Skip to main content

Home/ COSEE-West/ Group items matching "and" in title, tags, annotations or url

Group items matching
in title, tags, annotations or url

Sort By: Relevance | Date Filter: All | Bookmarks | Topics Simple Middle
Gwen Noda

Galaxy Zoo Volunteers Share Pain and Glory of Research - 0 views

  •  
    Science 8 July 2011: Vol. 333 no. 6039 pp. 173-175 Galaxy Zoo Volunteers Share Pain and Glory of Research 1. Daniel Clery A project to "crowdsource" galactic classifications has paid off in ways the astronomers who started it never expected. Figure View larger version: * In this page * In a new window Space oddity. Greenish "voorwerp" spotted by a Dutch volunteer still intrigues scientists. "CREDIT: NASA, ESA, W. KEEL (UNIVERSITY OF ALABAMA), and THE GALAXY ZOO TEAM" The automated surveys that are becoming increasingly common in astronomy are producing an embarrassment of riches for researchers. Projects such as the Sloan Digital Sky Survey (SDSS) are generating so much data that, in some cases, astronomers don't know what to do with them all. SDSS has compiled a list of more than 1 million galaxies. To glean information about galaxy evolution, however, astronomers need to know what type of galaxy each one is: spiral, barred spiral, elliptical, or something else. At present, the only reliable way to classify galaxies is to look at each one. But the SDSS list is so long that all the world's astronomers working together couldn't muster enough eyeballs for the task. Enter the "wisdom of crowds." An online effort called Galaxy Zoo, launched in 2007, set a standard for citizen-scientist participation projects. Zealous volunteers astonished the project's organizers by classifying the entire catalog years ahead of schedule. The results have brought real statistical rigor to a field used to samples too small to support firm conclusions. But that's not all. Buoyed by the curiosity and dedication of the volunteers, the Galaxy Zoo team went on to ask more-complicated classification questions that led to studies they hadn't thought possible. and in an online discussion forum on the Galaxy Zoo Web site, volunteers have pointed to anomalies that on closer inspection have turned out to be genuinely new astronomical objects. "I'm incredibly impres
Gwen Noda

Time to Adapt to a Warming World, But Where's the Science? - 0 views

  •  
    "Science 25 November 2011: Vol. 334 no. 6059 pp. 1052-1053 DOI: 10.1126/science.334.6059.1052 * News Focus Adaptation to Climate Change Adaptation to Climate Change Time to Adapt to a Warming World, But Where's the Science? 1. Richard A. Kerr With dangerous global warming seemingly inevitable, users of climate information-from water utilities to international aid workers-are turning to climate scientists for guidance. But usable knowledge is in short supply. Figure View larger version: * In this page * In a new window Adapt to that. Climate will change, but decision-makers want to know how, where, and when. "CREDIT: KOOS VAN DER LENDE/NEWSCOM" DENVER, COLORADO-The people who brought us the bad news about climate change are making an effort to help us figure out what to do about it. As climate scientists have shown, continuing to spew greenhouse gases into the atmosphere will surely bring sweeping changes to the world-changes that humans will find it difficult or impossible to adapt to. But beyond general warnings, there is another sort of vital climate research to be done, speakers told 1800 attendees at a meeting here last month. and so far, they warned, researchers have delivered precious little of the essential new science. At the meeting, subtitled "Climate Research in Service to Society,"* the new buzzword was "actionable": actionable science, actionable information, actionable knowledge. "There's an urgent need for actionable climate information based on sound science," said Ghassem Asrar, director of the World Climate Research Programme, the meeting's organizer based in Geneva, Switzerland. What's needed is not simply data but processed information that an engineer sizing a storm-water pipe to serve for the next 50 years or a farmer in Uganda considering irrigating his fields can use to make better decisions in a warming world. Researchers preparing for the next international climate assessment, due in 2013, delive
Gwen Noda

Bounds and Vision - 0 views

  •  
    Information Science Bounds and Vision Atlas of Science Visualizing What We Know by Katy Börner MIT Press, Cambridge, MA, 2010. 266 pp. $$29.95, £22.95. ISBN 9780262014458. 1. Mason A. Porter + Author Affiliations 1. The reviewer is at the Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX1 3LB, UK, and at the CABDyN Complexity Centre and Somerville College, University of Oxford. 1. E-mail: porterm@maths.ox.ac.uk Visualization is a crucial but underappreciated part of science. As venues like the American Physical Society's Gallery of Fluid Motion and Gallery of Nonlinear Images illustrate every year, good visuals can make science more beautiful, more artistic, more tangible, and often more discernible. Katy Börner's continuing exhibition Places & Spaces: Mapping Science (1) and her book Atlas of Science: Visualizing What We Know arise from a similar spirit but are much more ambitious. Visualization is one of the most compelling aspects of science. Breathtaking visuals from sources like fractals and Disneyland's long-dead "Adventure Thru Inner Space" ride are what originally inspired me toward my personal scientific path, so I welcome any resource that promises to bring the visual joys of discovery to a wide audience. Importantly, Börner's exhibition and book are not mere artistic manifestations, although they would be impressive accomplishments even if that were her only goal. Some scientists have occasionally had great success in the visual arts; for example, physicist Eric Heller has long exhibited the gorgeous fruits of his research on quantum chaos and other topics (2). To fully appreciate Börner's efforts, however, one must be conscious that she is deeply concerned not just with visualization itself but with the science of visualization. Accordingly, her book discusses the history of the science of visualization, where it is now, and where she thinks it can go. Atlas of Scie
Gwen Noda

The Ten Best Ocean Stories of 2012 | Surprising Science - 0 views

  •  
    December 18, 2012 The Ten Best Ocean Stories of 2012 | | | Share on redditReddit | Share on diggDigg | Share on stumbleuponStumble | Share on emailEmail | More Sharing ServicesMore Two market squids mating 2012 was a big year for squid science. Photo Credit: © Brian Skerry, www.brianskerry.com Despite covering 70 percent of the earth's surface, the ocean doesn't often make it into the news. But when it does, it makes quite a splash (so to speak). Here are the top ten ocean stories we couldn't stop talking about this year, in no particular order. Add your own in the comments! 2012: The Year of the Squid From the giant squid's giant eyes (the better to see predatory sperm whales, my dear), to the vampire squid's eerie diet of remains and feces, the strange adaptations and behavior of these cephalopods amazed us all year. Scientists found a deep-sea squid that dismembers its own glowing arm to distract predators and make a daring escape. But fascinating findings weren't relegated to the deep: at the surface, some squids will rocket themselves above the waves to fly long distances at top speeds. James Cameron Explores the Deep Sea Filmmaker James Cameron has never shied away from marine movie plots (See: Titanic, The Abyss), but this year he showed he was truly fearless, becoming the first person to hit the deepest point on the seafloor (35,804 feet) in a solo submarine. While he only managed to bring up a single mud sample from the deepest region, he found thriving biodiversity in the other deep-sea areas his expedition explored, including giant versions of organisms found in shallow water. Schooling sardines form a "bait ball." Small fish, such as these schooling sardines, received well-deserved attention for being an important part of the food chain in 2012. Photo Credit: © Erwin Poliakoff, Flickr Small Fish Make a Big Impact Forage fish-small, schooling fish that are gulped down by predators-should be left in the ocean for larger fish, marin
Gwen Noda

Humans Are Driving Extreme Weather; Time to Prepare - 0 views

  •  
    "Science 25 November 2011: Vol. 334 no. 6059 p. 1040 DOI: 10.1126/science.334.6059.1040 * News & Analysis Climate Change Humans Are Driving Extreme Weather; Time to Prepare 1. Richard A. Kerr Figure View larger version: * In this page * In a new window Thai floods 2011 Hurricane Katrina 2005 Texas drought 2011 "CREDITS (LEFT TO RIGHT): PAULA BRONSTEIN/GETTY IMAGES; JEFF SCHMALTZ, MODIS RAPID RESPONSE TEAM, NASA/GSFC; NOAA" An international scientific assessment finds for the first time that human activity has indeed driven not just global warming but also increases in some extreme weather and climate events around the world in recent decades. and those and likely other weather extremes will worsen in coming decades as greenhouse gases mount, the report finds. But uncertainties are rife in the still-emerging field of extreme events. Scientists cannot attribute a particular drought or flood to global warming, and they can say little about past or future trends in the risk of high-profile hazards such as tropical cyclones. Damage from weather disasters has been climbing, but the report can attribute that trend only to the increasing exposure of life and property to weather risks. Climate change may be involved, but a case cannot yet be made. Despite the uncertainties, the special report from the Intergovernmental Panel on Climate Change (IPCC) released 18 November stresses that there is still reason for taking action now. The panel recommends "low-regrets measures," such as improvements in everything from drainage systems to early warning systems. Such measures would benefit society in dealing with the current climate as well as with almost any range of possible future climates. The report takes a cautious, consensus-based approach that draws on the published literature. Headlines and even some scientists may point to the current Texas drought or the 2003 European heat wave as the result of the strengthening greenhouse. But the report fin
Gwen Noda

College Board Standards for College Success - 0 views

  •  
    About the College Board Standards for College Success (CBSCS) The College Board Standards for College Success (CBSCS) define the knowledge and skills students need to develop and master in English language arts, mathematics and statistics, and science in order to be college and career ready. The CBSCS outline a clear and coherent pathway to Advanced Placement® (AP®) and college readiness with the goal of increasing the number and diversity of students who are prepared not only to enroll in college, but to succeed in college and 21st-century careers. The College Board has published these standards freely to provide a national model of rigorous academic content standards that states, districts, schools and teachers may use to vertically align curriculum, instruction, assessment and professional development to AP and college readiness. These rigorous standards: provide a model set of comprehensive standards for middle school and high school courses that lead to college and workplace readiness; reflect 21st-century skills such as problem solving, critical and creative thinking, collaboration, and media and technological literacy; articulate clear standards and objectives with supporting, in-depth performance expectations to guide instruction and curriculum development; provide teachers, districts and states with tools for increasing the rigor and alignment of courses across grades 6-12 to college and workplace readiness; and assist teachers in designing lessons and classroom assessments.
Gwen Noda

Guide to best practices for ocean acidification research and data reporting » Free Download Engineering | Science | Technology Books - 0 views

  •  
    1 The carbon dioxide system in seawater: equilibrium chemistry and measurements 1.1 Introduction 1.2 Basic chemistry of carbon dioxide in seawater 1.3 The definition and measurement of pH in seawater 1.4 Implications of other acid-base equilibria in seawater on seawater alkalinity 1.5 Choosing the appropriate measurement techniques 1.6 Conclusions and recommendations 2 Approaches and tools to manipulate the carbonate chemistry 3 Atmospheric CO2 targets for ocean acidification perturbation experiments 4 Designing ocean acidification experiments to maximise inference 5 Bioassays, batch culture and chemostat experimentation 6 Pelagic mesocosms 7 Laboratory experiments and benthic mesocosm studies 8 In situ perturbation experiments: natural venting sites, spatial/temporal gradients in ocean pH, manipulative in situ p(CO2) perturbations 9 Studies of acid-base status and regulation 9.1 Introduction 9.2 Fundamentals of acid-base regulation 9.3 Measurement of pH, total CO2 and non-bicarbonate buffer values 9.4 Compartmental measurements: towards a quantitative picture 9.5 Overall suggestions for improvements 10 Studies of metabolic rate and other characters across life stages 10.1 Introduction 10.2 Definition of a frame of reference: studying specific characters across life stages 10.3 Approaches and methodologies: metabolic studies 10.4 Study of early life stages 10.5 Techniques for oxygen analyses 10.6 Overall suggestions for improvements 10.7 Data reporting 10.8 Recommendations for standards and guidelines 11 Production and export of organic matter 12 Direct measurements of calcification rates in planktonic organisms 13 Measurements of calcification and dissolution of benthic organisms and communities 14 Modelling considerations 15 Safeguarding and sharing ocean acidification data 15.1 Introduction 15.2 Sharing ocean acidification data 15.3 Safeguarding ocean acidification data 15.4 Harmonising ocean acidification data and metadata 15.5 Disseminating ocean
Gwen Noda

USC researcher experiments with changing ocean chemistry | 89.3 KPCC - 0 views

  •  
    "USC researcher experiments with changing ocean chemistry Jan. 19, 2011 | Molly Peterson | KPCC In his lab, USC's Dave Hutchins is simulating possible future atmospheres and temperatures for the Earth. He says he's trying to figure out how tiny organisms that form the base of the food web will react to a more carbon-intense ocean. Burning fossil fuels doesn't just put more carbon into the atmosphere and help warm the climate. It's also changing the chemistry of sea water. KPCC's Molly Peterson visits a University of Southern California researcher who studies the consequences of a more corrosive ocean. Tailpipes and refineries and smokestacks as far as the eye can see in Los Angeles symbolize the way people change the planet's climate. They remind Dave Hutchins that the ocean's changing too. Hutchins teaches marine biology at USC. He says about a third of all the carbon, or CO2, that people have pushed into earth's atmosphere ends up in sea water - "which is a good thing for us because if the ocean hadn't taken up that CO2 the greenhouse effect would be far more advanced than it is." He smiles. Hutchins says that carbon is probably not so good for the ocean. "The more carbon dioxide that enters the ocean the more acidic the ocean gets." On the pH scale, smaller numbers represent more acidity. The Monterey Bay Aquarium Research Institute estimates we've pumped 500 million tons of carbon into the world's oceans. Dave Hutchins at USC says that carbon has already lowered the pH value for sea water. "By the end of this century we are going to have increased the amount of acid in the ocean by maybe 200 percent over natural pre-industrial levels," he says. "So we are driving the chemistry of the ocean into new territory - into areas that it has never seen." Hutchins is one of dozens of scientists who study the ripples of that new chemistry into the marine ecosystem. Now for an aside. I make bubbly water at home with a soda machine, and to do that, I pump ca
Gwen Noda

Gulf Drilling Disaster Triggers Scrutiny of Mediterranean Oil Rush - 0 views

  •  
    "Oil Exploration Oil Exploration Gulf Drilling Disaster Triggers Scrutiny of Mediterranean Oil Rush 1. Laura Margottini* A rush to find and extract oil in the Mediterranean Sea is threatening one of the planet's marine biodiversity hot spots, scientists warn. PANTELLERIA, ITALY-This tiny speck in the Mediterranean, home to a few thousand people, seems like one of the most tranquil places in the world. But looks are deceptive. Pantelleria, in the Strait of Sicily halfway between Palermo and Tunis, is close to one of the world's busiest shipping lanes, and of late, its waters have also become the center of a new oil rush. Attracted by Italy's easygoing drilling regulations and low tax on oil extraction, dozens of companies have new plans for exploration and drilling in this part of the Mediterranean Sea. At a recent meeting here,* however, scientists, conservationists, and environmental activists warned that such efforts put several important biodiversity hot spots in danger. An oil disaster like the Deepwater Horizon explosion, which sent oil gushing into the Gulf of Mexico for months, could easily ruin the Mediterranean ecology for a century or longer, some said. The Italian government has recently issued 66 permissions for drilling around its coasts and 25 concessions for exploration. Another 67 applications for exploration are under review. "Italy now represents the region that holds the most exciting and significant long-term opportunities," one company, Northern Petroleum, says on its Web site. The Strait of Sicily is the center of attention, but other biodiversity hot spots, such as the Tremiti Islands in the Adriatic Sea, could soon be explored as well. Italy isn't alone. Tunisia, for example, has granted concessions for oil exploration for most of its Mediterranean waters, without much political opposition. But the areas coveted by oil companies are ecological treasures, researchers and groups such as Greenpeace Italy stress. Last year, the Uni
Gwen Noda

NSF Touts Family-Friendly Policies as Boon to Women - 0 views

  •  
    "Scientific Workforce NSF Touts Family-Friendly Policies as Boon to Women 1. Jeffrey Mervis Young women are forever asking Meg Urry, an astrophysicist at Yale University, if it's possible "to have a successful scientific career and a family." A tenured professor with both, Urry tells them "yes." Perhaps more telling, however, is that the issue doesn't seem to interest half of her students. "I've never been asked that question by a man," she says. This week, the National Science Foundation (NSF) rolled out a set of family-friendly policies that it hopes will reduce the number of young women who jettison scientific careers because of responsibilities outside the lab. "Too many women give up because of conflicts between their desire to start a family and their desire to ramp up their careers," says John Holdren, the president's science adviser and head of the Office of Science and Technology Policy. It was a rare moment in the spotlight for the low-profile basic research agency: First Lady Michelle Obama announced the policies at a White House ceremony touting the importance of women to the nation's economic recovery and, in particular, the need to improve the proportion of women in the so-called STEM (science, technology, engineering, and mathematics) workforce. Figure View larger version: * In this page * In a new window Lending a hand. First Lady Michelle Obama applauds the work of young women in science at a White House event. "CREDIT: NATIONAL SCIENCE FOUNDATION" The new policies will allow both male and female grant recipients to defer an award for up to 1 year or receive a no-cost extension of an existing grant. NSF also hopes to increase its use of "virtual reviews" of grant proposals so that scientists don't need to travel as often to the agency's Arlington, Virginia, headquarters. The only change with any price tag attached is a new program of supplemental awards to investigators going on family leave, allowing them to hi
Gwen Noda

Survey Page - 0 views

  •  
    Key Findings Current Coastal Management Challenges Current coastal management challenges are worsening. Top management challenges will be exacerbated by climate change. Current management challenges make adaptation planning and decision-making difficult. Climate Change Concerns, Knowledge, and Actions Attitudes and knowledge about climate change are strongly supportive of adaptation action. Attention to adaptation has increased markedly over the past five years. Adaptation planning and implementation is still in the very early stages. There is limited familiarity with innovative adaptation approaches. Information, Technical Assistance, and Training Needs Organizational missions, job responsibilities, and legal requirements shape common information use. Ease of access to information is the overriding determinant of information use. Specific information needs differ by professional group. Critical opportunities exist to meet coastal professionals' information, technical assistance, and training needs Survey Background Decision-makers in California's (CA) coastal counties recognize that climate change will impact their communities and coastline. Yet, coastal CA communities are at different stages in developing and/or implementing climate change adaptation plans. During the Summer of 2012, USC Sea Grant, in partnership with 14 other CA-based organizations (listed below), launched a survey to understand the needs and barriers coastal communities have in planning for climate change in order to develop appropriate trainings and technical assistance for communities and determine the best way to link communities to resources and tools already available. Survey Partners USC Sea Grant California Sea Grant Center for Ocean Solutions, Stanford University California Nevada Applications Program (CNAP) at the Scripps Institution of Oceanography, University of California, San Diego through the NOAA Regional Integrat
Gwen Noda

Eliminating Land Based Discharges of Marine Debris in California: A Plan of Action from The Plastic Debris Project - 0 views

  •  
    Produced by: Plastic Debris, Rivers to Sea Project Algalita and California Coastal Commission Funding provided by the State Water Resources Control Board June 2006 pdf document, 91 pages Introduction - The California Marine Debris Action Plan of 1990 - A State Mandate to Eliminate Marine Debris is Necessary - The Plastic Debris, Rivers to Sea Project - The Action Plan - The Actions Recommended in this Plan - Process and Prioritization Part I: Marine Debris - Sources, Composition, and Quantities - What is Marine Debris? - Land versus Ocean Sources - Abundance of Plastic in the Marine Environment - Quantities of Plastic Debris Increasing Significantly in Oceans - Sources and Composition of Debris Found on Beaches - Trash and Debris in Stormwater and Urban Runoff - Other Research Characterizing Trash in Urban Runoff - Distribution and Composition of Marine Debris on California's Coast Part II: Marine Debris - Impacts - Ingestion and Entanglement - Ecosystem Impacts - Debris as a Transport Mechanism for Toxics and Invasive Species - Economic Impacts Part III: Current Efforts to Address Land-Based Discharges of Marine Debris - Federal Programs and Initiatives - State Programs and Initiatives - Regional Programs and Initiatives - Local Government Programs and Initiatives - National Public Interest Groups - California Public Interest Groups and Associations - Industry Initiatives
Gwen Noda

http://www.benthic-acidification.org - 0 views

  •  
    "What are the impacts of ocean acidification on key benthic (seabed) ecosystems, communities, habitats, species and their life cycles? The average acidity (pH) of the world's oceans has been stable for the last 25 million years. However, the oceans are now absorbing so much man made CO2 from the atmosphere that measurable changes in seawater pH and carbonate chemistry can be seen. It is predicted that this could affect the basic biological functions of many marine organisms. This in turn could have implications for the survival of populations and communities, as well as the maintenance of biodiversity and ecosystem function. In the seas around the UK, the habitats that make up the seafloor, along with the animals associated with them, play a crucial role in maintaining a healthy and productive marine ecosystem. This is important considering 40% of the world's population lives within 100km of the coast and many of these people depend on coastal systems for food, economic prosperity and well-being. Given that coastal habitats also harbour incredibly high levels of biodiversity, any environmental change that affects these important ecosystems could have substantial environmental and economical impacts. During several recent international meetings scientific experts have concluded that new research is urgently needed. In particular we need long-term studies that determine: which organisms are likely to be tolerant to high CO2 and which are vulnerable; whether organisms will have time to adapt or acclimatise to this rapid environmental change; and how the interactions between individuals that determine ecosystem structure will be affected. This current lack of understanding is a major problem as ocean acidification is a rapidly evolving management issue and, with an insufficient knowledge base, policy makers and managers are struggling to formulate effective strategies to sustain and protect the marine environment in the face of ocean acidification."
Gwen Noda

Know Your Ocean | Science and Technology | Ocean Today - 0 views

  •  
    NARRATOR: Even though the ocean covers seventy percent of the Earth's surface, people tend to know more information about land than the sea. As a result, our understanding of the ocean is often incomplete or full of misconceptions. How well do you know the ocean? You may think Earth has five separate oceans. They're clearly labeled on our maps. But, in actuality, these are all connected, and part of one global ocean system. Ever wonder why the ocean is blue? You may have heard its because the water reflects the color of the sky. Not quite. Sunlight contains all the colors of the rainbow. When it hits the ocean, it gets scattered by the water molecules. Blue light is scattered the most, which is why the ocean appears blue. Even more interesting is that floating plants and sediments in the water can cause light to bounce in such a way for the ocean to appear green, yellow, and even red! Another idea some people have is that the sea floor is flat. Actually, just like land, the sea floor has canyons, plains, and mountain ranges. and many of these features are even bigger than those found on land. You may also think that our ocean's saltwater is just a mix of water and table salt. Not so. Seawater's "salt" is actually made of dissolved minerals from surface runoff. That is, excess water from rain and melting snow flowing over land and into the sea. This is why the ocean doesn't have the same level of salinity everywhere. Salinity varies by location and season. Finally, you may have heard that melting sea ice will cause sea levels to rise. In reality, sea ice is just frozen seawater, and because it routinely freezes and melts, its volume is already accounted for in the ocean. Sea levels can rise, however, from ice that melts off land and into the ocean. Understanding basic facts about the ocean is important since it affects everything from our atmosphere to our ecosystems. By knowing your ocean, you are better prepared to help protect it.
Gwen Noda

Carboschools library - Material for experiments - 0 views

  •  
    How is global temperature regulated? An experimental representation - Simple experiments to help pupils understand how different parameters regulate temperature at the Earth's surface. Interaction at the Air-Water Interface, part 1 - A very simple experiment to demonstrate gas exchange and equilibration at the boundary layer between air and water. Pupils will also observe acidification of water due to CO2 introduced directly in the water. Interaction at the Air-Water Interface, part 2 - A second set of experiment to demonstrate gas exchange and equilibration at the boundary layer between air and water. Pupils observe a high atmospheric CO2 concentration will produce water acidification. Uptake of Carbon Dioxide from the Water by Plants - The following experiments will demonstrate the role of plants in mitigating the acidification caused when CO2 is dissolved in water. Carbon Dioxide Fertilization of Marine Microalgae (Dunalliela sp.) Cultures: Marine microalgae in different atmospheric CO2 concentration - An experiment designed to illustrate the impact of carbon dioxide on microalgal growth in the aquatic environment. Introduction to the principles of climate modelling - Working with real data in spreadsheets to create a climate model, students discover the global carbon budget and make their own predictions for the next century. Global carbon budget between 1958 and 2007 - Working with real global carbon budget data, students produce graphs to find the best representation of the data to make predictions about human CO2 emissions for the next century. This activity is also a nice application of percentages. Estimation of natural carbon sinks - Working with real global carbon budget data, students estimate how much of the CO2 emitted into the atmosphere as a result of human activities is absorbed naturally each year. How does temperature affect the solubility of CO2 en the water? - The following experiments will explore effects of water temperature on sol
Gwen Noda

Pocket Guide to Marine Debris - 0 views

  •  
    The Ocean Conservancy pdf document, 35 pages, 2005 20th anniversary International Coastal Cleanup The Ocean Conservancy promotes healthy and diverse ocean ecosystems and opposes practices that threaten ocean life and human life. Through research, education, and science-based advocacy, The Ocean Conservancy informs, inspires, and empowers people to speak and act on behalf of the oceans. In all its work, The Ocean Conservancy strives to be the world's foremost advocate for the oceans. The International Coastal Cleanup engages people to remove trash and debris from the world's beaches and waterways, to identify the sources of debris, and to change the behaviors that cause pollution. Introduction How to Use This Book Quick Tips - Shoreline Cleanup - Underwater Cleanup Estimating Weights and Distances The World of Marine Debris Activities That Produce Debris Sample Data Card Items Listed on the Data Card Debris Items of Local Concern Potentially Hazardous Items Stranded or Entangled Animals Natural Items Peculiar Items Other Volunteer Opportunities - National Marine Debris Monitoring Program - RECON - Storm Drain Sentries - Ocean Action Network - Ocean Wilderness More Information
Gwen Noda

Project Kaisei - Capturing the Plastic Vortex - 0 views

  •  
    "Project Kaisei is a non-profit organization based in San Francisco and Hong Kong, established to increase the understanding and the scale of marine debris, its impact on our ocean environment, and how we can introduce solutions for both prevention and clean-up. \n\nOur main focus is on the North Pacific Gyre, which constitutes a large accumulation of debris in one of the largest and most remote ecosystems on the planet. To accomplish these objectives, Project Kaisei is serving as a catalyst to bring together public and private collaborators to design, test and implement break-throughs in science, prevention and remediation.\n\nKaisei means "Ocean Planet" in Japanese, and is the name of the iconic tall ship that was one of the two research vessels in the August expedition."
Gwen Noda

Reflections On: Our Planet and Its Life, Origins, and Futures - 0 views

  •  
    "The theme of the 175th Annual Meeting of the American Association for the Advancement of Science (AAAS), "Our Planet and Its Life, Origins, and Futures," celebrated an enormous breadth of scientific accomplishments that transcends many subdisciplines of the natural and social sciences. It was intended to be both a reflection on what has been learned and a look forward to what must yet be better known if we are to make wise choices as stewards of our planet. The program committee saw this as an opportunity to examine how we have come to know and understand the coevolution of life with its interacting biological, biogeochemical, and physical environments. Further advances in this area are essential to develop scenarios that can be useful in guiding decisions to address some of society's most pressing problems. We must work toward a future that embraces the wise application of science to improve human health and well-being and to sustain the great diversity of life on our planet. "
Gwen Noda

Climate Change, Keystone Predation, and Biodiversity Loss - 0 views

  •  
    "Abstract Climate change can affect organisms both directly via physiological stress and indirectly via changing relationships among species. However, we do not fully understand how changing interspecific relationships contribute to community- and ecosystem-level responses to environmental forcing. I used experiments and spatial and temporal comparisons to demonstrate that warming substantially reduces predator-free space on rocky shores. The vertical extent of mussel beds decreased by 51% in 52 years, and reproductive populations of mussels disappeared at several sites. Prey species were able to occupy a hot, extralimital site if predation pressure was experimentally reduced, and local species richness more than doubled as a result. These results suggest that anthropogenic climate change can alter interspecific interactions and produce unexpected changes in species distributions, community structure, and diversity. "
Gwen Noda

California's Environmental Principles and Concepts - 0 views

  •  
    The Education and the Environment Initiative [Pavley, Chapter 665, Statutes of 2003-AB 1548] directed the California Environmental Protection Agency and the California Integrated Waste Management Board to develop Environmental Principles and Concepts for elementary and secondary schools in cooperation with the Resources Agency, State Department of Education, State Board of Education, and Secretary for Education. The Office of the Secretary of the California Environmental Protection Agency and the Integrated Waste Management Board have reviewed and concur with the Environmental Principles and Concepts (PDF).
1 - 20 of 446 Next › Last »
Showing 20 items per page