Skip to main content

Home/ Larvata/ Group items tagged in-memory

Rss Feed Group items tagged

張 旭

http - nginx upload client_max_body_size issue - Stack Overflow - 0 views

  • nginx "fails fast" when the client informs it that it's going to send a body larger than the client_max_body_size by sending a 413 response and closing the connection.
  • Because nginx closes the connection, the client sends data to the closed socket, causing a TCP RST.
  • Most clients don't read responses until the entire request body is sent.
  • ...2 more annotations...
  • Client body and buffers are key because nginx must buffer incoming data.
  • The clean setting frees up memory and consumption limits by instructing nginx to store incoming buffer in a file and then clean this file later from disk by deleting it.
張 旭

Sorting for Humans : Natural Sort Order - 0 views

  • It's a completely nonsensical ordering to anyone who doesn't have the ASCII chart committed to memory (and by the way, uppercase A is decimal 65).
  • it's hard to find information on natural sorting
  • Implementing a natural sort is more complex than it seems
  • ...3 more annotations...
  • a basic natural sort shouldn't require the 40+ lines of code it takes in most languages.
  • ASCIIbetical does not equal alphabetical
  • a more human-friendly natural sort option should be built into mainstream programming languages
張 旭

The Twelve-Factor App - 0 views

  • PHP processes run as child processes of Apache, started on demand as needed by request volume.
  • Java processes take the opposite approach, with the JVM providing one massive uberprocess that reserves a large block of system resources (CPU and memory) on startup, with concurrency managed internally via threads
  • Processes in the twelve-factor app take strong cues from the unix process model for running service daemons.
  • ...3 more annotations...
  • application must also be able to span multiple processes running on multiple physical machines.
  • The array of process types and number of processes of each type is known as the process formation.
  • Twelve-factor app processes should never daemonize or write PID files.
張 旭

Production environment | Kubernetes - 0 views

  • to promote an existing cluster for production use
  • Separating the control plane from the worker nodes.
  • Having enough worker nodes available
  • ...22 more annotations...
  • You can use role-based access control (RBAC) and other security mechanisms to make sure that users and workloads can get access to the resources they need, while keeping workloads, and the cluster itself, secure. You can set limits on the resources that users and workloads can access by managing policies and container resources.
  • you need to plan how to scale to relieve increased pressure from more requests to the control plane and worker nodes or scale down to reduce unused resources.
  • Managed control plane: Let the provider manage the scale and availability of the cluster's control plane, as well as handle patches and upgrades.
  • The simplest Kubernetes cluster has the entire control plane and worker node services running on the same machine.
  • You can deploy a control plane using tools such as kubeadm, kops, and kubespray.
  • Secure communications between control plane services are implemented using certificates.
  • Certificates are automatically generated during deployment or you can generate them using your own certificate authority.
  • Separate and backup etcd service: The etcd services can either run on the same machines as other control plane services or run on separate machines
  • Create multiple control plane systems: For high availability, the control plane should not be limited to a single machine
  • Some deployment tools set up Raft consensus algorithm to do leader election of Kubernetes services. If the primary goes away, another service elects itself and take over.
  • Groups of zones are referred to as regions.
  • if you installed with kubeadm, there are instructions to help you with Certificate Management and Upgrading kubeadm clusters.
  • Production-quality workloads need to be resilient and anything they rely on needs to be resilient (such as CoreDNS).
  • Add nodes to the cluster: If you are managing your own cluster you can add nodes by setting up your own machines and either adding them manually or having them register themselves to the cluster’s apiserver.
  • Set up node health checks: For important workloads, you want to make sure that the nodes and pods running on those nodes are healthy.
  • Authentication: The apiserver can authenticate users using client certificates, bearer tokens, an authenticating proxy, or HTTP basic auth.
  • Authorization: When you set out to authorize your regular users, you will probably choose between RBAC and ABAC authorization.
  • Role-based access control (RBAC): Lets you assign access to your cluster by allowing specific sets of permissions to authenticated users. Permissions can be assigned for a specific namespace (Role) or across the entire cluster (ClusterRole).
  • Attribute-based access control (ABAC): Lets you create policies based on resource attributes in the cluster and will allow or deny access based on those attributes.
  • Set limits on workload resources
  • Set namespace limits: Set per-namespace quotas on things like memory and CPU
  • Prepare for DNS demand: If you expect workloads to massively scale up, your DNS service must be ready to scale up as well.
‹ Previous 21 - 24 of 24
Showing 20 items per page