Skip to main content

Home/ Larvata/ Group items tagged databaSe

Rss Feed Group items tagged

張 旭

APP_KEY And You | Tighten - 0 views

  • The application key is a random, 32-character string stored in the APP_KEY key in your .env file.
  • Once your app is running, there's one place it uses the APP_KEY: cookies.
  • Laravel uses the key for all encrypted cookies, including the session cookie, before handing them off to the user's browser, and it uses it to decrypt cookies read from the browser.
  • ...16 more annotations...
  • Encrypted cookies are an important security feature in Laravel.
  • All of this encryption and decryption is handled in Laravel by the Encrypter using PHP's built-in security tools, including OpenSSL.
  • Passwords are not encrypted, they are hashed.
  • Laravel's passwords are hashed using Hash::make() or bcrypt(), neither of which use APP_KEY.
  • Crypt (symmetric encryption) and Hash (one-way cryptographic hashing).
  • Laravel uses this same method for cookies, both the sender and receiver, using APP_KEY as the encryption key.
  • something like user passwords, you should never have a way to decrypt them. Ever.
  • Unique: The collision rate (different inputs hashing to the same output) should be very small
  • Laravel hashing implements the native PHP password_hash() function, defaulting to a hashing algorithm called bcrypt.
  • a one-way hash, we cannot decrypt it. All that we can do is test against it.
  • When the user with this password attempts to log in, Laravel hashes their password input and uses PHP’s password_verify() function to compare the new hash with the database hash
  • User password storage should never be reversible, and therefore doesn’t need APP_KEY at all.
  • Any good credential management strategy should include rotation: changing keys and passwords on a regular basis
  • update the key on each server.
  • their sessions invalidated as soon as you change your APP_KEY.
  • make and test a plan to decrypt that data with your old key and re-encrypt it with the new key.
張 旭

Docker image building on GitLab CI | $AYMDEV() - 0 views

  • Continuous Integration (or CI) is a practice where you continously test an application to detect errors as soon as possible.
  • Docker is a container technology, many CI tools execute jobs (the tasks of a pipeline) in container to have an isolated environment.
  • Docker in Docker (« DinD » in short) means executing Docker in a Docker container.
  • ...11 more annotations...
  • images are saved in the host registry, we can benefit from Docker layer caching
  • All jobs will share the same environment, if many of them run simultaneously they might get into conflicts.
  • storage management (accumulating images)
  • The Docker socket binding technique means making a volume of /var/run/docker.sock between host and containers.
  • all containers would share the same Docker daemon.
  • Add privileged = true in the [runners.docker] section, the privileged mode is mandatory to use DinD.
  • To avoid that the runner only run one job at a time, change the concurrent value on the first line.
  • To avoid building a Docker image at each job, it can be built in a first job, pushed to the image registry provided by GitLab, and pulled in the next jobs.
  • functional tests depending on a database.
  • Docker Compose allows you to easily start multiple containers, but it has no more feature than Docker itself
  • Docker in Docker works well, but has its drawbacks, like Docker layer caching which needs some more commands to be used.
張 旭

Creating a cluster with kubeadm | Kubernetes - 0 views

  • (Recommended) If you have plans to upgrade this single control-plane kubeadm cluster to high availability you should specify the --control-plane-endpoint to set the shared endpoint for all control-plane nodes
  • set the --pod-network-cidr to a provider-specific value.
  • kubeadm tries to detect the container runtime by using a list of well known endpoints.
  • ...12 more annotations...
  • kubeadm uses the network interface associated with the default gateway to set the advertise address for this particular control-plane node's API server. To use a different network interface, specify the --apiserver-advertise-address=<ip-address> argument to kubeadm init
  • Do not share the admin.conf file with anyone and instead grant users custom permissions by generating them a kubeconfig file using the kubeadm kubeconfig user command.
  • The token is used for mutual authentication between the control-plane node and the joining nodes. The token included here is secret. Keep it safe, because anyone with this token can add authenticated nodes to your cluster.
  • You must deploy a Container Network Interface (CNI) based Pod network add-on so that your Pods can communicate with each other. Cluster DNS (CoreDNS) will not start up before a network is installed.
  • Take care that your Pod network must not overlap with any of the host networks
  • Make sure that your Pod network plugin supports RBAC, and so do any manifests that you use to deploy it.
  • You can install only one Pod network per cluster.
  • The cluster created here has a single control-plane node, with a single etcd database running on it.
  • The node-role.kubernetes.io/control-plane label is such a restricted label and kubeadm manually applies it using a privileged client after a node has been created.
  • By default, your cluster will not schedule Pods on the control plane nodes for security reasons.
  • kubectl taint nodes --all node-role.kubernetes.io/control-plane-
  • remove the node-role.kubernetes.io/control-plane:NoSchedule taint from any nodes that have it, including the control plane nodes, meaning that the scheduler will then be able to schedule Pods everywhere.
張 旭

CDC and DDL Changes to Source Tables - Microsoft® SQL Server 2012 Unleashed [... - 1 views

  • One of the common challenges when capturing data changes from your source tables is how to handle DDL changes to the source tables.
  • Change Data Capture
張 旭

What ChatOps Solutions Should You Use Today? | PäksTech - 0 views

shared by 張 旭 on 16 Feb 22 - No Cached
  • The big elephant in the room is of course Hubot, which now hasn’t seen new commits in over three years.
  • Botkit bots are written in JavaScript and they run on Node.js
  • Errbot is a chatbot written in Python, it comes with a ton of features, and it is extendable with custom plugins.
  • ...8 more annotations...
  • by default they react to !commands in your chatroom. Commands can also trigger on regular expression matches, with or without a bot prefix.
  • Errbot also supports Markdown responses with Jinja2 templating.
  • Errbot supports webhooks; It has a small web server that can translate endpoints to your custom plugins.
  • It’s recommended that you configure this behind a web server such as nginx or Apache.
  • It works with the If This Then That (IFTTT) principle, meaning that you define a set of rules that the system then uses to take action.
  • Lita is a chat bot written in Ruby. Like the other bots I’ve mentioned, it is also open source and supports different chat platforms via plugins.
  • Gort is a newer entrant to the ChatOps space. As the name suggests it has been written in Go, and it is still under active development.
  • can persist information in databases, supports advanced parsers, and is extendable with custom skills.
張 旭

Java microservices architecture by example - 0 views

  • A microservices architecture is a particular case of a service-oriented architecture (SOA)
  • What sets microservices apart is the extent to which these modules are interconnected.
  • Every server comprises just one certain business process and never consists of several smaller servers.
  • ...12 more annotations...
  • Microservices also bring a set of additional benefits, such as easier scaling, the possibility to use multiple programming languages and technologies, and others.
  • Java is a frequent choice for building a microservices architecture as it is a mature language tested over decades and has a multitude of microservices-favorable frameworks, such as legendary Spring, Jersey, Play, and others.
  • A monolithic architecture keeps it all simple. An app has just one server and one database.
  • All the connections between units are inside-code calls.
  • split our application into microservices and got a set of units completely independent for deployment and maintenance.
  • Each of microservices responsible for a certain business function communicates either via sync HTTP/REST or async AMQP protocols.
  • ensure seamless communication between newly created distributed components.
  • The gateway became an entry point for all clients’ requests.
  • We also set the Zuul 2 framework for our gateway service so that the application could leverage the benefits of non-blocking HTTP calls.
  • we've implemented the Eureka server as our server discovery that keeps a list of utilized user profile and order servers to help them discover each other.
  • We also have a message broker (RabbitMQ) as an intermediary between the notification server and the rest of the servers to allow async messaging in-between.
  • microservices can definitely help when it comes to creating complex applications that deal with huge loads and need continuous improvement and scaling.
« First ‹ Previous 121 - 126 of 126
Showing 20 items per page