Skip to main content

Home/ Java Development/ Group items matching ""web app'"" in title, tags, annotations or url

Group items matching
in title, tags, annotations or url

Sort By: Relevance | Date Filter: All | Bookmarks | Topics Simple Middle

UI Designing Services in Hyderabad - 0 views

started by pranetorweb on 30 Jun 16 no follow-up yet
1More

Building Collaborative CRUD Applications With ICEfaces and NetBeans - 1 views

  •  
    ICEFaces Netbeans Tutorial for creating Database CRUD
151More

Getting Started with RequestFactory - Google Web Toolkit - Google Code - 0 views

  • Entity Proxies
    • anonymous
       
      Proxy type (on the Client) vs Entity type (on the server)
  • proxy types
  • entity types
  • ...147 more annotations...
  • methods that return service stubs
  • one RequestFactory interface for your application
  • employeeRequest();
  • @Service(Employee.class)
  • extends RequestContext
  • extends RequestFactory
  • service stub
  • RequestFactory service stubs
  • must extend RequestContext
  • The methods in a service stub do not return entities directly
  • return subclasses of com.google.gwt.requestfactory.shared.Request.
  • This allows the methods on the interface to be invoked asynchronously with
  • Request.fire()
  • fire(    new Receiver()
  • onSuccess
  • callers pass an AsyncCallback that implements onSuccess()
  • takes a Receiver which must implement onSuccess()
  • Receiver is an abstract class having a default implementation of onFailure()
  • you can extend Receiver and override onFailure()
  • onViolation()
  • any constraint violations on the server
  • The Request type returned from each method
  • parameterized with the return type of the service method.
  • Methods that have no return value should return type Request<Void>
  • BigDecimal, BigInteger, Boolean, Byte, Enum, Character, Date, Double, Float, Integer, Long, Short, String, Void
  • subclass of EntityProxy
  • List<T> or Set<T>
  • primitive types are not supported
  • methods that operate on an entity itself
  • like persist() and remove()
  • return objects of type InstanceRequest rather than Reques
  • Server Implementations
  • methods defined in an
  • entity's service interface
  • implemented in the class named
  • @Service annotation
  • in these examples, is the entity class
  • service implementations do not directly implement the RequestContext interface
  • server-side implementations use the domain entity types
  • @Entity
  • EntityManager
  • createQuery
  • getResultList();
  • entityManager()
  • createEntityManager()
  • em.persist(this);
  • em.remove(attached
  • em.close();
  • defined in the service's
  • RequestContext interface
  • even though the implementation does not formally implement the interface in Java
  • name and argument list for each method
  • same on client and server
  • Client side methods
  • return Request<T>
  • only T on the server
  • EntityProxy types become the domain entity type on the server
  • Methods that return a Request object in the client interface are implemented as static methods on the entity
  • Methods that operate on a single instance of an entity, like persist() and remove(),
  • eturn an
  • InstanceRequest
  • in the client interface
  • Instance methods do not pass the instance directly, but rather via the
  • using()
  • instance methods must be implemented as non-static methods in the entity type
  • Four special methods are required on all entities
  • as they are used by the RequestFactory servlet:
  • constructor
  • findEntity
  • An entity's getId()
  • is typically auto-generated by the persistence engine (JDO, JPA, Objectify, etc.)
  • "find by ID" method has a special naming convention
  • find()
  • "find" plus the type's simple name
  • On the server
  • getVersion() method is used by RequestFactory to infer if an entity has changed
  • backing store (JDO, JPA, etc.) is responsible for updating the version each time the object is persisted,
  • RequestFactoryServlet sends an UPDATE
  • if an entity changes as
  • Second, the client maintains a version cache of recently seen entities
  • Whenever it sees an entity whose version has changed, it fires
  • UPDATE events on the event bus
  • so that listeners can update the view
  • GWT.create
  • and initialize it with your application's EventBus
  • GWT.create
  • requestFactory.initialize
  • create a new entity on the client
  • EmployeeRequest request
  • EmployeeProxy newEmployee
  • All client-side code should use the EmployeeProxy
  • not the Employee entity itself
  • unlike GWT-RPC, where the same concrete type is used on both client and server
  • RequestFactory
  • designed to be used with an ORM layer like JDO or JPA
  • on the server
  • to build data-oriented (CRUD) apps with an ORM-like interface
  • on the client
  • easy to implement a data access layer
  • structure your server-side code in a data-centric way
  • GWT-RPC, which is service-oriented
  • On the client side, RequestFactory keeps track of objects that have been modified and sends only changes
  • lightweight network payloads
  • solid foundation for automatic batching and caching of requests in the future
  • RequestFactoryServlet
  • RequestFactory uses its own servlet
  • own protocol
  • not designed for general purpose services like GWT-RPC
  • implements its
  • It is designed specifically for implementing a persistence layer on both client and server.
  • In persistence frameworks like JDO and JPA, entities are annotated with
  • client-side representation of an entity
  • known as a
  • DTO (Data Transfer Object)
  • hook used to indicate that an object can be managed by RequestFactory
  • RequestFactory
  • EntityProxy interface
  • automatically populates bean-style properties between entities on the server and the corresponding EntityProxy on the client,
  • send only changes ("deltas") to the server
  • extends EntityProxy
  • interface
  • @ProxyFor
  • reference the server-side entity being represented
  • It is not necessary to represent every property and method from the server-side entity in the EntityProxy
  • EntityProxyId returned by this method is used throughout RequestFactory-related classes
  • while getId() is shown in this example, most client code will want to refer to
  • EntityProxy.stableId() i
  • to represent any type
  • is not required to expose an ID and version
  • often used to represent embedded object types within entities
  • @Embedded
  • Address
  • Address type
  • POJO with no persistence annotations
  • Address is represented as a ValueProxy
  • extends ValueProxy
  • interface
  • extends EntityProxy
  • interface
  • AddressProxy
  • AddressProxy
  • ValueProxy can be used to pass any type to and from the server
  • RequestFactory
  • interface between your client and server code
  • RequestContext interface
  • The server-side service
  • must implement each method
96More

Large scale application development and MVP - Part II - Google Web Toolkit - Google Code - 0 views

  • itself
    • anonymous
       
      The View Implementation
  • @UiHandler("
  • presenter.onAddButtonClicked();
  • ...91 more annotations...
  • onAddButtonClicked
  • eventBus.fireEvent(new AddContactEvent());
  • presenter needs to know more about the view
  • view needs to know more about the data model
  • data types are typically homogeneous within column borders
  • ColumnDefinition abstract class
  • houses the any type-specific code (this is the third party mentioned above)
  • ColumnDefinition
  • ColumnDefinition(s) would be created outside of the presenter
  • we can reuse its logic regardless of what view we've attached ourself to
  • update our views such that we can set their ColumnDefinition(s).
  • setColumnDefinitions
  • this.columnDefinitions = columnDefinitions;
  • so that we can pass in
  • a mocked ContactsView instance when testing our ContactsPresenter
  • in our AppController, when we create the ContactsView,
  • new ContactsViewColumnDefinitions().getColumnDefinitions();
  • we can initialize it with the necessary ColumnDefinition(s).
  • contactsView.setColumnDefiniions(
    • anonymous
       
      Initialize ContactsView with the necessary ColumnDefinition(s)
  • With our ColumnDefinition(s) we can pass the model untouched.
  • As mentioned above we were previously dumbing down the model into a list of Strings
  • current solution
  • List<String> data
  • display.setData(data);
  • how that data type is rendered.
  • use generics
  • third party that abstracts
  • knowledge of a cell's data type
  • stringing together a list of these classes
  • providing the necessary render()
  • and isClickable()/isSelectable() override
  • ContactsViewColumnDefinitions<ContactDetails>
  • columnDefinitions =      new ArrayList<ColumnDefinition<ContactDetails>>()
  • ColumnDefinition<T>
  • ContactsPresenter
  • ContactsViewImpl
  • ColumnDefinition<T> columnDefinition = columnDefinitions.get(j);
  • the presenter can pass the model untouched
  • the view has no rendering code
  • that we would otherwise need to test. And the fun doesn't stop there.
  • presenter.onItemClicked(
  • presenter.onItemSelected
  • ClickEvent
  • cell.getCellIndex()
  • columnDefinition.isClickable()
  • SelectEvent
  • columnDefinition.isSelectable()
  • return shouldFireClickEvent;
  • return shouldFireSelectEvent;
  • respond to user interaction in different ways based upon the cell type that was clicked
  • use them for rendering purposes
  • defining how to interpret user interactions
  • we're going to remove any application state from the ContactsView
  • replace the view's getSelectedRows() with a SelectionModel
  • The SelectionModel is nothing more than a wrapper around a list of model objects.
  • ContactsPresenter holds on to an instance of this class
  • onItemSelected
  • Having the ColumnDefinition create a new widget for each cell is too heavy
  • Replace our FlexTable implementation with an HTML widget
  • calling setHTML()
  • Reduce the event overhead by sinking events on the HTML widget
  • rather than the individual cells
  • update our ContactsView.ui.xml file to use a
  • HTML widget rather than a FlexTable widget.
  • <g:HTML ui:field="contactsTable">
  • Inefficiencies related to inserting new elements via DOM manipulation Overhead associated with sinking events per Widget
  • for each item ask our column definitions to render accordingly
  • each column definition
  • render itself into the StringBuilder
  • rather than passing back a full-on widget
  • calling setHTML on a HTML widget
  • rather than calling setWidget on a FlexTable.
  • This will decrease your load time, especially as your tables start to grow.
  • we're reducing the overhead of sinking events on per-cell widgets
  • instead sinking on a single container
  • ClickEvents are still wired up via our UiHandler annotations
  • get the Element that was clicked on
  • and walk the DOM until we find a parent TableCellElement
  • we can determine the row
  • shouldFirdClickEvent() and shouldFireSelectEvent()
  • to take as a parameter a TableCellElement rather than a HTMLTable.Cell.
  • faster startup times via Code Splitting.
  • runAsync() points
  • split portion of your code is purely segmented
  • not referenced by other parts of the app
  • it will be downloaded and executed at the point that it needs to run
  • Do we really want to download all of that code before the user even logs in?
  • Not really.
  • simply grab the login code, and leave the rest for when we actually need it
  • wrap the code that creates the ContactsView and ContactsPresenter in a runAsync() call
  • as optimizations such as this one become easier and easier to implement.
1More

Become a Full Stack Salesforce Developer- A Career That isn't Just About Code! - 1 views

  •  
    The customer relationship management business has been revolutionized by Salesforce today
1More

Full Stack Development: Why Its Right for Your Company - 1 views

  •  
    Full stack development is the latest trend among enterprises looking to reduce development costs
1More

Why Google Voice Search Doesn't Work On Your Device - 1 views

  •  
    Google's voice search feature is likely to enthrall anyone with an Android-powered smartphone or an iOS device that searches through the Google app.
1More

Cloud Computing: What You Need to Know - 1 views

  •  
    If you are not aware of cloud computing , then don't worry!
1More

Java App Development Services - 2 views

  •  
    As Java arises as a leading technology for enterprise applications, more and more businesses are looking ahead to take advantage of this technology.
« First ‹ Previous 41 - 49 of 49
Showing 20 items per page