Skip to main content

Home/ Larvata/ Group items tagged access

Rss Feed Group items tagged

張 旭

MongoDB Performance - MongoDB Manual - 0 views

  • MongoDB uses a locking system to ensure data set consistency. If certain operations are long-running or a queue forms, performance will degrade as requests and operations wait for the lock.
  • performance limitations as a result of inadequate or inappropriate indexing strategies, or as a consequence of poor schema design patterns.
  • performance issues may be temporary and related to abnormal traffic load.
  • ...9 more annotations...
  • Lock-related slowdowns can be intermittent.
  • If globalLock.currentQueue.total is consistently high, then there is a chance that a large number of requests are waiting for a lock.
  • If globalLock.totalTime is high relative to uptime, the database has existed in a lock state for a significant amount of time.
  • For write-heavy applications, deploy sharding and add one or more shards to a sharded cluster to distribute load among mongod instances.
  • Unless constrained by system-wide limits, the maximum number of incoming connections supported by MongoDB is configured with the maxIncomingConnections setting.
  • When logLevel is set to 0, MongoDB records slow operations to the diagnostic log at a rate determined by slowOpSampleRate.
  • At higher logLevel settings, all operations appear in the diagnostic log regardless of their latency with the following exception
  • Full Time Diagnostic Data Collection (FTDC) mechanism. FTDC data files are compressed, are not human-readable, and inherit the same file access permissions as the MongoDB data files.
  • mongod processes store FTDC data files in a diagnostic.data directory under the instances storage.dbPath.
  •  
    "MongoDB uses a locking system to ensure data set consistency. If certain operations are long-running or a queue forms, performance will degrade as requests and operations wait for the lock."
張 旭

第 05 章 - 計算機概論 - 主機系統與 I/O 界面 - 0 views

  • 接受使用者輸入指令與資料,經由中央處理器的數學與邏輯單元運算處理後,以產生或儲存成有用的資訊
  • CPU 為一個具有特定功能的晶片, 裡頭含有微指令集,如果你想要讓主機進行什麼特異的功能,就得要參考這顆 CPU 是否有相關內建的微指令集才可以。
  • CPU 讀取的資料都是從主記憶體來的! 主記憶體內的資料則是從輸入單元所傳輸進來!而 CPU 處理完畢的資料也必須要先寫回主記憶體中,最後資料才從主記憶體傳輸到輸出單元。
  • ...49 more annotations...
  • 算數邏輯單元與控制單元。其中算數邏輯單元主要負責程式運算與邏輯判斷,控制單元則主要在協調各周邊元件與各單元間的工作。
  • 資料會先寫入到主記憶體,然後 CPU 才能開始應用
  • CPU 其實內部已經含有一些微指令,我們所使用的軟體都要經過 CPU 內部的微指令集來達成才行。
  • 世界上常見到的兩種主要 CPU 架構, 分別是:精簡指令集 (RISC) 與複雜指令集 (CISC) 系統。
  • 微指令集較為精簡,每個指令的執行時間都很短,完成的動作也很單純,指令的執行效能較佳; 但是若要做複雜的事情,就要由多個指令來完成。
  • CISC在微指令集的每個小指令可以執行一些較低階的硬體操作,指令數目多而且複雜, 每條指令的長度並不相同。因為指令執行較為複雜所以每條指令花費的時間較長, 但每條個別指令可以處理的工作較為豐富。
  • 最早的那顆Intel發展出來的CPU代號稱為8086
  • AMD依此架構修改新一代的CPU為64位元
  • CPU 位元指的是CPU一次資料讀取的最大量!64位元CPU代表CPU一次可以讀寫64bits這麼多的資料
  • 因為CPU讀取資料量有限制,因此能夠從記憶體中讀寫的資料也就有所限制
  • :(1)北橋:負責連結速度較快的CPU、主記憶體與顯示卡界面等元件;
  • (2)南橋:負責連接速度較慢的裝置介面, 包括硬碟、USB、網路卡等等。不過由於北橋最重要的就是 CPU 與主記憶體之間的橋接,因此目前的主流架構中, 大多將北橋記憶體控制器整合到 CPU 封裝當中
  • CPU 與可接受的晶片組是有搭配性的,尤其目前每種 CPU 的腳位都不一樣
  • 時脈越高,代表單位時間內可進行的工作越多
  • 大概都只看總頻寬或基準時脈
  • CPU 時脈越高的情況下,會產生很多諸如散熱、設計及與週邊元件溝通的問題。
  • 其他的程序還在等待 CPU ,但是 CPU 又在等待 I/O
  • Intel 在同一個運算核心底下安裝兩個暫存器來模擬出另一個核心,實際上是兩個暫存器 (可以想成是程式的執行器) 共用一個實體核心。 這就是超執行緒的簡易認知
  • 時脈的意思是每秒鐘能夠進行的工作次數,而每次工作能夠讀進的資料量就是位元數
  • 每個用戶端大多是短時間的大運算,所以通常不會有一隻程序一直佔用著系統資源。
  • CPU 的所有資料都是從記憶體讀寫來的,所以記憶體的容量與頻寬就相當的重要了
  • DRAM 根據技術的更新又分好幾代,而使用上較廣泛的有所謂的 SDRAM 與 DDR SDRAM 兩種。 這兩種記憶體的差別除了在於腳位與工作電壓上的不同之外,DDR 是所謂的雙倍資料傳送速度 (Double Data Rate)
  • 晶片組廠商就將兩個主記憶體彙整在一起,如果一支記憶體可達 64 位元,兩支記憶體就可以達到 128 位元了,這就是雙通道的設計理念。 在某些比較多核心的伺服器主機上面,甚至還使用了 3 通道到 4 通道的設計
  • CPU 內部的暫存器與少量記憶體被稱為第一、第二層快取 (L1, L2 cache),而放在核心間的快取記憶體就被稱為第三層快取記憶體 (L3 cache)
  • CPU 的暫存器是直接設計在 CPU 核心內部,可以用來幫助 CPU 的運算。
  • 在多核心 CPU 的核心之間,會有另一個共享的快取記憶體存在,讓所有的 CPU 核心可以共享某些資源。
  • 靜態隨機存取記憶體 (Static Random Access Memory, SRAM)
  • 各項參數, 是被記錄到主機板上頭的一個稱為 CMOS 的晶片上,這個晶片需要藉著額外的電源來發揮記錄功能, 這也是為什麼你的主機板上面會有一顆電池的緣故。
  • BIOS(Basic Input Output System)是一套程式,這套程式是寫死到主機板上面的一個記憶體晶片中, 這個記憶體晶片在沒有通電時也能夠將資料記錄下來,那就是唯讀記憶體(Read Only Memory, ROM)。
  • BIOS對於個人電腦來說是非常重要的, 因為他是系統在開機的時候首先會去讀取的一個小程式喔
  • 韌體(firmware)很多也是使用ROM來進行軟體的寫入的。 韌體像軟體一樣也是一個被電腦所執行的程式,然而他是對於硬體內部而言更加重要的部分。例如BIOS就是一個韌體, BIOS雖然對於我們日常操作電腦系統沒有什麼太大的關係,但是他卻控制著開機時各項硬體參數的取得!
  • 現在的 BIOS 通常是寫入類似快閃記憶體 (flash) 或 EEPROM
  • 顯示卡能夠傳輸的資料量當然也是越大越好!這時就得要考慮到傳輸的界面了!當前 (2018) 主流的傳輸界面為 PCI-E,這個 PCI-E 又有三種版本, version 1, 2, 3 ,這三個版本的速度並不相同
  • PCI-E (PCI-Express) 使用的是類似管線的概念來處理,在 PCI-E 第一版中,每條管線可以具有 250MBytes/s 的頻寬效能,管線越多(通常設計到 x16 管線)則總頻寬越高
  • 通常 CPU 製造商會根據 CPU 來設計搭配的南橋晶片,由於現在只有一個晶片 (北橋整合到 CPU 內了),所以目前只有一顆主機板晶片組。
  • 插槽上面的資料要傳輸到 CPU 就得要經過晶片組,然後透過 DMI 通道傳上去!所以,在某些情況下,系統的效能會被卡住在這條通道上喔!
  • 晶片組接的設備相當多喔!有 PCI-E 插槽、USB設備、網路設備、音效設備、硬碟設備等,這全部的裝置共用那一條 DMI 喔! 所以,整個系統效能的瓶頸通常不在 CPU 啦!通常就是在南橋接的設備上面!所以,當你有非常複雜的程式要運作的時候,讓這些程式越少通過南橋, 他的系統效能就會比較好一點
  • 物理組成
  • 讀寫主要是透過在機械手臂上的讀取頭(head)來達成
  • 由於磁碟盤是圓的,並且透過機器手臂去讀寫資料,磁碟盤要轉動才能夠讓機器手臂讀寫。
  • 磁碟的最小物理儲存單位,稱之為磁區 (sector),那同一個同心圓的磁區組合成的圓就是所謂的磁軌(track)。 由於磁碟裡面可能會有多個磁碟盤,因此在所有磁碟盤上面的同一個磁軌可以組合成所謂的磁柱 (cylinder)。
  • 通常資料的讀寫會由外圈開始往內寫
  • 目前主流的硬碟連接界面就是 SATA
  • 雖然 SATA III 界面理論傳輸可到達 600Mbytes/s,不過傳統硬碟由於物理設計的限制因素,通常存取速度效能大多在 150~200Mbytes/s 之間
  • 串列式 SCSI (Serial Attached SCSI, SAS)
  • 傳統硬碟有個很致命的問題,就是需要驅動馬達去轉動磁碟盤~這會造成很嚴重的磁碟讀取延遲
  • 快閃記憶體去製作成高容量的設備
  • 沒有讀寫頭與磁碟盤啊!都是記憶體!
  • 各個繪圖卡的運算晶片 (GPU) 設計的理念不同,加上驅動程式與軟體搭配的問題,並不是一張高效能繪圖卡就可以完勝其他的繪圖卡, 還得要注意相關的軟體才行。
張 旭

Improving Kubernetes reliability: quicker detection of a Node down | Fatal failure - 0 views

  • when a Node gets down, the pods of the broken node are still running for some time and they still get requests, and those requests, will fail.
  • 1- The Kubelet posts its status to the masters using –node-status-update-frequency=10s 2- A node dies 3- The kube controller manager is the one monitoring the nodes, using –-node-monitor-period=5s it checks, in the masters, the node status reported by the Kubelet. 4- Kube controller manager will see the node is unresponsive, and has this grace period –node-monitor-grace-period=40s until it considers the node unhealthy.
  • node-status-update-frequency x (N-1) != node-monitor-grace-period
  • ...2 more annotations...
  • 5- Once the node is marked as unhealthy, the kube controller manager will remove its pods based on –pod-eviction-timeout=5m0s
  • 6- Kube proxy has a watcher over the API, so the very first moment the pods are evicted the proxy will notice and update the iptables of the node, removing the endpoints from the services so the failing pods won’t be accessible anymore.
張 旭

Logstash Alternatives: Pros & Cons of 5 Log Shippers [2019] - Sematext - 0 views

  • In this case, Elasticsearch. And because Elasticsearch can be down or struggling, or the network can be down, the shipper would ideally be able to buffer and retry
  • Logstash is typically used for collecting, parsing, and storing logs for future use as part of log management.
  • Logstash’s biggest con or “Achille’s heel” has always been performance and resource consumption (the default heap size is 1GB).
  • ...37 more annotations...
  • This can be a problem for high traffic deployments, when Logstash servers would need to be comparable with the Elasticsearch ones.
  • Filebeat was made to be that lightweight log shipper that pushes to Logstash or Elasticsearch.
  • differences between Logstash and Filebeat are that Logstash has more functionality, while Filebeat takes less resources.
  • Filebeat is just a tiny binary with no dependencies.
  • For example, how aggressive it should be in searching for new files to tail and when to close file handles when a file didn’t get changes for a while.
  • For example, the apache module will point Filebeat to default access.log and error.log paths
  • Filebeat’s scope is very limited,
  • Initially it could only send logs to Logstash and Elasticsearch, but now it can send to Kafka and Redis, and in 5.x it also gains filtering capabilities.
  • Filebeat can parse JSON
  • you can push directly from Filebeat to Elasticsearch, and have Elasticsearch do both parsing and storing.
  • You shouldn’t need a buffer when tailing files because, just as Logstash, Filebeat remembers where it left off
  • For larger deployments, you’d typically use Kafka as a queue instead, because Filebeat can talk to Kafka as well
  • The default syslog daemon on most Linux distros, rsyslog can do so much more than just picking logs from the syslog socket and writing to /var/log/messages.
  • It can tail files, parse them, buffer (on disk and in memory) and ship to a number of destinations, including Elasticsearch.
  • rsyslog is the fastest shipper
  • Its grammar-based parsing module (mmnormalize) works at constant speed no matter the number of rules (we tested this claim).
  • use it as a simple router/shipper, any decent machine will be limited by network bandwidth
  • It’s also one of the lightest parsers you can find, depending on the configured memory buffers.
  • rsyslog requires more work to get the configuration right
  • the main difference between Logstash and rsyslog is that Logstash is easier to use while rsyslog lighter.
  • rsyslog fits well in scenarios where you either need something very light yet capable (an appliance, a small VM, collecting syslog from within a Docker container).
  • rsyslog also works well when you need that ultimate performance.
  • syslog-ng as an alternative to rsyslog (though historically it was actually the other way around).
  • a modular syslog daemon, that can do much more than just syslog
  • Unlike rsyslog, it features a clear, consistent configuration format and has nice documentation.
  • Similarly to rsyslog, you’d probably want to deploy syslog-ng on boxes where resources are tight, yet you do want to perform potentially complex processing.
  • syslog-ng has an easier, more polished feel than rsyslog, but likely not that ultimate performance
  • Fluentd was built on the idea of logging in JSON wherever possible (which is a practice we totally agree with) so that log shippers down the line don’t have to guess which substring is which field of which type.
  • Fluentd plugins are in Ruby and very easy to write.
  • structured data through Fluentd, it’s not made to have the flexibility of other shippers on this list (Filebeat excluded).
  • Fluent Bit, which is to Fluentd similar to how Filebeat is for Logstash.
  • Fluentd is a good fit when you have diverse or exotic sources and destinations for your logs, because of the number of plugins.
  • Splunk isn’t a log shipper, it’s a commercial logging solution
  • Graylog is another complete logging solution, an open-source alternative to Splunk.
  • everything goes through graylog-server, from authentication to queries.
  • Graylog is nice because you have a complete logging solution, but it’s going to be harder to customize than an ELK stack.
  • it depends
張 旭

Services | GitLab - 0 views

  • The services keyword defines a Docker image that runs during a job linked to the Docker image that the image keyword defines. This allows you to access the service image during build time.
張 旭

Trunk-based Development | Atlassian - 0 views

  • Trunk-based development is a version control management practice where developers merge small, frequent updates to a core “trunk” or main branch.
  • Gitflow and trunk-based development. 
  • Gitflow, which was popularized first, is a stricter development model where only certain individuals can approve changes to the main code. This maintains code quality and minimizes the number of bugs.
  • ...20 more annotations...
  • Trunk-based development is a more open model since all developers have access to the main code. This enables teams to iterate quickly and implement CI/CD.
  • Developers can create short-lived branches with a few small commits compared to other long-lived feature branching strategies.
  • Gitflow is an alternative Git branching model that uses long-lived feature branches and multiple primary branches.
  • Gitflow also has separate primary branch lines for development, hotfixes, features, and releases.
  • Trunk-based development is far more simplified since it focuses on the main branch as the source of fixes and releases.
  • Trunk-based development eases the friction of code integration.
  • trunk-based development model reduces these conflicts.
  • Adding an automated test suite and code coverage monitoring for this stream of commits enables continuous integration.
  • When new code is merged into the trunk, automated integration and code coverage tests run to validate the code quality.
  • Trunk-based development strives to keep the trunk branch “green”, meaning it's ready to deploy at any commit.
  • With continuous integration, developers perform trunk-based development in conjunction with automated tests that run after each committee to a trunk.
  • If trunk-based development was like music it would be a rapid staccato -- short, succinct notes in rapid succession, with the repository commits being the notes.
  • Instead of creating a feature branch and waiting to build out the complete specification, developers can instead create a trunk commit that introduces the feature flag and pushes new trunk commits that build out the feature specification within the flag.
  • Automated testing is necessary for any modern software project intending to achieve CI/CD.
  • Short running unit and integration tests are executed during development and upon code merge.
  • Automated tests provide a layer of preemptive code review.
  • Once a branch merges, it is best practice to delete it.
  • A repository with a large amount of active branches has some unfortunate side effects
  • Merge branches to the trunk at least once a day
  • The “continuous” in CI/CD implies that updates are constantly flowing.
張 旭

Helm | Named Templates - 0 views

  • a special-purpose include function that works similarly to the template action.
  • when naming templates: template names are global.
  • templates in subcharts are compiled together with top-level templates, you should be careful to name your templates with chart-specific names.
  • ...14 more annotations...
  • One popular naming convention is to prefix each defined template with the name of the chart: {{ define "mychart.labels" }}
  • using the specific chart name as a prefix we can avoid any conflicts
  • But files whose name begins with an underscore (_) are assumed to not have a manifest inside.
  • The define action allows us to create a named template inside of a template file.
  • include it with the template action
  • a define does not produce output unless it is called with a template
  • define functions should have a simple documentation block ({{/* ... */}}) describing what they do.
  • template names are global.
  • A popular naming convention is to prefix each defined template with the name of the chart
  • When a named template (created with define) is rendered, it will receive the scope passed in by the template call.
  • No scope was passed in, so within the template we cannot access anything in .
  • Note that we pass . at the end of the template call. We could just as easily pass .Values or .Values.favorite or whatever scope we want
  • the template that is substituted in has the text aligned to the left. Because template is an action, and not a function, there is no way to pass the output of a template call to other functions; the data is simply inserted inline.
  • use indent to indent
  •  
    "a special-purpose include function that works similarly to the template action."
張 旭

Tagging AWS resources - AWS General Reference - 0 views

  • assign metadata to your AWS resources in the form of tags.
  • a user-defined key and value
  • Tag keys are case sensitive.
  • ...17 more annotations...
  • tag values are case sensitive.
  • Tags are accessible to many AWS services, including billing.
  • personally identifiable information (PII)
  • apply it consistently across all resource types.
  • Use automated tools to help manage resource tags.
  • Use too many tags rather than too few tags.
  • Tag policies let you specify tagging rules that define valid key names and the values that are valid for each key.
  • Name – Identify individual resources
  • Environment – Distinguish between development, test, and production resources
  • Project – Identify projects that the resource supports
  • Owner – Identify who is responsible for the resource
  • Each resource can have a maximum of 50 user created tags.
  • For each resource, each tag key must be unique, and each tag key can have only one value.
  • Tag keys and values are case sensitive.
  • decide on a strategy for capitalizing tags, and consistently implement that strategy across all resource types.
  • AWS Cost Explorer and detailed billing reports let you break down AWS costs by tag.
  • An effective tagging strategy uses standardized tags and applies them consistently and programmatically across AWS resources.
  •  
    "assign metadata to your AWS resources in the form of tags."
張 旭

Docker can now run within Docker - Docker Blog - 0 views

  • Docker 0.6 is the new “privileged” mode for containers. It allows you to run some containers with (almost) all the capabilities of their host machine, regarding kernel features and device access.
  • Among the (many!) possibilities of the “privileged” mode, you can now run Docker within Docker itself.
  • in the new privileged mode.
  • ...8 more annotations...
  • that /var/lib/docker should be a volume. This is important, because the filesystem of a container is an AUFS mountpoint, composed of multiple branches; and those branches have to be “normal” filesystems (i.e. not AUFS mountpoints).
  • /var/lib/docker, the place where Docker stores its containers, cannot be an AUFS filesystem.
  • we use them as a pass-through to the “normal” filesystem of the host machine.
  • The /var/lib/docker directory of the nested Docker will live somewhere in /var/lib/docker/volumes on the host system.
  • since the private Docker instances run in privileged mode, they can easily escalate to the host, and you probably don’t want this! If you really want to run something like this and expose it to the public, you will have to fine-tune the LXC template file, to restrict the capabilities and devices available to the Docker instances.
  • When you are inside a privileged container, you can always nest one more level
  • the LXC tools cannot start nested containers if the devices control group is not in its own hierarchy.
  • if you use AppArmor, you need a special policy to support nested containers.
張 旭

Ingress - Kubernetes - 0 views

  • An API object that manages external access to the services in a cluster, typically HTTP.
  • load balancing
  • SSL termination
  • ...62 more annotations...
  • name-based virtual hosting
  • Edge routerA router that enforces the firewall policy for your cluster.
  • Cluster networkA set of links, logical or physical, that facilitate communication within a cluster according to the Kubernetes networking model.
  • A Kubernetes ServiceA way to expose an application running on a set of Pods as a network service. that identifies a set of Pods using labelTags objects with identifying attributes that are meaningful and relevant to users. selectors.
  • Services are assumed to have virtual IPs only routable within the cluster network.
  • Ingress exposes HTTP and HTTPS routes from outside the cluster to services within the cluster.
  • Traffic routing is controlled by rules defined on the Ingress resource.
  • An Ingress can be configured to give Services externally-reachable URLs, load balance traffic, terminate SSL / TLS, and offer name based virtual hosting.
  • Exposing services other than HTTP and HTTPS to the internet typically uses a service of type Service.Type=NodePort or Service.Type=LoadBalancer.
  • You must have an ingress controller to satisfy an Ingress. Only creating an Ingress resource has no effect.
  • As with all other Kubernetes resources, an Ingress needs apiVersion, kind, and metadata fields
  • Ingress frequently uses annotations to configure some options depending on the Ingress controller,
  • Ingress resource only supports rules for directing HTTP traffic.
  • An optional host.
  • A list of paths
  • A backend is a combination of Service and port names
  • has an associated backend
  • Both the host and path must match the content of an incoming request before the load balancer directs traffic to the referenced Service.
  • HTTP (and HTTPS) requests to the Ingress that matches the host and path of the rule are sent to the listed backend.
  • A default backend is often configured in an Ingress controller to service any requests that do not match a path in the spec.
  • An Ingress with no rules sends all traffic to a single default backend.
  • Ingress controllers and load balancers may take a minute or two to allocate an IP address.
  • A fanout configuration routes traffic from a single IP address to more than one Service, based on the HTTP URI being requested.
  • nginx.ingress.kubernetes.io/rewrite-target: /
  • describe ingress
  • get ingress
  • Name-based virtual hosts support routing HTTP traffic to multiple host names at the same IP address.
  • route requests based on the Host header.
  • an Ingress resource without any hosts defined in the rules, then any web traffic to the IP address of your Ingress controller can be matched without a name based virtual host being required.
  • secure an Ingress by specifying a SecretStores sensitive information, such as passwords, OAuth tokens, and ssh keys. that contains a TLS private key and certificate.
  • Currently the Ingress only supports a single TLS port, 443, and assumes TLS termination.
  • An Ingress controller is bootstrapped with some load balancing policy settings that it applies to all Ingress, such as the load balancing algorithm, backend weight scheme, and others.
  • persistent sessions, dynamic weights) are not yet exposed through the Ingress. You can instead get these features through the load balancer used for a Service.
  • review the controller specific documentation to see how they handle health checks
  • edit ingress
  • After you save your changes, kubectl updates the resource in the API server, which tells the Ingress controller to reconfigure the load balancer.
  • kubectl replace -f on a modified Ingress YAML file.
  • Node: A worker machine in Kubernetes, part of a cluster.
  • in most common Kubernetes deployments, nodes in the cluster are not part of the public internet.
  • Edge router: A router that enforces the firewall policy for your cluster.
  • a gateway managed by a cloud provider or a physical piece of hardware.
  • Cluster network: A set of links, logical or physical, that facilitate communication within a cluster according to the Kubernetes networking model.
  • Service: A Kubernetes Service that identifies a set of Pods using label selectors.
  • An Ingress may be configured to give Services externally-reachable URLs, load balance traffic, terminate SSL / TLS, and offer name-based virtual hosting.
  • An Ingress does not expose arbitrary ports or protocols.
  • You must have an Ingress controller to satisfy an Ingress. Only creating an Ingress resource has no effect.
  • The name of an Ingress object must be a valid DNS subdomain name
  • The Ingress spec has all the information needed to configure a load balancer or proxy server.
  • Ingress resource only supports rules for directing HTTP(S) traffic.
  • An Ingress with no rules sends all traffic to a single default backend and .spec.defaultBackend is the backend that should handle requests in that case.
  • If defaultBackend is not set, the handling of requests that do not match any of the rules will be up to the ingress controller
  • A common usage for a Resource backend is to ingress data to an object storage backend with static assets.
  • Exact: Matches the URL path exactly and with case sensitivity.
  • Prefix: Matches based on a URL path prefix split by /. Matching is case sensitive and done on a path element by element basis.
  • multiple paths within an Ingress will match a request. In those cases precedence will be given first to the longest matching path.
  • Hosts can be precise matches (for example “foo.bar.com”) or a wildcard (for example “*.foo.com”).
  • No match, wildcard only covers a single DNS label
  • Each Ingress should specify a class, a reference to an IngressClass resource that contains additional configuration including the name of the controller that should implement the class.
  • secure an Ingress by specifying a Secret that contains a TLS private key and certificate.
  • The Ingress resource only supports a single TLS port, 443, and assumes TLS termination at the ingress point (traffic to the Service and its Pods is in plaintext).
  • TLS will not work on the default rule because the certificates would have to be issued for all the possible sub-domains.
  • hosts in the tls section need to explicitly match the host in the rules section.
張 旭

Service | Kubernetes - 0 views

  • Each Pod gets its own IP address
  • Pods are nonpermanent resources.
  • Kubernetes Pods are created and destroyed to match the state of your cluster
  • ...23 more annotations...
  • In Kubernetes, a Service is an abstraction which defines a logical set of Pods and a policy by which to access them (sometimes this pattern is called a micro-service).
  • The set of Pods targeted by a Service is usually determined by a selector
  • If you're able to use Kubernetes APIs for service discovery in your application, you can query the API server for Endpoints, that get updated whenever the set of Pods in a Service changes.
  • A Service in Kubernetes is a REST object, similar to a Pod.
  • The name of a Service object must be a valid DNS label name
  • Kubernetes assigns this Service an IP address (sometimes called the "cluster IP"), which is used by the Service proxies
  • A Service can map any incoming port to a targetPort. By default and for convenience, the targetPort is set to the same value as the port field.
  • The default protocol for Services is TCP
  • As many Services need to expose more than one port, Kubernetes supports multiple port definitions on a Service object. Each port definition can have the same protocol, or a different one.
  • Because this Service has no selector, the corresponding Endpoints object is not created automatically. You can manually map the Service to the network address and port where it's running, by adding an Endpoints object manually
  • Endpoint IP addresses cannot be the cluster IPs of other Kubernetes Services
  • Kubernetes ServiceTypes allow you to specify what kind of Service you want. The default is ClusterIP
  • ClusterIP: Exposes the Service on a cluster-internal IP.
  • NodePort: Exposes the Service on each Node's IP at a static port (the NodePort). A ClusterIP Service, to which the NodePort Service routes, is automatically created. You'll be able to contact the NodePort Service, from outside the cluster, by requesting <NodeIP>:<NodePort>.
  • LoadBalancer: Exposes the Service externally using a cloud provider's load balancer
  • ExternalName: Maps the Service to the contents of the externalName field (e.g. foo.bar.example.com), by returning a CNAME record with its value. No proxying of any kind is set up.
  • You can also use Ingress to expose your Service. Ingress is not a Service type, but it acts as the entry point for your cluster.
  • If you set the type field to NodePort, the Kubernetes control plane allocates a port from a range specified by --service-node-port-range flag (default: 30000-32767).
  • The default for --nodeport-addresses is an empty list. This means that kube-proxy should consider all available network interfaces for NodePort.
  • you need to take care of possible port collisions yourself. You also have to use a valid port number, one that's inside the range configured for NodePort use.
  • Service is visible as <NodeIP>:spec.ports[*].nodePort and .spec.clusterIP:spec.ports[*].port
  • Choosing this value makes the Service only reachable from within the cluster.
  • NodePort: Exposes the Service on each Node's IP at a static port
張 旭

NGINX Ingress Controller - Documentation - 0 views

  • NodePort, as the name says, means that a port on a node is configured to route incoming requests to a certain service.
  • LoadBalancer is a service, which is typically implemented by the cloud provider as an external service (with additional cost).
  • Load balancer provides a single IP address to access your services, which can run on multiple nodes.
  • ...5 more annotations...
  • ngress controller helps to consolidate routing rules of multiple applications into one entity.
  • Ingress controller is exposed to an external network with the help of NodePort or LoadBalancer.
  • cloud load balancers are not necessary. Load balancer can also be implemented with MetalLB, which can be deployed in the same Kubernetes cluster.
  • to expose the Ingress controller to an external network is to use NodePort.
  • Installing NGINX using NodePort is the most simple example for Ingress Controller as we can avoid the load balancer dependency. NodePort is used for exposing the NGINX Ingress to the external network.
張 旭

Syntax - Configuration Language | Terraform | HashiCorp Developer - 0 views

  • the native syntax of the Terraform language, which is a rich language designed to be relatively easy for humans to read and write.
  • Terraform's configuration language is based on a more general language called HCL, and HCL's documentation usually uses the word "attribute" instead of "argument."
  • A particular block type may have any number of required labels, or it may require none
  • ...34 more annotations...
  • After the block type keyword and any labels, the block body is delimited by the { and } characters
  • Identifiers can contain letters, digits, underscores (_), and hyphens (-). The first character of an identifier must not be a digit, to avoid ambiguity with literal numbers.
  • The # single-line comment style is the default comment style and should be used in most cases.
  • he idiomatic style is to use the Unix convention
  • Indent two spaces for each nesting level.
  • align their equals signs
  • Use empty lines to separate logical groups of arguments within a block.
  • Use one blank line to separate the arguments from the blocks.
  • "meta-arguments" (as defined by the Terraform language semantics)
  • Avoid separating multiple blocks of the same type with other blocks of a different type, unless the block types are defined by semantics to form a family.
  • Resource names must start with a letter or underscore, and may contain only letters, digits, underscores, and dashes.
  • Each resource is associated with a single resource type, which determines the kind of infrastructure object it manages and what arguments and other attributes the resource supports.
  • Each resource type is implemented by a provider, which is a plugin for Terraform that offers a collection of resource types.
  • By convention, resource type names start with their provider's preferred local name.
  • Most publicly available providers are distributed on the Terraform Registry, which also hosts their documentation.
  • The Terraform language defines several meta-arguments, which can be used with any resource type to change the behavior of resources.
  • use precondition and postcondition blocks to specify assumptions and guarantees about how the resource operates.
  • Some resource types provide a special timeouts nested block argument that allows you to customize how long certain operations are allowed to take before being considered to have failed.
  • Timeouts are handled entirely by the resource type implementation in the provider
  • Most resource types do not support the timeouts block at all.
  • A resource block declares that you want a particular infrastructure object to exist with the given settings.
  • Destroy resources that exist in the state but no longer exist in the configuration.
  • Destroy and re-create resources whose arguments have changed but which cannot be updated in-place due to remote API limitations.
  • Expressions within a Terraform module can access information about resources in the same module, and you can use that information to help configure other resources. Use the <RESOURCE TYPE>.<NAME>.<ATTRIBUTE> syntax to reference a resource attribute in an expression.
  • resources often provide read-only attributes with information obtained from the remote API; this often includes things that can't be known until the resource is created, like the resource's unique random ID.
  • data sources, which are a special type of resource used only for looking up information.
  • some dependencies cannot be recognized implicitly in configuration.
  • local-only resource types exist for generating private keys, issuing self-signed TLS certificates, and even generating random ids.
  • The behavior of local-only resources is the same as all other resources, but their result data exists only within the Terraform state.
  • The count meta-argument accepts a whole number, and creates that many instances of the resource or module.
  • count.index — The distinct index number (starting with 0) corresponding to this instance.
  • the count value must be known before Terraform performs any remote resource actions. This means count can't refer to any resource attributes that aren't known until after a configuration is applied
  • Within nested provisioner or connection blocks, the special self object refers to the current resource instance, not the resource block as a whole.
  • This was fragile, because the resource instances were still identified by their index instead of the string values in the list.
  •  
    "the native syntax of the Terraform language, which is a rich language designed to be relatively easy for humans to read and write. "
張 旭

Cluster Networking - Kubernetes - 0 views

  • Networking is a central part of Kubernetes, but it can be challenging to understand exactly how it is expected to work
  • Highly-coupled container-to-container communications
  • Pod-to-Pod communications
  • ...57 more annotations...
  • this is the primary focus of this document
    • 張 旭
       
      Cluster Networking 所關注處理的是: Pod 到 Pod 之間的連線
  • Pod-to-Service communications
  • External-to-Service communications
  • Kubernetes is all about sharing machines between applications.
  • sharing machines requires ensuring that two applications do not try to use the same ports.
  • Dynamic port allocation brings a lot of complications to the system
  • Every Pod gets its own IP address
  • do not need to explicitly create links between Pods
  • almost never need to deal with mapping container ports to host ports.
  • Pods can be treated much like VMs or physical hosts from the perspectives of port allocation, naming, service discovery, load balancing, application configuration, and migration.
  • pods on a node can communicate with all pods on all nodes without NAT
  • agents on a node (e.g. system daemons, kubelet) can communicate with all pods on that node
  • pods in the host network of a node can communicate with all pods on all nodes without NAT
  • If your job previously ran in a VM, your VM had an IP and could talk to other VMs in your project. This is the same basic model.
  • containers within a Pod share their network namespaces - including their IP address
  • containers within a Pod can all reach each other’s ports on localhost
  • containers within a Pod must coordinate port usage
  • “IP-per-pod” model.
  • request ports on the Node itself which forward to your Pod (called host ports), but this is a very niche operation
  • The Pod itself is blind to the existence or non-existence of host ports.
  • AOS is an Intent-Based Networking system that creates and manages complex datacenter environments from a simple integrated platform.
  • Cisco Application Centric Infrastructure offers an integrated overlay and underlay SDN solution that supports containers, virtual machines, and bare metal servers.
  • AOS Reference Design currently supports Layer-3 connected hosts that eliminate legacy Layer-2 switching problems.
  • The AWS VPC CNI offers integrated AWS Virtual Private Cloud (VPC) networking for Kubernetes clusters.
  • users can apply existing AWS VPC networking and security best practices for building Kubernetes clusters.
  • Using this CNI plugin allows Kubernetes pods to have the same IP address inside the pod as they do on the VPC network.
  • The CNI allocates AWS Elastic Networking Interfaces (ENIs) to each Kubernetes node and using the secondary IP range from each ENI for pods on the node.
  • Big Cloud Fabric is a cloud native networking architecture, designed to run Kubernetes in private cloud/on-premises environments.
  • Cilium is L7/HTTP aware and can enforce network policies on L3-L7 using an identity based security model that is decoupled from network addressing.
  • CNI-Genie is a CNI plugin that enables Kubernetes to simultaneously have access to different implementations of the Kubernetes network model in runtime.
  • CNI-Genie also supports assigning multiple IP addresses to a pod, each from a different CNI plugin.
  • cni-ipvlan-vpc-k8s contains a set of CNI and IPAM plugins to provide a simple, host-local, low latency, high throughput, and compliant networking stack for Kubernetes within Amazon Virtual Private Cloud (VPC) environments by making use of Amazon Elastic Network Interfaces (ENI) and binding AWS-managed IPs into Pods using the Linux kernel’s IPvlan driver in L2 mode.
  • to be straightforward to configure and deploy within a VPC
  • Contiv provides configurable networking
  • Contrail, based on Tungsten Fabric, is a truly open, multi-cloud network virtualization and policy management platform.
  • DANM is a networking solution for telco workloads running in a Kubernetes cluster.
  • Flannel is a very simple overlay network that satisfies the Kubernetes requirements.
  • Any traffic bound for that subnet will be routed directly to the VM by the GCE network fabric.
  • sysctl net.ipv4.ip_forward=1
  • Jaguar provides overlay network using vxlan and Jaguar CNIPlugin provides one IP address per pod.
  • Knitter is a network solution which supports multiple networking in Kubernetes.
  • Kube-OVN is an OVN-based kubernetes network fabric for enterprises.
  • Kube-router provides a Linux LVS/IPVS-based service proxy, a Linux kernel forwarding-based pod-to-pod networking solution with no overlays, and iptables/ipset-based network policy enforcer.
  • If you have a “dumb” L2 network, such as a simple switch in a “bare-metal” environment, you should be able to do something similar to the above GCE setup.
  • Multus is a Multi CNI plugin to support the Multi Networking feature in Kubernetes using CRD based network objects in Kubernetes.
  • NSX-T can provide network virtualization for a multi-cloud and multi-hypervisor environment and is focused on emerging application frameworks and architectures that have heterogeneous endpoints and technology stacks.
  • NSX-T Container Plug-in (NCP) provides integration between NSX-T and container orchestrators such as Kubernetes
  • Nuage uses the open source Open vSwitch for the data plane along with a feature rich SDN Controller built on open standards.
  • OpenVSwitch is a somewhat more mature but also complicated way to build an overlay network
  • OVN is an opensource network virtualization solution developed by the Open vSwitch community.
  • Project Calico is an open source container networking provider and network policy engine.
  • Calico provides a highly scalable networking and network policy solution for connecting Kubernetes pods based on the same IP networking principles as the internet
  • Calico can be deployed without encapsulation or overlays to provide high-performance, high-scale data center networking.
  • Calico can also be run in policy enforcement mode in conjunction with other networking solutions such as Flannel, aka canal, or native GCE, AWS or Azure networking.
  • Romana is an open source network and security automation solution that lets you deploy Kubernetes without an overlay network
  • Weave Net runs as a CNI plug-in or stand-alone. In either version, it doesn’t require any configuration or extra code to run, and in both cases, the network provides one IP address per pod - as is standard for Kubernetes.
  • The network model is implemented by the container runtime on each node.
張 旭

Share Process Namespace between Containers in a Pod | Kubernetes - 0 views

  • When process namespace sharing is enabled, processes in a container are visible to all other containers in the same pod.
  • It's even possible to access the file system of another container using the /proc/$pid/root link.
  • Pods share many resources so it makes sense they would also share a process namespace.
  • ...2 more annotations...
  • Processes are visible to other containers in the pod. This includes all information visible in /proc, such as passwords that were passed as arguments or environment variables. These are protected only by regular Unix permissions.
  • Container filesystems are visible to other containers in the pod through the /proc/$pid/root link. This makes debugging easier, but it also means that filesystem secrets are protected only by filesystem permissions.
  •  
    "When process namespace sharing is enabled, processes in a container are visible to all other containers in the same pod. "
張 旭

What is Data Definition Language (DDL) and how is it used? - 1 views

  • Data Definition Language (DDL) is used to create and modify the structure of objects in a database using predefined commands and a specific syntax.
  • DDL includes Structured Query Language (SQL) statements to create and drop databases, aliases, locations, indexes, tables and sequences.
  • Since DDL includes SQL statements to define changes in the database schema, it is considered a subset of SQL.
  • ...6 more annotations...
  • Data Manipulation Language (DML), commands are used to modify data in a database. DML statements control access to the database data.
  • DDL commands are used to create, delete or alter the structure of objects in a database but not its data.
  • DDL deals with descriptions of the database schema and is useful for creating new tables, indexes, sequences, stogroups, etc. and to define the attributes of these objects, such as data type, field length and alternate table names (aliases).
  • Data Query Language (DQL) is used to get data within the schema objects of a database and also to query it and impose order upon it.
  • DQL is also a subset of SQL. One of the most common commands in DQL is SELECT.
  • The most common command types in DDL are CREATE, ALTER and DROP.
« First ‹ Previous 81 - 96 of 96
Showing 20 items per page