a security minded container engine that uses KVM for VM-based isolation and packs other enhanced security features. 
  • Apache Mesos can run different kinds of distributed jobs, including containers. 
  • Elastic Container Service is Amazon’s service for running and orchestrating containerized applications on AWS
  • LXC offers the advantages of a VE on Linux, mainly the ability to isolate your own private workloads from one another. It is a cheaper and faster solution to implement than a VM, but doing so requires a bit of extra learning and expertise.
  • Docker is a significant improvement of LXC’s capabilities.
‹ Previous 21 - 30 of 30
Showing 20 items per page