Skip to main content

Home/ Larvata/ Group items tagged system

Rss Feed Group items tagged

張 旭

Open source load testing tool review 2020 - 0 views

  • Hey is a simple tool, written in Go, with good performance and the most common features you'll need to run simple static URL tests.
  • Hey supports HTTP/2, which neither Wrk nor Apachebench does
  • Apachebench is very fast, so often you will not need more than one CPU core to generate enough traffic
  • ...16 more annotations...
  • Hey has rate limiting, which can be used to run fixed-rate tests.
  • Vegeta was designed to be run on the command line; it reads from stdin a list of HTTP transactions to generate, and sends results in binary format to stdout,
  • Vegeta is a really strong tool that caters to people who want a tool to test simple, static URLs (perhaps API end points) but also want a bit more functionality.
  • Vegeta can even be used as a Golang library/package if you want to create your own load testing tool.
  • Wrk is so damn fast
  • being fast and measuring correctly is about all that Wrk does
  • k6 is scriptable in plain Javascript
  • k6 is average or better. In some categories (documentation, scripting API, command line UX) it is outstanding.
  • Jmeter is a huge beast compared to most other tools.
  • Siege is a simple tool, similar to e.g. Apachebench in that it has no scripting and is primarily used when you want to hit a single, static URL repeatedly.
  • A good way of testing the testing tools is to not test them on your code, but on some third-party thing that is sure to be very high-performing.
  • use a tool like e.g. top to keep track of Nginx CPU usage while testing. If you see just one process, and see it using close to 100% CPU, it means you could be CPU-bound on the target side.
  • If you see multiple Nginx processes but only one is using a lot of CPU, it means your load testing tool is only talking to that particular worker process.
  • Network delay is also important to take into account as it sets an upper limit on the number of requests per second you can push through.
  • If, say, the Nginx default page requires a transfer of 250 bytes to load, it means that if the servers are connected via a 100 Mbit/s link, the theoretical max RPS rate would be around 100,000,000 divided by 8 (bits per byte) divided by 250 => 100M/2000 = 50,000 RPS. Though that is a very optimistic calculation - protocol overhead will make the actual number a lot lower so in the case above I would start to get worried bandwidth was an issue if I saw I could push through max 30,000 RPS, or something like that.
  • Wrk managed to push through over 50,000 RPS and that made 8 Nginx workers on the target system consume about 600% CPU.
張 旭

Logging Architecture | Kubernetes - 0 views

  • Application logs can help you understand what is happening inside your application
  • container engines are designed to support logging.
  • The easiest and most adopted logging method for containerized applications is writing to standard output and standard error streams.
  • ...26 more annotations...
  • In a cluster, logs should have a separate storage and lifecycle independent of nodes, pods, or containers. This concept is called cluster-level logging.
  • Cluster-level logging architectures require a separate backend to store, analyze, and query logs
  • Kubernetes does not provide a native storage solution for log data.
  • use kubectl logs --previous to retrieve logs from a previous instantiation of a container.
  • A container engine handles and redirects any output generated to a containerized application's stdout and stderr streams
  • The Docker JSON logging driver treats each line as a separate message.
  • By default, if a container restarts, the kubelet keeps one terminated container with its logs.
  • An important consideration in node-level logging is implementing log rotation, so that logs don't consume all available storage on the node
  • You can also set up a container runtime to rotate an application's logs automatically.
  • The two kubelet flags container-log-max-size and container-log-max-files can be used to configure the maximum size for each log file and the maximum number of files allowed for each container respectively.
  • The kubelet and container runtime do not run in containers.
  • On machines with systemd, the kubelet and container runtime write to journald. If systemd is not present, the kubelet and container runtime write to .log files in the /var/log directory.
  • System components inside containers always write to the /var/log directory, bypassing the default logging mechanism.
  • Kubernetes does not provide a native solution for cluster-level logging
  • Use a node-level logging agent that runs on every node.
  • implement cluster-level logging by including a node-level logging agent on each node.
  • the logging agent is a container that has access to a directory with log files from all of the application containers on that node.
  • the logging agent must run on every node, it is recommended to run the agent as a DaemonSet
  • Node-level logging creates only one agent per node and doesn't require any changes to the applications running on the node.
  • Containers write stdout and stderr, but with no agreed format. A node-level agent collects these logs and forwards them for aggregation.
  • Each sidecar container prints a log to its own stdout or stderr stream.
  • It is not recommended to write log entries with different formats to the same log stream
  • writing logs to a file and then streaming them to stdout can double disk usage.
  • If you have an application that writes to a single file, it's recommended to set /dev/stdout as the destination
  • it's recommended to use stdout and stderr directly and leave rotation and retention policies to the kubelet.
  • Using a logging agent in a sidecar container can lead to significant resource consumption. Moreover, you won't be able to access those logs using kubectl logs because they are not controlled by the kubelet.
張 旭

Upgrading kubeadm clusters | Kubernetes - 0 views

  • Swap must be disabled.
  • read the release notes carefully.
  • back up any important components, such as app-level state stored in a database.
  • ...16 more annotations...
  • All containers are restarted after upgrade, because the container spec hash value is changed.
  • The upgrade procedure on control plane nodes should be executed one node at a time.
  • /etc/kubernetes/admin.conf
  • kubeadm upgrade also automatically renews the certificates that it manages on this node. To opt-out of certificate renewal the flag --certificate-renewal=false can be used.
  • Manually upgrade your CNI provider plugin.
  • sudo systemctl daemon-reload sudo systemctl restart kubelet
  • If kubeadm upgrade fails and does not roll back, for example because of an unexpected shutdown during execution, you can run kubeadm upgrade again.
  • To recover from a bad state, you can also run kubeadm upgrade apply --force without changing the version that your cluster is running.
  • kubeadm-backup-etcd contains a backup of the local etcd member data for this control plane Node.
  • the contents of this folder can be manually restored in /var/lib/etcd
  • kubeadm-backup-manifests contains a backup of the static Pod manifest files for this control plane Node.
  • the contents of this folder can be manually restored in /etc/kubernetes/manifests
  • Enforces the version skew policies.
  • Upgrades the control plane components or rollbacks if any of them fails to come up.
  • Creates new certificate and key files of the API server and backs up old files if they're about to expire in 180 days.
  • backup folders under /etc/kubernetes/tmp
張 旭

在 EKS 中实现基于 Promtail + Loki + Grafana 容器日志解决方案 - 0 views

  • Grafana大家应该都比较熟悉,它是一款开源的可视化和分析软件,它允许用户查询、可视化、警告和探索监控指标。Grafana主要提供时间序列数据的仪表板解决方案,支持超过数十种数据源(还在陆续添加支持中)
  • Grafana Loki是一组可以组成一个功能齐全的日志堆栈组件,与其它日志系统不同的是,Loki只建立日志标签的索引而不索引原始日志消息,而是为日志数据设置一组标签,这意味着Loki的运营成本更低,效率也能提高几个数量级。
  • Loki整体架构也是由不同的组件来协同完成日志收集、索引、存储等工作
  • ...5 more annotations...
  • 一句话形容下Loki就是like Prometheus, but for logs。
  • Promtail是一个日志收集的代理,它会将本地日志的内容发送到一个Loki实例,它通常部署到需要监视应用程序的每台机器/容器上。Promtail主要是用来发现目标、将标签附加到日志流以及将日志推送到Loki。
  • Loki中的日志带有一组标签名和值,其中只有标签对被索引,这种权衡使得它比完整索引的操作成本更低,但是针对基于内容的查询,需要通过LogQL再单独查询。
  • 和Fluentd相比,Promtail是专门为Loki量身定制的,它可以为运行在同一节点上的Kubernetes Pods做服务发现,从指定文件夹读取日志。
  • 亚马逊云科技也提供了Grafana和Prometheus的托管服务Amazon Managed Service for Grafana(AMG)和Amazon Managed Service for Prometheus(AMP)
張 旭

Operator pattern - Kubernetes - 1 views

  • The Operator pattern aims to capture the key aim of a human operator who is managing a service or set of services
  • Operators are software extensions to Kubernetes that make use of custom resources to manage applications and their components
  • The Operator pattern captures how you can write code to automate a task beyond what Kubernetes itself provides.
  • ...7 more annotations...
  • Operators are clients of the Kubernetes API that act as controllers for a Custom Resource.
  • choosing a leader for a distributed application without an internal member election process
  • publishing a Service to applications that don't support Kubernetes APIs to discover them
  • The core of the Operator is code to tell the API server how to make reality match the configured resources.
  • If you add a new SampleDB, the operator sets up PersistentVolumeClaims to provide durable database storage, a StatefulSet to run SampleDB and a Job to handle initial configuration.If you delete it, the Operator takes a snapshot, then makes sure that the StatefulSet and Volumes are also removed.
  • to deploy an Operator is to add the Custom Resource Definition and its associated Controller to your cluster.
  • Once you have an Operator deployed, you'd use it by adding, modifying or deleting the kind of resource that the Operator uses.
張 旭

第 05 章 - 計算機概論 - 主機系統與 I/O 界面 - 0 views

  • 接受使用者輸入指令與資料,經由中央處理器的數學與邏輯單元運算處理後,以產生或儲存成有用的資訊
  • CPU 為一個具有特定功能的晶片, 裡頭含有微指令集,如果你想要讓主機進行什麼特異的功能,就得要參考這顆 CPU 是否有相關內建的微指令集才可以。
  • CPU 讀取的資料都是從主記憶體來的! 主記憶體內的資料則是從輸入單元所傳輸進來!而 CPU 處理完畢的資料也必須要先寫回主記憶體中,最後資料才從主記憶體傳輸到輸出單元。
  • ...49 more annotations...
  • 算數邏輯單元與控制單元。其中算數邏輯單元主要負責程式運算與邏輯判斷,控制單元則主要在協調各周邊元件與各單元間的工作。
  • 資料會先寫入到主記憶體,然後 CPU 才能開始應用
  • CPU 其實內部已經含有一些微指令,我們所使用的軟體都要經過 CPU 內部的微指令集來達成才行。
  • 世界上常見到的兩種主要 CPU 架構, 分別是:精簡指令集 (RISC) 與複雜指令集 (CISC) 系統。
  • 微指令集較為精簡,每個指令的執行時間都很短,完成的動作也很單純,指令的執行效能較佳; 但是若要做複雜的事情,就要由多個指令來完成。
  • CISC在微指令集的每個小指令可以執行一些較低階的硬體操作,指令數目多而且複雜, 每條指令的長度並不相同。因為指令執行較為複雜所以每條指令花費的時間較長, 但每條個別指令可以處理的工作較為豐富。
  • 最早的那顆Intel發展出來的CPU代號稱為8086
  • AMD依此架構修改新一代的CPU為64位元
  • CPU 位元指的是CPU一次資料讀取的最大量!64位元CPU代表CPU一次可以讀寫64bits這麼多的資料
  • 因為CPU讀取資料量有限制,因此能夠從記憶體中讀寫的資料也就有所限制
  • :(1)北橋:負責連結速度較快的CPU、主記憶體與顯示卡界面等元件;
  • (2)南橋:負責連接速度較慢的裝置介面, 包括硬碟、USB、網路卡等等。不過由於北橋最重要的就是 CPU 與主記憶體之間的橋接,因此目前的主流架構中, 大多將北橋記憶體控制器整合到 CPU 封裝當中
  • CPU 與可接受的晶片組是有搭配性的,尤其目前每種 CPU 的腳位都不一樣
  • 時脈越高,代表單位時間內可進行的工作越多
  • 大概都只看總頻寬或基準時脈
  • CPU 時脈越高的情況下,會產生很多諸如散熱、設計及與週邊元件溝通的問題。
  • 其他的程序還在等待 CPU ,但是 CPU 又在等待 I/O
  • Intel 在同一個運算核心底下安裝兩個暫存器來模擬出另一個核心,實際上是兩個暫存器 (可以想成是程式的執行器) 共用一個實體核心。 這就是超執行緒的簡易認知
  • 時脈的意思是每秒鐘能夠進行的工作次數,而每次工作能夠讀進的資料量就是位元數
  • 每個用戶端大多是短時間的大運算,所以通常不會有一隻程序一直佔用著系統資源。
  • CPU 的所有資料都是從記憶體讀寫來的,所以記憶體的容量與頻寬就相當的重要了
  • DRAM 根據技術的更新又分好幾代,而使用上較廣泛的有所謂的 SDRAM 與 DDR SDRAM 兩種。 這兩種記憶體的差別除了在於腳位與工作電壓上的不同之外,DDR 是所謂的雙倍資料傳送速度 (Double Data Rate)
  • 晶片組廠商就將兩個主記憶體彙整在一起,如果一支記憶體可達 64 位元,兩支記憶體就可以達到 128 位元了,這就是雙通道的設計理念。 在某些比較多核心的伺服器主機上面,甚至還使用了 3 通道到 4 通道的設計
  • CPU 內部的暫存器與少量記憶體被稱為第一、第二層快取 (L1, L2 cache),而放在核心間的快取記憶體就被稱為第三層快取記憶體 (L3 cache)
  • CPU 的暫存器是直接設計在 CPU 核心內部,可以用來幫助 CPU 的運算。
  • 在多核心 CPU 的核心之間,會有另一個共享的快取記憶體存在,讓所有的 CPU 核心可以共享某些資源。
  • 靜態隨機存取記憶體 (Static Random Access Memory, SRAM)
  • 各項參數, 是被記錄到主機板上頭的一個稱為 CMOS 的晶片上,這個晶片需要藉著額外的電源來發揮記錄功能, 這也是為什麼你的主機板上面會有一顆電池的緣故。
  • BIOS(Basic Input Output System)是一套程式,這套程式是寫死到主機板上面的一個記憶體晶片中, 這個記憶體晶片在沒有通電時也能夠將資料記錄下來,那就是唯讀記憶體(Read Only Memory, ROM)。
  • BIOS對於個人電腦來說是非常重要的, 因為他是系統在開機的時候首先會去讀取的一個小程式喔
  • 韌體(firmware)很多也是使用ROM來進行軟體的寫入的。 韌體像軟體一樣也是一個被電腦所執行的程式,然而他是對於硬體內部而言更加重要的部分。例如BIOS就是一個韌體, BIOS雖然對於我們日常操作電腦系統沒有什麼太大的關係,但是他卻控制著開機時各項硬體參數的取得!
  • 現在的 BIOS 通常是寫入類似快閃記憶體 (flash) 或 EEPROM
  • 顯示卡能夠傳輸的資料量當然也是越大越好!這時就得要考慮到傳輸的界面了!當前 (2018) 主流的傳輸界面為 PCI-E,這個 PCI-E 又有三種版本, version 1, 2, 3 ,這三個版本的速度並不相同
  • PCI-E (PCI-Express) 使用的是類似管線的概念來處理,在 PCI-E 第一版中,每條管線可以具有 250MBytes/s 的頻寬效能,管線越多(通常設計到 x16 管線)則總頻寬越高
  • 通常 CPU 製造商會根據 CPU 來設計搭配的南橋晶片,由於現在只有一個晶片 (北橋整合到 CPU 內了),所以目前只有一顆主機板晶片組。
  • 插槽上面的資料要傳輸到 CPU 就得要經過晶片組,然後透過 DMI 通道傳上去!所以,在某些情況下,系統的效能會被卡住在這條通道上喔!
  • 晶片組接的設備相當多喔!有 PCI-E 插槽、USB設備、網路設備、音效設備、硬碟設備等,這全部的裝置共用那一條 DMI 喔! 所以,整個系統效能的瓶頸通常不在 CPU 啦!通常就是在南橋接的設備上面!所以,當你有非常複雜的程式要運作的時候,讓這些程式越少通過南橋, 他的系統效能就會比較好一點
  • 物理組成
  • 讀寫主要是透過在機械手臂上的讀取頭(head)來達成
  • 由於磁碟盤是圓的,並且透過機器手臂去讀寫資料,磁碟盤要轉動才能夠讓機器手臂讀寫。
  • 磁碟的最小物理儲存單位,稱之為磁區 (sector),那同一個同心圓的磁區組合成的圓就是所謂的磁軌(track)。 由於磁碟裡面可能會有多個磁碟盤,因此在所有磁碟盤上面的同一個磁軌可以組合成所謂的磁柱 (cylinder)。
  • 通常資料的讀寫會由外圈開始往內寫
  • 目前主流的硬碟連接界面就是 SATA
  • 雖然 SATA III 界面理論傳輸可到達 600Mbytes/s,不過傳統硬碟由於物理設計的限制因素,通常存取速度效能大多在 150~200Mbytes/s 之間
  • 串列式 SCSI (Serial Attached SCSI, SAS)
  • 傳統硬碟有個很致命的問題,就是需要驅動馬達去轉動磁碟盤~這會造成很嚴重的磁碟讀取延遲
  • 快閃記憶體去製作成高容量的設備
  • 沒有讀寫頭與磁碟盤啊!都是記憶體!
  • 各個繪圖卡的運算晶片 (GPU) 設計的理念不同,加上驅動程式與軟體搭配的問題,並不是一張高效能繪圖卡就可以完勝其他的繪圖卡, 還得要注意相關的軟體才行。
張 旭

第 06 章 - 計算機概論 - 作業系統概論 - 0 views

  • 自行參考電腦硬體來設計出運算的軟體,當時的系統並沒有『作業系統』的概念,因為應用程式與作業系統是同時設計的。
  • 電腦裡面有儲存設備 (不論是硬碟還是記憶體), 所以電腦硬體裡面會執行一隻監督程式 (monitor),使用者可以預先將自己的程式讀進系統,系統先儲存該程式到佇列 (queue),等到輪到該程式運作後, 就將該程式讀入讓 CPU 開始運作,直到運作結束輸出到印表機之後,將該工作丟棄,然後開始讀入在 queue 裡面的新的程式,依序執行。
  • 將 CPU 與 I/O 分離開
  • ...38 more annotations...
  • 透過卡片與讀卡機,將程式碼一次性的讀進大機器,然後就是等待大機器的運作, 結果再交由印表機印出。如果打卡紙打洞錯誤呢?只好重新打洞,重新排隊去運作程式了。
  • 允許兩個以上的程序在記憶體中等待被 CPU 執行,當 CPU 執行完其中一隻程式後, 第二隻程式就可以立刻被執行,因此效能會比較好。
  • 程序的狀態進入中斷狀態,CPU 不會理會該程序
  • CPU 的排程 (cpu scheduling)
  • 早期單核 CPU 的運作中,CPU 一次只能運作一個工作,因此,若有多個工作要同時進行, 那麼 CPU 就得要安排一個 CPU 運作時間給所有的工作,當該程序達到最大工作時間後,CPU 就會將該工作排回佇列,讓下一隻程序接著運作。
  • 你會覺得 CPU 是同時運作所有的程序,其實不是的!而是 CPU 在各個程序之間切換工作而已。
  • 分時系統其實與多元程式處理系統有點類似, 只是工作的輸入改為透過終端機操作輸入,CPU 可以在各個用戶操作間切換工作,於是每個使用者感覺似乎都是在同步操作電腦系統一般, 這就是分時系統。
  • 早期的程式設計師要設計程式是件苦差事,因為得要了解電腦硬體,並根據該電腦硬體來選擇程式語言,然後根據程式語言來設計運算工作、記憶體讀寫工作、 磁碟與影像輸入輸出工作、檔案存取工作等。等於從硬體、軟體、輸入輸出行為都得要在自己的程式碼裡面一口氣完成才行。
  • 在 1971 年開始的 unix 系統開發後,後續的系統大多使用 unix 的概念
  • 將硬體管理的工作統一交給一組程式碼去進行,而且這組程式碼還提供了一個開發界面
  • 軟體工程師只要依據這組程式碼規範的開發界面後,該軟體開發完成就能夠在這組程式碼上面運作了
  • 程式的執行
  • 作業系統需要將使用者交付的軟體程序分配到記憶體中, 然後透過 CPU 排程持續的交錯的完成各項任務才行。
  • CPU 中斷 (interrupt) 的功能
  • CPU 根據硬體擁有許多與週邊硬體的中斷通道, 當接收到中斷訊號時,CPU 就會嘗試將該程序列入等待的狀態下,讓該硬體自行完成相關的任務後,然後再接管系統。
  • 記憶體管理模組
  • 舊的環境底下,程式設計師需要自己判斷自己的程式會用到多少記憶體,然後自行指定記憶體使用位址的任務。
  • 系統會自動去偵測與管理主記憶體的使用狀態,避免同一個記憶體位址同時被兩個程序所使用而讓程序工作損毀
  • 作業系統核心也在記憶體中, 因此核心也會被這個子系統放入受保護的記憶體區段,一般用戶是無法直接操作該受保護的記憶區段的。
  • 虛擬記憶體 (virtual memory)
  • 主記憶體當中的資料並不是連續的,主記憶體的資料就像磁碟一樣,重複讀、刪、寫之後, 記憶區段是不會連續的
  • CPU 主要讀出虛擬記憶體,記憶體管理模組就會主動讀出資料
  • 一隻程序的資料是連續的 (左側),但是實際上對應的是在主記憶體或其他位置上
  • CPU 排程
  • 作業系統好不好的重要指標之一!如何讓 CPU 在多工的情況下以最快速的方式將所有的工作完成,這方面的演算法是目前各主要作業系統持續在進步的部份。
  • 磁碟存取與檔案系統
  • 作業系統則需要驅動磁碟(不論是傳統硬碟還是 SSD),然後也需要了解該磁碟內的檔案系統格式, 之後透過檔案系統這個子系統來進行資料的處理。
  • 裝置的驅動程式
  • 作業系統必須要能夠接受硬體裝置的驅動,所以硬體製造商可以推出給各個不同作業系統使用的驅動程式 (dirver / modules), 這樣作業系統直接將該驅動程式載入後,即可開始使用該硬體,而不需要重新編譯作業系統。
  • 網路子系統
  • 使用者界面
  • 現代 CPU 設計的主要思考依據,讓一個 CPU 封裝 (單一一顆 CPU 硬體) 裡面,整合多個 CPU 核心,也就是多核心 CPU 製造的思考方向。
  • 對於單執行緒的程式來說, 多核心的 CPU 不見得會跑得比單核的快!這是因為單執行緒只有一個程序在進行,所以 CPU 時脈越高,代表會越快執行完畢。
  • 軟體會將單一工作拆分成數個小工作,分別交給不同的核心去執行,這樣每個核心只要負責一小段任務, 當然 CPU 時脈不用高,只要數量夠大,效能就會提昇很明顯
  • 由於 CPU 是由作業系統控制的,因此,你要使用到多核心的硬體系統,你的作業系統、應用程式都需要設計程可以支援多核心才行!
  • 所謂的平行處理功能,讓一件工作可以拆分成數個部份,讓這些不同的部份丟給不同的 CPU 去運算, 然後再透過一支監控程式,將各別的計算在一定的時間內收回統整後,再次的細分小工作發派出去,持續這些動作後,直到程式執行完畢為止。
  • 對於 Linux 來說,大部分都可以支援到 4096 個 CPU 核心數。
  • 銀行商用大型主機 Unix 系統
張 旭

作業系統 - 維基百科,自由的百科全書 - 0 views

  • 作業系統位於底層硬體與使用者之間,是兩者溝通的橋樑。
  • 行程管理(Processing management)
  • 安全機制(Security)
  • ...20 more annotations...
  • 記憶體管理(Memory management)
  • 核心 - 作業系統之最核心部分,通常執行在最高特權級,負責提供基礎性、結構性的功能。
  • 驅動程式 - 最底層的、直接控制和監視各類硬體的部分,它們的職責是隱藏硬體的具體細節,並向其他部分提供一個抽象的、通用的介面。
  • 作業系統的分類沒有一個單一的標準,可以根據工作方式分為批次處理作業系統、分時作業系統、即時作業系統、網路作業系統和分散式作業系統等
  • 根據帕金森定律:「你給程式再多記憶體,程式也會想盡辦法耗光」
  • 大部分的現代電腦記憶體架構都是階層式的,最快且數量最少的暫存器為首,然後是快取、記憶體以及最慢的磁碟儲存裝置。
  • 虛擬記憶體管理的功能大幅增加每個行程可獲得的記憶空間
  • 當年運用馮·諾伊曼結構建造電腦時,每個中央處理器最多只能同時執行一個行程。
  • 現代的作業系統,即使只擁有一個CPU,也可以利用多行程(multitask)功能同時執行多個行程。行程管理指的是作業系統調整多個行程的功能。
  • 作業系統尚有擔負起行程間通訊(IPC)、行程異常終止處理以及死結(Dead Lock)偵測及處理等較為艱深的問題。
  • 檔案系統,通常指稱管理磁碟資料的系統,可將資料以目錄或檔案的型式儲存。每個檔案系統都有自己的特殊格式與功能,例如日誌管理或不需磁碟重整。
  • 現代的作業系統都具備操作主流網路通訊協定TCP/IP的能力。也就是說這樣的作業系統可以進入網路世界,並且與其他系統分享諸如檔案、印表機與掃描器等資源。
  • 作業系統提供外界直接或間接存取數種資源的管道
  • 作業系統有能力認證資源存取的請求
  • 通常是一個正在執行的程式發出的資源請求。在某些系統上,一個程式一旦可執行就可做任何事情(例如DOS時代的病毒),但通常作業系統會給程式一個識別代號,並且在此程式發出請求時,檢查其代號與所需資源的存取權限關係。
  • 一個高安全等級的系統也會提供記錄選項,允許記錄各種請求對資源存取的行為(例如「誰曾經讀了這個檔案?」)
  • 大部分的作業系統都包含圖形化使用者介面(GUI)。有幾類較舊的作業系統將圖形化使用者介面與核心緊密結合,例如最早的Windows與Mac OS實作產品。
  • 驅動程式(Device driver)是指某類設計來與硬體互動的電腦軟體。通常是一設計完善的裝置互動介面,利用與此硬體連接的電腦匯排流或通訊子系統,提供對此裝置下令與接收資訊的功能;以及最終目的,將訊息提供給作業系統或應用程式。
  • 驅動程式是針對特定硬體與特定作業系統設計的軟體,通常以作業系統核心模組、應用軟體包或普通電腦程式的形式在作業系統核心底下執行,以達到通透順暢地與硬體互動的效果
  • 適合的驅動程式一旦安裝,相對應的新裝置就可以無誤地執行。此新驅動程式可以讓此裝置完美地切合在作業系統中,讓使用者察覺不到這是作業系統原本沒有的功能。
  •  
    "作業系統位於底層硬體與使用者之間,是兩者溝通的橋樑。"
張 旭

鳥哥的 Linux 私房菜 -- 第二章、主機規劃與磁碟分割 - 0 views

  • BIOS會依據使用者的設定去取得能夠開機的硬碟, 並且到該硬碟裡面去讀取第一個磁區的MBR位置。 MBR這個僅有446 bytes的硬碟容量裡面會放置最基本的開機管理程式, 此時BIOS就功成圓滿,而接下來就是MBR內的開機管理程式的工作了。
  • 開機管理程式的目的是在載入(load)核心檔案, 由於開機管理程式是作業系統在安裝的時候所提供的,所以他會認識硬碟內的檔案系統格式,因此就能夠讀取核心檔案, 然後接下來就是核心檔案的工作,開機管理程式與 BIOS 也功成圓滿
  • 開機管理程式除了可以安裝在MBR之外, 還可以安裝在每個分割槽的開機磁區(boot sector)
  •  
    "BIOS會依據使用者的設定去取得能夠開機的硬碟, 並且到該硬碟裡面去讀取第一個磁區的MBR位置。 MBR這個僅有446 bytes的硬碟容量裡面會放置最基本的開機管理程式, 此時BIOS就功成圓滿,而接下來就是MBR內的開機管理程式的工作了。"
張 旭

kubernetes 简介:service 和 kube-proxy 原理 | Cizixs Write Here - 0 views

  • kubernetes 对网络的要求是:容器之间(包括同一台主机上的容器,和不同主机的容器)可以互相通信,容器和集群中所有的节点也能直接通信。
  • 跨主机网络配置:flannel
  • flannel 也能够通过 CNI 插件的形式使用。
  • ...8 more annotations...
  • 从集群中获取每个 pod ip 地址,然后也能在集群内部直接通过 podIP:Port 来获取对应的服务。
  • pod 是经常变化的,每次更新 ip 地址都可能会发生变化,如果直接访问容器 ip 的话,会有很大的问题。
  • “服务”(service),每个服务都一个固定的虚拟 ip(这个 ip 也被称为 cluster IP),自动并且动态地绑定后面的 pod,所有的网络请求直接访问服务 ip,服务会自动向后端做转发。
  • 实现 service 这一功能的关键,就是 kube-proxy。
  • kube-proxy 运行在每个节点上,监听 API Server 中服务对象的变化,通过管理 iptables 来实现网络的转发。
  • kube-proxy 要求 NODE 节点操作系统中要具备 /sys/module/br_netfilter 文件,而且还要设置 bridge-nf-call-iptables=1
  • iptables 完全实现 iptables 来实现 service,是目前默认的方式,也是推荐的方式,效率很高(只有内核中 netfilter 一些损耗)。
  • 可以在终端上启动 kube-proxy,也可以使用诸如 systemd 这样的工具来管理它
張 旭

从字节跳动到火山引擎(二):私有云 PaaS 场景下的 Kubernetes 集群部署实践 - InfoQ 写作平台 - 0 views

  • 在集群部署时,etcd、Kubelet、Containerd 等服务以二进制的方式运行,其他 Kubernetes 组件都以容器的方式运行。
  •  
    "Static Pod 的形式运行一个 Nginx 服务,用于监听本地 localhost:6443 端口。Nginx 服务使用反向代理的方式,在 upstream 中填写所有 Master 节点 IP 和 6443 端口。这时 node 上的 Kubelet 服务在请求 API Server 时,其实请求的是本地的 6443 端口。再通过 Nginx 把流量/请求转发到 Master 节点上,即实现了 Node 节点的请求。这样就可以避免上述 load balancer 单点的问题。"
張 旭

Monitor Node Health | Kubernetes - 0 views

  • Node Problem Detector is a daemon for monitoring and reporting about a node's health
  • Node Problem Detector collects information about node problems from various daemons and reports these conditions to the API server as NodeCondition and Event.
  • Node Problem Detector only supports file based kernel log. Log tools such as journald are not supported.
  • ...2 more annotations...
  • kubectl provides the most flexible management of Node Problem Detector.
  • run the Node Problem Detector in your cluster to monitor node health.
張 旭

Speeding up Docker image build process of a Rails application | BigBinary Blog - 1 views

  • we do not want to execute bundle install and rake assets:precompile tasks while starting a container in each pod which would prevent that pod from accepting any requests until these tasks are finished.
  • run bundle install and rake assets:precompile tasks while or before containerizing the Rails application.
  • Kubernetes pulls the image, starts a Docker container using that image inside the pod and runs puma server immediately.
  • ...7 more annotations...
  • Since source code changes often, the previously cached layer for the ADD instruction is invalidated due to the mismatching checksums.
  • The ARG instruction in the Dockerfile defines RAILS_ENV variable and is implicitly used as an environment variable by the rest of the instructions defined just after that ARG instruction.
  • RUN instructions are used to install gems and precompile static assets using sprockets
  • Instead, Docker automatically re-uses the previously built layer for the RUN bundle install instruction if the Gemfile.lock file remains unchanged.
  • everyday we need to build a lot of Docker images containing source code from varying Git branches as well as with varying environments.
  • it is hard for Docker to cache layers for bundle install and rake assets:precompile tasks and re-use those layers during every docker build command run with different application source code and a different environment.
  • By default, Bundler installs gems at the location which is set by Rubygems.
  •  
    "we do not want to execute bundle install and rake assets:precompile tasks while starting a container in each pod which would prevent that pod from accepting any requests until these tasks are finished."
張 旭

Logstash Alternatives: Pros & Cons of 5 Log Shippers [2019] - Sematext - 0 views

  • In this case, Elasticsearch. And because Elasticsearch can be down or struggling, or the network can be down, the shipper would ideally be able to buffer and retry
  • Logstash is typically used for collecting, parsing, and storing logs for future use as part of log management.
  • Logstash’s biggest con or “Achille’s heel” has always been performance and resource consumption (the default heap size is 1GB).
  • ...37 more annotations...
  • This can be a problem for high traffic deployments, when Logstash servers would need to be comparable with the Elasticsearch ones.
  • Filebeat was made to be that lightweight log shipper that pushes to Logstash or Elasticsearch.
  • differences between Logstash and Filebeat are that Logstash has more functionality, while Filebeat takes less resources.
  • Filebeat is just a tiny binary with no dependencies.
  • For example, how aggressive it should be in searching for new files to tail and when to close file handles when a file didn’t get changes for a while.
  • For example, the apache module will point Filebeat to default access.log and error.log paths
  • Filebeat’s scope is very limited,
  • Initially it could only send logs to Logstash and Elasticsearch, but now it can send to Kafka and Redis, and in 5.x it also gains filtering capabilities.
  • Filebeat can parse JSON
  • you can push directly from Filebeat to Elasticsearch, and have Elasticsearch do both parsing and storing.
  • You shouldn’t need a buffer when tailing files because, just as Logstash, Filebeat remembers where it left off
  • For larger deployments, you’d typically use Kafka as a queue instead, because Filebeat can talk to Kafka as well
  • The default syslog daemon on most Linux distros, rsyslog can do so much more than just picking logs from the syslog socket and writing to /var/log/messages.
  • It can tail files, parse them, buffer (on disk and in memory) and ship to a number of destinations, including Elasticsearch.
  • rsyslog is the fastest shipper
  • Its grammar-based parsing module (mmnormalize) works at constant speed no matter the number of rules (we tested this claim).
  • use it as a simple router/shipper, any decent machine will be limited by network bandwidth
  • It’s also one of the lightest parsers you can find, depending on the configured memory buffers.
  • rsyslog requires more work to get the configuration right
  • the main difference between Logstash and rsyslog is that Logstash is easier to use while rsyslog lighter.
  • rsyslog fits well in scenarios where you either need something very light yet capable (an appliance, a small VM, collecting syslog from within a Docker container).
  • rsyslog also works well when you need that ultimate performance.
  • syslog-ng as an alternative to rsyslog (though historically it was actually the other way around).
  • a modular syslog daemon, that can do much more than just syslog
  • Unlike rsyslog, it features a clear, consistent configuration format and has nice documentation.
  • Similarly to rsyslog, you’d probably want to deploy syslog-ng on boxes where resources are tight, yet you do want to perform potentially complex processing.
  • syslog-ng has an easier, more polished feel than rsyslog, but likely not that ultimate performance
  • Fluentd was built on the idea of logging in JSON wherever possible (which is a practice we totally agree with) so that log shippers down the line don’t have to guess which substring is which field of which type.
  • Fluentd plugins are in Ruby and very easy to write.
  • structured data through Fluentd, it’s not made to have the flexibility of other shippers on this list (Filebeat excluded).
  • Fluent Bit, which is to Fluentd similar to how Filebeat is for Logstash.
  • Fluentd is a good fit when you have diverse or exotic sources and destinations for your logs, because of the number of plugins.
  • Splunk isn’t a log shipper, it’s a commercial logging solution
  • Graylog is another complete logging solution, an open-source alternative to Splunk.
  • everything goes through graylog-server, from authentication to queries.
  • Graylog is nice because you have a complete logging solution, but it’s going to be harder to customize than an ELK stack.
  • it depends
張 旭

Helm | - 0 views

  • Templates generate manifest files, which are YAML-formatted resource descriptions that Kubernetes can understand.
  • service.yaml: A basic manifest for creating a service endpoint for your deployment
  • In Kubernetes, a ConfigMap is simply a container for storing configuration data.
  • ...88 more annotations...
  • deployment.yaml: A basic manifest for creating a Kubernetes deployment
  • using the suffix .yaml for YAML files and .tpl for helpers.
  • It is just fine to put a plain YAML file like this in the templates/ directory.
  • helm get manifest
  • The helm get manifest command takes a release name (full-coral) and prints out all of the Kubernetes resources that were uploaded to the server. Each file begins with --- to indicate the start of a YAML document
  • Names should be unique to a release
  • The name: field is limited to 63 characters because of limitations to the DNS system.
  • release names are limited to 53 characters
  • {{ .Release.Name }}
  • A template directive is enclosed in {{ and }} blocks.
  • The values that are passed into a template can be thought of as namespaced objects, where a dot (.) separates each namespaced element.
  • The leading dot before Release indicates that we start with the top-most namespace for this scope
  • The Release object is one of the built-in objects for Helm
  • When you want to test the template rendering, but not actually install anything, you can use helm install ./mychart --debug --dry-run
  • Using --dry-run will make it easier to test your code, but it won’t ensure that Kubernetes itself will accept the templates you generate.
  • Objects are passed into a template from the template engine.
  • create new objects within your templates
  • Objects can be simple, and have just one value. Or they can contain other objects or functions.
  • Release is one of the top-level objects that you can access in your templates.
  • Release.Namespace: The namespace to be released into (if the manifest doesn’t override)
  • Values: Values passed into the template from the values.yaml file and from user-supplied files. By default, Values is empty.
  • Chart: The contents of the Chart.yaml file.
  • Files: This provides access to all non-special files in a chart.
  • Files.Get is a function for getting a file by name
  • Files.GetBytes is a function for getting the contents of a file as an array of bytes instead of as a string. This is useful for things like images.
  • Template: Contains information about the current template that is being executed
  • BasePath: The namespaced path to the templates directory of the current chart
  • The built-in values always begin with a capital letter.
  • Go’s naming convention
  • use only initial lower case letters in order to distinguish local names from those built-in.
  • If this is a subchart, the values.yaml file of a parent chart
  • Individual parameters passed with --set
  • values.yaml is the default, which can be overridden by a parent chart’s values.yaml, which can in turn be overridden by a user-supplied values file, which can in turn be overridden by --set parameters.
  • While structuring data this way is possible, the recommendation is that you keep your values trees shallow, favoring flatness.
  • If you need to delete a key from the default values, you may override the value of the key to be null, in which case Helm will remove the key from the overridden values merge.
  • Kubernetes would then fail because you can not declare more than one livenessProbe handler.
  • When injecting strings from the .Values object into the template, we ought to quote these strings.
  • quote
  • Template functions follow the syntax functionName arg1 arg2...
  • While we talk about the “Helm template language” as if it is Helm-specific, it is actually a combination of the Go template language, some extra functions, and a variety of wrappers to expose certain objects to the templates.
  • Drawing on a concept from UNIX, pipelines are a tool for chaining together a series of template commands to compactly express a series of transformations.
  • pipelines are an efficient way of getting several things done in sequence
  • The repeat function will echo the given string the given number of times
  • default DEFAULT_VALUE GIVEN_VALUE. This function allows you to specify a default value inside of the template, in case the value is omitted.
  • all static default values should live in the values.yaml, and should not be repeated using the default command
  • Operators are implemented as functions that return a boolean value.
  • To use eq, ne, lt, gt, and, or, not etcetera place the operator at the front of the statement followed by its parameters just as you would a function.
  • if and
  • if or
  • with to specify a scope
  • range, which provides a “for each”-style loop
  • block declares a special kind of fillable template area
  • A pipeline is evaluated as false if the value is: a boolean false a numeric zero an empty string a nil (empty or null) an empty collection (map, slice, tuple, dict, array)
  • incorrect YAML because of the whitespacing
  • When the template engine runs, it removes the contents inside of {{ and }}, but it leaves the remaining whitespace exactly as is.
  • {{- (with the dash and space added) indicates that whitespace should be chomped left, while -}} means whitespace to the right should be consumed.
  • Newlines are whitespace!
  • an * at the end of the line indicates a newline character that would be removed
  • Be careful with the chomping modifiers.
  • the indent function
  • Scopes can be changed. with can allow you to set the current scope (.) to a particular object.
  • Inside of the restricted scope, you will not be able to access the other objects from the parent scope.
  • range
  • The range function will “range over” (iterate through) the pizzaToppings list.
  • Just like with sets the scope of ., so does a range operator.
  • The toppings: |- line is declaring a multi-line string.
  • not a YAML list. It’s a big string.
  • the data in ConfigMaps data is composed of key/value pairs, where both the key and the value are simple strings.
  • The |- marker in YAML takes a multi-line string.
  • range can be used to iterate over collections that have a key and a value (like a map or dict).
  • In Helm templates, a variable is a named reference to another object. It follows the form $name
  • Variables are assigned with a special assignment operator: :=
  • {{- $relname := .Release.Name -}}
  • capture both the index and the value
  • the integer index (starting from zero) to $index and the value to $topping
  • For data structures that have both a key and a value, we can use range to get both
  • Variables are normally not “global”. They are scoped to the block in which they are declared.
  • one variable that is always global - $ - this variable will always point to the root context.
  • $.
  • $.
  • Helm template language is its ability to declare multiple templates and use them together.
  • A named template (sometimes called a partial or a subtemplate) is simply a template defined inside of a file, and given a name.
  • when naming templates: template names are global.
  • If you declare two templates with the same name, whichever one is loaded last will be the one used.
  • you should be careful to name your templates with chart-specific names.
  • templates in subcharts are compiled together with top-level templates
  • naming convention is to prefix each defined template with the name of the chart: {{ define "mychart.labels" }}
  • Helm has over 60 available functions.
張 旭

Connection and Privileges Needed - 0 views

  • Percona XtraBackup needs to be able to connect to the database server and perform operations on the server and the datadir when creating a backup, when preparing in some scenarios and when restoring it.
  • When xtrabackup is used, there are two actors involved: the user invoking the program - a system user - and the user performing action in the database server - a database user.
  • these are different users in different places, even though they may have the same username.
  • ...1 more annotation...
  • Once connected to the server, in order to perform a backup you will need READ and EXECUTE permissions at a filesystem level in the server’s datadir.
  •  
    "Percona XtraBackup needs to be able to connect to the database server and perform operations on the server and the datadir when creating a backup, when preparing in some scenarios and when restoring it. "
張 旭

Memory inside Linux containers | Fabio Kung - 0 views

  • /sys/fs/cgroup/ is the recommended location for cgroup hierarchies, but it is not a standard.
  • most container specific metrics are available at the cgroup filesystem via /path/to/cgroup/memory.stat, /path/to/cgroup/memory.usage_in_bytes, /path/to/cgroup/memory.limit_in_bytes and others.
  • cat /sys/fs/cgroup/memory/memory.stat
  • ...3 more annotations...
  • /sys/fs/cgroup is just an umbrella for all cgroup hierarchies, there is no recommendation or standard for my own cgroup location.
  • an userspace library that processes can use to query their memory usage and available memory.
  • we might need to encourage people to stop using those tools inside containers.
張 旭

Incremental Backup - 0 views

  • xtrabackup supports incremental backups, which means that they can copy only the data that has changed since the last backup.
  • You can perform many incremental backups between each full backup, so you can set up a backup process such as a full backup once a week and an incremental backup every day, or full backups every day and incremental backups every hour.
  • each InnoDB page contains a log sequence number, or LSN. The LSN is the system version number for the entire database. Each page’s LSN shows how recently it was changed.
  • ...18 more annotations...
  • In full backups, two types of operations are performed to make the database consistent: committed transactions are replayed from the log file against the data files, and uncommitted transactions are rolled back.
  • You should use the --apply-log-only option to prevent the rollback phase.
  • An incremental backup copies each page whose LSN is newer than the previous incremental or full backup’s LSN.
  • Incremental backups do not actually compare the data files to the previous backup’s data files.
  • you can use --incremental-lsn to perform an incremental backup without even having the previous backup, if you know its LSN
  • Incremental backups simply read the pages and compare their LSN to the last backup’s LSN.
  • without a full backup to act as a base, the incremental backups are useless.
  • The xtrabackup binary writes a file called xtrabackup_checkpoints into the backup’s target directory. This file contains a line showing the to_lsn, which is the database’s LSN at the end of the backup.
  • from_lsn is the starting LSN of the backup and for incremental it has to be the same as to_lsn (if it is the last checkpoint) of the previous/base backup.
  • If you do not use the --apply-log-only option to prevent the rollback phase, then your incremental backups will be useless.
  • run --prepare as usual, but prevent the rollback phase
  • If you restore it and start MySQL, InnoDB will detect that the rollback phase was not performed, and it will do that in the background, as it usually does for a crash recovery upon start.
  • xtrabackup --prepare --apply-log-only --target-dir=/data/backups/base \ --incremental-dir=/data/backups/inc1
  • The final data is in /data/backups/base, not in the incremental directory.
  • Do not run xtrabackup --prepare with the same incremental backup directory (the value of –incremental-dir) more than once.
  • xtrabackup --prepare --target-dir=/data/backups/base \ --incremental-dir=/data/backups/inc2
  • --apply-log-only should be used when merging all incrementals except the last one.
  • Even if the --apply-log-only was used on the last step, backup would still be consistent but in that case server would perform the rollback phase.
« First ‹ Previous 221 - 240 of 257 Next ›
Showing 20 items per page