Skip to main content

Home/ Larvata/ Group items tagged development

Rss Feed Group items tagged

張 旭

Best practices for building Kubernetes Operators and stateful apps | Google Cloud Blog - 0 views

  • use the StatefulSet workload controller to maintain identity for each of the pods, and to use Persistent Volumes to persist data so it can survive a service restart.
  • a way to extend Kubernetes functionality with application specific logic using custom resources and custom controllers.
  • An Operator can automate various features of an application, but it should be specific to a single application
  • ...12 more annotations...
  • Kubebuilder is a comprehensive development kit for building and publishing Kubernetes APIs and Controllers using CRDs
  • Design declarative APIs for operators, not imperative APIs. This aligns well with Kubernetes APIs that are declarative in nature.
  • With declarative APIs, users only need to express their desired cluster state, while letting the operator perform all necessary steps to achieve it.
  • scaling, backup, restore, and monitoring. An operator should be made up of multiple controllers that specifically handle each of the those features.
  • the operator can have a main controller to spawn and manage application instances, a backup controller to handle backup operations, and a restore controller to handle restore operations.
  • each controller should correspond to a specific CRD so that the domain of each controller's responsibility is clear.
  • If you keep a log for every container, you will likely end up with unmanageable amount of logs.
  • integrate application-specific details to the log messages such as adding a prefix for the application name.
  • you may have to use external logging tools such as Google Stackdriver, Elasticsearch, Fluentd, or Kibana to perform the aggregations.
  • adding labels to metrics to facilitate aggregation and analysis by monitoring systems.
  • a more viable option is for application pods to expose a metrics HTTP endpoint for monitoring tools to scrape.
  • A good way to achieve this is to use open-source application-specific exporters for exposing Prometheus-style metrics.
張 旭

The differences between Docker, containerd, CRI-O and runc - Tutorial Works - 0 views

  • Docker isn’t the only container contender on the block.
  • Container Runtime Interface (CRI), which defines an API between Kubernetes and the container runtime
  • Open Container Initiative (OCI) which publishes specifications for images and containers.
  • ...20 more annotations...
  • for a lot of people, the name “Docker” itself is synonymous with the word “container”.
  • Docker created a very ergonomic (nice-to-use) tool for working with containers – also called docker.
  • docker is designed to be installed on a workstation or server and comes with a bunch of tools to make it easy to build and run containers as a developer, or DevOps person.
  • containerd: This is a daemon process that manages and runs containers.
  • runc: This is the low-level container runtime (the thing that actually creates and runs containers).
  • libcontainer, a native Go-based implementation for creating containers.
  • Kubernetes includes a component called dockershim, which allows it to support Docker.
  • Kubernetes prefers to run containers through any container runtime which supports its Container Runtime Interface (CRI).
  • Kubernetes will remove support for Docker directly, and prefer to use only container runtimes that implement its Container Runtime Interface.
  • Both containerd and CRI-O can run Docker-formatted (actually OCI-formatted) images, they just do it without having to use the docker command or the Docker daemon.
  • Docker images, are actually images packaged in the Open Container Initiative (OCI) format.
  • CRI is the API that Kubernetes uses to control the different runtimes that create and manage containers.
  • CRI makes it easier for Kubernetes to use different container runtimes
  • containerd is a high-level container runtime that came from Docker, and implements the CRI spec
  • containerd was separated out of the Docker project, to make Docker more modular.
  • CRI-O is another high-level container runtime which implements the Container Runtime Interface (CRI).
  • The idea behind the OCI is that you can choose between different runtimes which conform to the spec.
  • runc is an OCI-compatible container runtime.
  • A reference implementation is a piece of software that has implemented all the requirements of a specification or standard.
  • runc provides all of the low-level functionality for containers, interacting with existing low-level Linux features, like namespaces and control groups.
crazylion lee

GitHub - SigNoz/signoz: SigNoz helps developers monitor their applications & troublesho... - 0 views

  •  
    "Monitor your applications and troubleshoot problems in your deployed applications, an open-source alternative to DataDog, New Relic, etc."
張 旭

Helm | - 0 views

  • Templates generate manifest files, which are YAML-formatted resource descriptions that Kubernetes can understand.
  • service.yaml: A basic manifest for creating a service endpoint for your deployment
  • In Kubernetes, a ConfigMap is simply a container for storing configuration data.
  • ...88 more annotations...
  • deployment.yaml: A basic manifest for creating a Kubernetes deployment
  • using the suffix .yaml for YAML files and .tpl for helpers.
  • It is just fine to put a plain YAML file like this in the templates/ directory.
  • helm get manifest
  • The helm get manifest command takes a release name (full-coral) and prints out all of the Kubernetes resources that were uploaded to the server. Each file begins with --- to indicate the start of a YAML document
  • Names should be unique to a release
  • The name: field is limited to 63 characters because of limitations to the DNS system.
  • release names are limited to 53 characters
  • {{ .Release.Name }}
  • A template directive is enclosed in {{ and }} blocks.
  • The values that are passed into a template can be thought of as namespaced objects, where a dot (.) separates each namespaced element.
  • The leading dot before Release indicates that we start with the top-most namespace for this scope
  • The Release object is one of the built-in objects for Helm
  • When you want to test the template rendering, but not actually install anything, you can use helm install ./mychart --debug --dry-run
  • Using --dry-run will make it easier to test your code, but it won’t ensure that Kubernetes itself will accept the templates you generate.
  • Objects are passed into a template from the template engine.
  • create new objects within your templates
  • Objects can be simple, and have just one value. Or they can contain other objects or functions.
  • Release is one of the top-level objects that you can access in your templates.
  • Release.Namespace: The namespace to be released into (if the manifest doesn’t override)
  • Values: Values passed into the template from the values.yaml file and from user-supplied files. By default, Values is empty.
  • Chart: The contents of the Chart.yaml file.
  • Files: This provides access to all non-special files in a chart.
  • Files.Get is a function for getting a file by name
  • Files.GetBytes is a function for getting the contents of a file as an array of bytes instead of as a string. This is useful for things like images.
  • Template: Contains information about the current template that is being executed
  • BasePath: The namespaced path to the templates directory of the current chart
  • The built-in values always begin with a capital letter.
  • Go’s naming convention
  • use only initial lower case letters in order to distinguish local names from those built-in.
  • If this is a subchart, the values.yaml file of a parent chart
  • Individual parameters passed with --set
  • values.yaml is the default, which can be overridden by a parent chart’s values.yaml, which can in turn be overridden by a user-supplied values file, which can in turn be overridden by --set parameters.
  • While structuring data this way is possible, the recommendation is that you keep your values trees shallow, favoring flatness.
  • If you need to delete a key from the default values, you may override the value of the key to be null, in which case Helm will remove the key from the overridden values merge.
  • Kubernetes would then fail because you can not declare more than one livenessProbe handler.
  • When injecting strings from the .Values object into the template, we ought to quote these strings.
  • quote
  • Template functions follow the syntax functionName arg1 arg2...
  • While we talk about the “Helm template language” as if it is Helm-specific, it is actually a combination of the Go template language, some extra functions, and a variety of wrappers to expose certain objects to the templates.
  • Drawing on a concept from UNIX, pipelines are a tool for chaining together a series of template commands to compactly express a series of transformations.
  • pipelines are an efficient way of getting several things done in sequence
  • The repeat function will echo the given string the given number of times
  • default DEFAULT_VALUE GIVEN_VALUE. This function allows you to specify a default value inside of the template, in case the value is omitted.
  • all static default values should live in the values.yaml, and should not be repeated using the default command
  • Operators are implemented as functions that return a boolean value.
  • To use eq, ne, lt, gt, and, or, not etcetera place the operator at the front of the statement followed by its parameters just as you would a function.
  • if and
  • if or
  • with to specify a scope
  • range, which provides a “for each”-style loop
  • block declares a special kind of fillable template area
  • A pipeline is evaluated as false if the value is: a boolean false a numeric zero an empty string a nil (empty or null) an empty collection (map, slice, tuple, dict, array)
  • incorrect YAML because of the whitespacing
  • When the template engine runs, it removes the contents inside of {{ and }}, but it leaves the remaining whitespace exactly as is.
  • {{- (with the dash and space added) indicates that whitespace should be chomped left, while -}} means whitespace to the right should be consumed.
  • Newlines are whitespace!
  • an * at the end of the line indicates a newline character that would be removed
  • Be careful with the chomping modifiers.
  • the indent function
  • Scopes can be changed. with can allow you to set the current scope (.) to a particular object.
  • Inside of the restricted scope, you will not be able to access the other objects from the parent scope.
  • range
  • The range function will “range over” (iterate through) the pizzaToppings list.
  • Just like with sets the scope of ., so does a range operator.
  • The toppings: |- line is declaring a multi-line string.
  • not a YAML list. It’s a big string.
  • the data in ConfigMaps data is composed of key/value pairs, where both the key and the value are simple strings.
  • The |- marker in YAML takes a multi-line string.
  • range can be used to iterate over collections that have a key and a value (like a map or dict).
  • In Helm templates, a variable is a named reference to another object. It follows the form $name
  • Variables are assigned with a special assignment operator: :=
  • {{- $relname := .Release.Name -}}
  • capture both the index and the value
  • the integer index (starting from zero) to $index and the value to $topping
  • For data structures that have both a key and a value, we can use range to get both
  • Variables are normally not “global”. They are scoped to the block in which they are declared.
  • one variable that is always global - $ - this variable will always point to the root context.
  • $.
  • $.
  • Helm template language is its ability to declare multiple templates and use them together.
  • A named template (sometimes called a partial or a subtemplate) is simply a template defined inside of a file, and given a name.
  • when naming templates: template names are global.
  • If you declare two templates with the same name, whichever one is loaded last will be the one used.
  • you should be careful to name your templates with chart-specific names.
  • templates in subcharts are compiled together with top-level templates
  • naming convention is to prefix each defined template with the name of the chart: {{ define "mychart.labels" }}
  • Helm has over 60 available functions.
張 旭

mvn clean install - a short guide to Maven - 0 views

  • An equivalent in other languages would be Javascript’s npm, Ruby’s gems or PHP’s composer.
  • Maven expects a certain directory structure for your Java source code to live in and when you later do a mvn clean install , the whole compilation and packaging work will be done for you.
  • any directory that contains a pom.xml file is also a valid Maven project.
  • ...17 more annotations...
  • A pom.xml file contains everything needed to describe your Java project.
  • Java source code is to be meant to live in the "/src/main/java" folder
  • Maven will put compiled Java classes into the "target/classes" folder
  • Maven will also build a .jar or .war file, depending on your project, that lives in the "target" folder.
  • Maven has the concept of a build lifecycle, which is made up of different phases.
  • clean is not part of Maven’s default lifecycle, you end up with commands like mvn clean install or mvn clean package. Install or package will trigger all preceding phases, but you need to specify clean in addition.
  • Maven will always download your project dependencies into your local maven repository first and then reference them for your build.
  • local repositories (in your user’s home directory: ~/.m2/)
  • clean: deletes the /target folder.
  • mvn clean package
  • mvn clean install
  • package: Converts your .java source code into a .jar/.war file and puts it into the /target folder.
  • install: First, it does a package(!). Then it takes that .jar/.war file and puts it into your local Maven repository, which lives in ~/.m2/repository.
  • calling 'mvn install' would be enough if Maven was smart enough to do reliable, incremental builds.
  • figuring out what Java source files/modules changed and only compile those.
  • developers got it ingrained to always call 'mvn clean install' (even though this increases build time a lot in bigger projects).
  • make sure that Maven always tries to download the latest snapshot dependency versions
張 旭

Deploy Replica Set With Keyfile Authentication - MongoDB Manual - 0 views

  • Keyfiles are bare-minimum forms of security and are best suited for testing or development environments.
  • With keyfile authentication, each mongod instances in the replica set uses the contents of the keyfile as the shared password for authenticating other members in the deployment.
  • On UNIX systems, the keyfile must not have group or world permissions.
  • ...3 more annotations...
  • Copy the keyfile to each server hosting the replica set members.
  • the user running the mongod instances is the owner of the file and can access the keyfile.
  • For each member in the replica set, start the mongod with either the security.keyFile configuration file setting or the --keyFile command-line option.
張 旭

Introducing the MinIO Operator and Operator Console - 0 views

  • Object-storage-as-a-service is a game changer for IT.
  • provision multi-tenant object storage as a service.
  • have the skill set to create, deploy, tune, scale and manage modern, application oriented object storage using Kubernetes
  • ...12 more annotations...
  • MinIO is purpose-built to take full advantage of the Kubernetes architecture.
  • MinIO and Kubernetes work together to simplify infrastructure management, providing a way to manage object storage infrastructure within the Kubernetes toolset.  
  • The operator pattern extends Kubernetes's familiar declarative API model with custom resource definitions (CRDs) to perform common operations like resource orchestration, non-disruptive upgrades, cluster expansion and to maintain high-availability
  • The Operator uses the command set kubectl that the Kubernetes community was already familiar with and adds the kubectl minio plugin . The MinIO Operator and the MinIO kubectl plugin facilitate the deployment and management of MinIO Object Storage on Kubernetes - which is how multi-tenant object storage as a service is delivered.
  • choosing a leader for a distributed application without an internal member election process
  • The Operator Console makes Kubernetes object storage easier still. In this graphical user interface, MinIO created something so simple that anyone in the organization can create, deploy and manage object storage as a service.
  • The primary unit of managing MinIO on Kubernetes is the tenant.
  • The MinIO Operator can allocate multiple tenants within the same Kubernetes cluster.
  • Each tenant, in turn, can have different capacity (i.e: a small 500GB tenant vs a 100TB tenant), resources (1000m CPU and 4Gi RAM vs 4000m CPU and 16Gi RAM) and servers (4 pods vs 16 pods), as well a separate configurations regarding Identity Providers, Encryption and versions.
  • each tenant is a cluster of server pools (independent sets of nodes with their own compute, network, and storage resources), that, while sharing the same physical infrastructure, are fully isolated from each other in their own namespaces.
  • Each tenant runs their own MinIO cluster, fully isolated from other tenants
  • Each tenant scales independently by federating clusters across geographies.
張 旭

Tagging AWS resources - AWS General Reference - 0 views

  • assign metadata to your AWS resources in the form of tags.
  • a user-defined key and value
  • Tag keys are case sensitive.
  • ...17 more annotations...
  • tag values are case sensitive.
  • Tags are accessible to many AWS services, including billing.
  • personally identifiable information (PII)
  • apply it consistently across all resource types.
  • Use automated tools to help manage resource tags.
  • Use too many tags rather than too few tags.
  • Tag policies let you specify tagging rules that define valid key names and the values that are valid for each key.
  • Name – Identify individual resources
  • Environment – Distinguish between development, test, and production resources
  • Project – Identify projects that the resource supports
  • Owner – Identify who is responsible for the resource
  • Each resource can have a maximum of 50 user created tags.
  • For each resource, each tag key must be unique, and each tag key can have only one value.
  • Tag keys and values are case sensitive.
  • decide on a strategy for capitalizing tags, and consistently implement that strategy across all resource types.
  • AWS Cost Explorer and detailed billing reports let you break down AWS costs by tag.
  • An effective tagging strategy uses standardized tags and applies them consistently and programmatically across AWS resources.
  •  
    "assign metadata to your AWS resources in the form of tags."
張 旭

phusion/passenger-docker: Docker base images for Ruby, Python, Node.js and Meteor web apps - 0 views

  • Ubuntu 20.04 LTS as base system
  • 2.7.5 is configured as the default.
  • Python 3.8
  • ...23 more annotations...
  • A build system, git, and development headers for many popular libraries, so that the most popular Ruby, Python and Node.js native extensions can be compiled without problems.
  • Nginx 1.18. Disabled by default
  • production-grade features, such as process monitoring, administration and status inspection.
  • Redis 5.0. Not installed by default.
  • The image has an app user with UID 9999 and home directory /home/app. Your application is supposed to run as this user.
  • running applications without root privileges is good security practice.
  • Your application should be placed inside /home/app.
  • COPY --chown=app:app
  • Passenger works like a mod_ruby, mod_nodejs, etc. It changes Nginx into an application server and runs your app from Nginx.
  • placing a .conf file in the directory /etc/nginx/sites-enabled
  • The best way to configure Nginx is by adding .conf files to /etc/nginx/main.d and /etc/nginx/conf.d
  • files in conf.d are included in the Nginx configuration's http context.
  • any environment variables you set with docker run -e, Docker linking and /etc/container_environment, won't reach Nginx.
  • To preserve these variables, place an Nginx config file ending with *.conf in the directory /etc/nginx/main.d, in which you tell Nginx to preserve these variables.
  • By default, Phusion Passenger sets all of the following environment variables to the value production
  • Setting these environment variables yourself (e.g. using docker run -e RAILS_ENV=...) will not have any effect, because Phusion Passenger overrides all of these environment variables.
  • PASSENGER_APP_ENV environment variable
  • passenger-docker autogenerates an Nginx configuration file (/etc/nginx/conf.d/00_app_env.conf) during container boot.
  • The configuration file is in /etc/redis/redis.conf. Modify it as you see fit, but make sure daemonize no is set.
  • You can add additional daemons to the image by creating runit entries.
  • The shell script must be called run, must be executable
  • the shell script must run the daemon without letting it daemonize/fork it.
  • We use RVM to install and to manage Ruby interpreters.
張 旭

Cluster Networking - Kubernetes - 0 views

  • Networking is a central part of Kubernetes, but it can be challenging to understand exactly how it is expected to work
  • Highly-coupled container-to-container communications
  • Pod-to-Pod communications
  • ...57 more annotations...
  • this is the primary focus of this document
    • 張 旭
       
      Cluster Networking 所關注處理的是: Pod 到 Pod 之間的連線
  • Pod-to-Service communications
  • External-to-Service communications
  • Kubernetes is all about sharing machines between applications.
  • sharing machines requires ensuring that two applications do not try to use the same ports.
  • Dynamic port allocation brings a lot of complications to the system
  • Every Pod gets its own IP address
  • do not need to explicitly create links between Pods
  • almost never need to deal with mapping container ports to host ports.
  • Pods can be treated much like VMs or physical hosts from the perspectives of port allocation, naming, service discovery, load balancing, application configuration, and migration.
  • pods on a node can communicate with all pods on all nodes without NAT
  • agents on a node (e.g. system daemons, kubelet) can communicate with all pods on that node
  • pods in the host network of a node can communicate with all pods on all nodes without NAT
  • If your job previously ran in a VM, your VM had an IP and could talk to other VMs in your project. This is the same basic model.
  • containers within a Pod share their network namespaces - including their IP address
  • containers within a Pod can all reach each other’s ports on localhost
  • containers within a Pod must coordinate port usage
  • “IP-per-pod” model.
  • request ports on the Node itself which forward to your Pod (called host ports), but this is a very niche operation
  • The Pod itself is blind to the existence or non-existence of host ports.
  • AOS is an Intent-Based Networking system that creates and manages complex datacenter environments from a simple integrated platform.
  • Cisco Application Centric Infrastructure offers an integrated overlay and underlay SDN solution that supports containers, virtual machines, and bare metal servers.
  • AOS Reference Design currently supports Layer-3 connected hosts that eliminate legacy Layer-2 switching problems.
  • The AWS VPC CNI offers integrated AWS Virtual Private Cloud (VPC) networking for Kubernetes clusters.
  • users can apply existing AWS VPC networking and security best practices for building Kubernetes clusters.
  • Using this CNI plugin allows Kubernetes pods to have the same IP address inside the pod as they do on the VPC network.
  • The CNI allocates AWS Elastic Networking Interfaces (ENIs) to each Kubernetes node and using the secondary IP range from each ENI for pods on the node.
  • Big Cloud Fabric is a cloud native networking architecture, designed to run Kubernetes in private cloud/on-premises environments.
  • Cilium is L7/HTTP aware and can enforce network policies on L3-L7 using an identity based security model that is decoupled from network addressing.
  • CNI-Genie is a CNI plugin that enables Kubernetes to simultaneously have access to different implementations of the Kubernetes network model in runtime.
  • CNI-Genie also supports assigning multiple IP addresses to a pod, each from a different CNI plugin.
  • cni-ipvlan-vpc-k8s contains a set of CNI and IPAM plugins to provide a simple, host-local, low latency, high throughput, and compliant networking stack for Kubernetes within Amazon Virtual Private Cloud (VPC) environments by making use of Amazon Elastic Network Interfaces (ENI) and binding AWS-managed IPs into Pods using the Linux kernel’s IPvlan driver in L2 mode.
  • to be straightforward to configure and deploy within a VPC
  • Contiv provides configurable networking
  • Contrail, based on Tungsten Fabric, is a truly open, multi-cloud network virtualization and policy management platform.
  • DANM is a networking solution for telco workloads running in a Kubernetes cluster.
  • Flannel is a very simple overlay network that satisfies the Kubernetes requirements.
  • Any traffic bound for that subnet will be routed directly to the VM by the GCE network fabric.
  • sysctl net.ipv4.ip_forward=1
  • Jaguar provides overlay network using vxlan and Jaguar CNIPlugin provides one IP address per pod.
  • Knitter is a network solution which supports multiple networking in Kubernetes.
  • Kube-OVN is an OVN-based kubernetes network fabric for enterprises.
  • Kube-router provides a Linux LVS/IPVS-based service proxy, a Linux kernel forwarding-based pod-to-pod networking solution with no overlays, and iptables/ipset-based network policy enforcer.
  • If you have a “dumb” L2 network, such as a simple switch in a “bare-metal” environment, you should be able to do something similar to the above GCE setup.
  • Multus is a Multi CNI plugin to support the Multi Networking feature in Kubernetes using CRD based network objects in Kubernetes.
  • NSX-T can provide network virtualization for a multi-cloud and multi-hypervisor environment and is focused on emerging application frameworks and architectures that have heterogeneous endpoints and technology stacks.
  • NSX-T Container Plug-in (NCP) provides integration between NSX-T and container orchestrators such as Kubernetes
  • Nuage uses the open source Open vSwitch for the data plane along with a feature rich SDN Controller built on open standards.
  • OpenVSwitch is a somewhat more mature but also complicated way to build an overlay network
  • OVN is an opensource network virtualization solution developed by the Open vSwitch community.
  • Project Calico is an open source container networking provider and network policy engine.
  • Calico provides a highly scalable networking and network policy solution for connecting Kubernetes pods based on the same IP networking principles as the internet
  • Calico can be deployed without encapsulation or overlays to provide high-performance, high-scale data center networking.
  • Calico can also be run in policy enforcement mode in conjunction with other networking solutions such as Flannel, aka canal, or native GCE, AWS or Azure networking.
  • Romana is an open source network and security automation solution that lets you deploy Kubernetes without an overlay network
  • Weave Net runs as a CNI plug-in or stand-alone. In either version, it doesn’t require any configuration or extra code to run, and in both cases, the network provides one IP address per pod - as is standard for Kubernetes.
  • The network model is implemented by the container runtime on each node.
張 旭

Moving away from Alpine - DEV Community - 0 views

  • it’s a lot of work to get packages that are not readily available in Alpine repository.
  • things compiled in Alpine won’t be usable on Ubuntu, for example, and vice versa.
  • the difficulty in pinning package versions in Alpine.
  • ...2 more annotations...
  • Developers rely heavily on app logs via syslog (mounted /dev/log) and Alpine uses busybox syslog by default.
  • Ubuntu officially launched minimal ubuntu images for cloud / container use
張 旭

What ChatOps Solutions Should You Use Today? | PäksTech - 0 views

shared by 張 旭 on 16 Feb 22 - No Cached
  • The big elephant in the room is of course Hubot, which now hasn’t seen new commits in over three years.
  • Botkit bots are written in JavaScript and they run on Node.js
  • Errbot is a chatbot written in Python, it comes with a ton of features, and it is extendable with custom plugins.
  • ...8 more annotations...
  • by default they react to !commands in your chatroom. Commands can also trigger on regular expression matches, with or without a bot prefix.
  • Errbot also supports Markdown responses with Jinja2 templating.
  • Errbot supports webhooks; It has a small web server that can translate endpoints to your custom plugins.
  • It’s recommended that you configure this behind a web server such as nginx or Apache.
  • It works with the If This Then That (IFTTT) principle, meaning that you define a set of rules that the system then uses to take action.
  • Lita is a chat bot written in Ruby. Like the other bots I’ve mentioned, it is also open source and supports different chat platforms via plugins.
  • Gort is a newer entrant to the ChatOps space. As the name suggests it has been written in Go, and it is still under active development.
  • can persist information in databases, supports advanced parsers, and is extendable with custom skills.
« First ‹ Previous 181 - 192 of 192
Showing 20 items per page