Skip to main content

Home/ ErgodicPNT/ Group items tagged ref

Rss Feed Group items tagged

3More

Conference update, part II « The Accidental Mathematician - 0 views

  • In the second lecture (based on Gowers’s joint work with Julia Wolf) we were introduced to decomposition theorems. A decomposition theorem for the norm can be stated as follows: if is a function (on either or ) with , there is a decomposition , where are “generalized quadratic phase functions” and are error terms with and small. This can be deduced from the inverse theorem of Green-Tao; in fact a similar statement was already implicit in their work, based on the energy increment argument. Tim presented a different approach to deducing decomposition theorems from inverse theorems, based on functional-analytic arguments involving the geometry of normed spaces (specifically, a variant of the Hahn-Banach theorem).
  • This can be applied to the question of counting solutions to systems of linear equations in sets. Let’s say that we are interested in finding sensible conditions under which a set will have the “statistically correct” number of solutions to a system of linear equations. For instance, if it is 4-term arithmetic progressions that we are concerned with, then uniformity is sufficient (and, in general, necessary). Green and Tao prove a more general result of this type: they define the complexity of a system of linear forms, and prove that systems of complexity are controlled by norms.
  • Gowers and Wolf, however, do not stop there. Suppose that, instead of 4-term progressions, we are interested in configurations of the form, say, . The complexity of this system in the sense of Green-Tao is 2, hence a set uniform in the norm will contain the “right” number of such configurations. Gowers and Wolf, however, can prove that uniformity already guarantees the same conclusion! The difference between the two examples? The squares are linearly dependent, whereas are not. Gowers and Wolf prove that such “square independence” is in fact both sufficient and necessary for a system of complexity 2 to be controlled by the $U^2$ norm. The proof is based on the decomposition theorem described earlier.
1More

Neal Stephenson on Zeta Function Cryptography - 0 views

  • M. Anshel and D. Goldfeld, "Zeta Functions, One-Way Functions, and Pseudorandom Number Generators", Duke Mathematical Journal, Vol. 88 No. 2 (1997) 371-390. "In 1997,Anshel and Goldfeld [6],presented an explicit construction of a pseudorandom number generator arising from an elliptic curve,which can be effectively computed at low computational cost. They introduced a new intractable problem,distinct from integer factorization or the discrete log problem, that leads to a new class of one-way functions based on the theory of zeta functions,and against which there is no known attack."- Richard M. Mollin,"Introduction to Cryptography" CRC Press (2000)
1 - 4 of 4
Showing 20 items per page