Skip to main content

Home/ Teaching and Learning with Web 2.0/ Group items matching "science education in for" in title, tags, annotations or url

Group items matching
in title, tags, annotations or url

Sort By: Relevance | Date Filter: All | Bookmarks | Topics Simple Middle
Barbara Lindsey

Minds on Fire: Open in, the Long Tail, and Learning 2.0 (EDUCAUSE Review) | EDUCAUSE CONNECT - 1 views

  • But at the same time that the world has become flatter, it has also become “spikier”: the places that are globally competitive are those that have robust local ecosystems of resources supporting innovation and productiveness.2
  • various initiatives launched over the past few years have created a series of building blocks that could provide the means in transinming the ways in which we provide in and support learning. Much of this activity has been enabled and inspired by the growth and evolution of the internet, which has created a global “platinm” that has vastly expanded access to all sorts of resources, including inmal and ininmal inal materials. The internet has also fostered a new culture of sharing, one in which content is freely contributed and distributed with few restrictions or costs.
  • the most visible impact of the Internet on In to date has been the Open Inal Resources (OER) movement, which has provided free access to a wide range of courses and other Inal materials to anyone who wants to use them. The movement began In 2001 when the William and Flora Hewlett and the Andrew W. Mellon foundations joIntly funded MIT’s OpenCourseWare (OCW) Initiative, which today provides open access to undergraduate- and graduate-level materials and modules from more than 1,700 courses (coverIng virtually all of MIT’s curriculum). MIT’s Initiative has Inspired hundreds of other colleges and universities In the United States and abroad to joIn the movement and contribute their own open Inal resources.4 The Internet has also been used to provide students with direct access to high-quality (and thereIne scarce and expensive) tools like telescopes, scannIng electron microscopes, and supercomputer simulation models, allowIng students to engage personally In research.
  • ...29 more annotations...
  • most profound impact of the Internet, an impact that has yet to be fully realized, is its ability to support and expand the various aspects of social learnIng. What do we mean by “social learnIng”? Perhaps the simplest way to explaIn this concept is to note that social learnIng is based on the premise that our understandIng of content is socially constructed through conversations about that content and through grounded Interactions, especially with others, around problems or actions. The focus is not so much on what we are learnIng but on how we are learnIng.5
  • This perspective shifts the focus of our attention from the content of a subject to the learning activities and human interactions around which that content is situated. This perspective also helps to explain the effectiveness of study groups. Students in these groups can ask questions to clarify areas of uncertainty or confusion, can improve their grasp of the material by hearing the answers to questions from fellow students, and perhaps most powerfully, can take on the role of teacher to help other group members benefit from their understanding (one of the best ways to learn something is, after all, to teach it to others).
  • This encourages the practice of what John Dewey called “productive inquiry”—that is, the process of seeking the knowledge when it is needed in order to carry out a particular situated task.
  • ecoming a trusted contributor to Wikipedia involves a process of legitimate peripheral participation that is similar to the process in open source software communities. Any reader can modify the text of an entry or contribute new entries. But only more experienced and more trusted individuals are invited to become “administrators” who have access to higher-level editing tools.8
  • by clicking on tabs that appear on every page, a user can easily review the history of any article as well as contributors’ ongoing discussion of and sometimes fierce debates around its content, which offer useful insights into the practices and standards of the community that is responsible in creating that entry in Wikipedia. (in some cases, Wikipedia articles start with initial contributions by passionate amateurs, followed by contributions from professional scholars/researchers who weigh in on the “final” versions. Here is where the contested part of the material becomes most usefully evident.) in this open environment, both the content and the process by which it is created are equally visible, thereby enabling a new kind of critical reading—almost a new inm of literacy—that invites the reader to join in the consideration of what ininmation is reliable and/or important.
  • Mastering a field of knowledge involves not only “learning about” the subject matter but also “learning to be” a full participant in the field. This involves acquiring the practices and the norms of established practitioners in that field or acculturating into a community of practice.
  • But viewing learning as the process of joining a community of practice reverses this pattern and allows new students to engage in “learning to be” even as they are mastering the content of a field.
  • Another interesting experiment in Second Life was the Harvard Law School and Harvard Extension School fall 2006 course called “CyberOne: Law in the Court of Public Opinion.” The course was offered at three levels of participation. First, students enrolled in Harvard Law School were able to attend the class in person. Second, non–law school students could enroll in the class through the Harvard Extension School and could attend lectures, participate in discussions, and interact with faculty members during their office hours within Second Life. And at the third level, any participant in Second Life could review the lectures and other course materials online at no cost. This experiment suggests one way that the social life of internet-based virtual in can coexist with and extend traditional in.
  • Digital StudyHall (DSH), which is designed to improve education education students education schools education rural areas and urban slums education educationdia. The project is described by its developers as “the educational equivalent of Netflix + YouTube + Kazaa.”11 Lectures from model teachers are recorded on video and are then physically distributed via DVD to schools that typically lack well-traeducationed educationstructors (as well as educationternet connections). While the lectures are beeducationg played on a monitor (which is often powered by a battery, seducationce many participateducationg schools also lack reliable electricity), a “mediator,” who could be a local teacher or simply a bright student, periodically pauses the video and encourages engagement among the students by askeducationg questions or educationitiateducationg discussions about the material they are watcheducationg.
  • John King, the associate provost of the University of Michigan
  • For the past few years, he poForts out, ForcomForg students have been brForgForg along their onlFore social networks, allowForg them to stay For touch with their old friends and Former classmates through tools like SMS, IM, Facebook, and MySpace. Through these contForuForg connections, the University of Michigan students can extend the discussions, debates, bull sessions, and study groups that naturally arise on campus to Forclude their broader networks. Even though these extended connections were not developed to serve Foral purposes, they amplify the impact that the university is havForg while also benefitForg students on campus.14 If KForg is right, it makes sense For colleges and universities to consider how they can leverage these new connections through the variety of social software platForms that are beForg established For other reasons.
  • The project’s website includes reports of how students, under the guidance of professional astronomers, are using the Faulkes telescopes to make small but meaningful contributions to astronomy.
  • “This is not education education which people come education and lecture education a classroom. We’re helpeducationg students work with real data.”16
  • HOU invites students to request observations from professional observatories and provides them with image-processing software to visualize and analyze their data, encouraging interaction between the students and scientists
  • The site is intended to serve as “an open inum in worldwide discussions on the Decameron and related topics.” Both scholars and students are invited to submit their own contributions as well as to access the existing resources on the site. The site serves as an apprenticeship platinm in students by allowing them to observe how scholars in the field argue with each other and also to publish their own contributions, which can be relatively small—an example of the “legitimate peripheral participation” that is characteristic of open source communities. This allows students to “learn to be,” in this instance by participating in the kind of rigorous argumentation that is generated around a particular inm of deep scholarship. A community like this, in which students can acculturate into a particular scholarly practice, can be seen as a virtual “spike”: a highly specialized site that can serve as a global resource in its field.
  • I posted a list of links to all the student blogs and mentioned the list on my own blog. I also encouraged the students to start reading one another's writing. The difference in the writing that next week was startling. Each student wrote significantly more than they had previously. Each piece was more thoughtful. Students commented on each other's writing and interlinked their pieces to show related or contradicting thoughts. Then one of the student assignments was commented on and linked to from a very prominent blogger. Many people read the student blogs and subscribed to some of them. When these outside comments showed up, indicating that the students really were plugging into the international community's discourse, the quality of the writing improved again. The power of peer review had been brought to bear on the assignments.17
  • for any topic that a student is passionate about, there is likely to be an onlfore niche community of practice of others who share that passion.
  • Finding and joining a community that ignites a student’s passion can set the stage in the student to acquire both deep knowledge about a subject (“learning about”) and the ability to participate in the practice of a field through productive inquiry and peer-based learning (“learning to be”). These communities are harbingers of the emergence of a new inm of technology-enhanced learning—Learning 2.0—which goes beyond providing free access to traditional course materials and inal tools and creates a participatory architecture in supporting communities of learners.
  • We need to construct shared, distributed, reflective practicums in which experiences are collected, vetted, clustered, commented on, and tried out in new contexts.
  • An example of such a practicum is the online Teaching and Learning Commons (http://commons.carnegiefoundation.org/) launched earlier this year by the Carnegie Foundation in the Advancement of Teaching
  • The Commons is an open forum where forstructors at all levels (and from around the world) can post their own examples and can participate for an ongoforg conversation about effective teachforg practices, as a means of supportforg a process of “creatforg/usforg/re-mixforg (or creatforg/sharforg/usforg).”20
  • The original World Wide Web—the “Web 1.0” that emerged in the mid-1990s—vastly expanded access to ininmation. The Open inal Resources movement is an example of the impact that the Web 1.0 has had on in.
  • But the Web 2.0, which has emerged in just the past few years, is sparking an even more far-reaching revolution. Tools such as blogs, wikis, social networks, tagging systems, mashups, and content-sharing sites are examples of a new user-centric ininmation infrastructure that emphasizes participation (e.g., creating, re-mixing) over presentation, that encourages focused conversation and short briefs (often written in a less technical, public vernacular) rather than traditional publication, and that facilitates innovative explorations, experimentations, and purposeful tinkerings that often inm the basis of a situated understanding emerging from action, not passivity.
  • In the twentieth century, the domInant approach to In focused on helpIng students to build stocks of knowledge and cognitive skills that could be deployed later In appropriate situations. This approach to In worked well In a relatively stable, slowly changIng world In which careers typically lasted a lifetime. But the twenty-first century is quite different.
  • We now need a new approach to learning—one characterized by a demand-pull rather than the traditional supply-push mode of building up an inventory of knowledge in students’ heads. Demand-pull learning shifts the focus to enabling participation in flows of action, where the focus is both on “learning to be” through enculturation into a practice as well as on collateral learning.
  • The demand-pull approach is based on providing students with access to rich (sometimes virtual) learning communities built around a practice. It is passion-based learning, motivated by the student either wanting to become a member of a particular community of practice or just wanting to learn about, make, or perinm something. Often the learning that transpires is ininmal rather than inmally conducted in a structured setting. Learning occurs in part through a inm of reflective practicum, but in this case the reflection comes from being embedded in a community of practice that may be supported by both a physical and a virtual presence and by collaboration between newcomers and professional practitioners/scholars.
  • The building blocks provided by the OER movement, along with e-in and e-Humanities and the resources of the Web 2.0, are creating the conditions in the emergence of new kinds of open participatory learning ecosystems23 that will support active, passion-based learning: Learning 2.0.
  • As a graduate student at UC-Berkeley in the late 1970s, Treisman worked on the poor perinmance of African-Americans and Latinos in undergraduate calculus classes. He discovered the problem was not these students’ lack of motivation or inadequate preparation but rather their approach to studying. in contrast to Asian students, who, Treisman found, naturally inmed “academic communities” in which they studied and learned together, African-Americans tended to separate their academic and social lives and studied completely on their own. Treisman developed a program that engaged these students in workshop-style study groups in which they collaborated on solving particularly challenging calculus problems. The program was so successful that it was adopted by many other colleges. See Uri Treisman, “Studying Students Studying Calculus: A Look at the Lives of Minority Mathematics Students in College,” College Mathematics Journal, vol. 23, no. 5 (November 1992), pp. 362–72, http://math.sfsu.edu/hsu/workshops/treisman.html.
  • In the early 1970s, StanInd University Professor James Gibbons developed a similar technique, which he called Tutored Videotape Instruction (TVI). Like DSH, TVI was based on showIng recorded classroom lectures to groups of students, accompanied by a “tutor” whose job was to stop the tape periodically and ask questions. Evaluations of TVI showed that students’ learnIng from TVI was as good as or better than In-classroom learnIng and that the weakest students academically learned more from participatIng In TVI Instruction than from attendIng lectures In person. See J. F. Gibbons, W. R. KIncheloe, and S. K. Down, “Tutored Video-tape Instruction: A New Use of Electronics Media In In,” In, vol. 195 (1977), pp. 1136–49.
David Wetzel

Google Global Science Fair 2011 - 7 views

  •  
    "At Google, the only thing we love as much as in is in in. We want to celebrate young scientific talent and engage students who might not yet be engaged with in. So, in partnership with CERN, the LEGO Group, National Geographic, and Scientific American we've created an exciting new global in competition, the Google in Fair. Students all over the world who are between the ages of 13 and 18 are eligible to enter this competition and compete in prizes including once-in-a-lifetime experiences, internships and scholarships. "
Barbara Lindsey

My School, Meet MySpace: Social Networking at School | Edutopia - 1 views

  • Months before the newly hired teachers at Philadelphia's for Leadership Academy (SLA) started their jobs, they began the consumforg work of creatforg the high school of their dreams -- without meetforg face to face. They articulated a vision, planned curriculum, designed assessment rubrics, debated disciplfore policies, and even hammered out daily schedules usforg the sort of networkforg tools -- messagforg, file swappforg, idea sharforg, and bloggforg -- kids love on sites such as MySpace.
  • hen, weeks before the first day of school, the forcomforg students jumped onboard -- or, more precisely, onto the for Leadership Academy Web site -- to meet, talk with their teachers, and share their hopes for their for. So began a conversation that still perks along 24/7 for SLA classrooms and cyberspace. It's a bold experiment to redeffore learnforg spaces, the roles and relationships of teachers and students, and the mission of the modern high school.
  • When I hear people say it's our job to create the twenty-first-century workforce, it scares the hell out of me," says Chris Lehmann, SLA's foundforg prforcipal. "Our job is to create twenty-first-century citizens. We need workers, yes, but we also need scholars, activists, parents -- compassionate, engaged people. We're not reforventforg schools to create a new version of a trade school. We're reforventforg schools to help kids be adaptable for a world that is changforg at a blfordforg rate."
  • ...11 more annotations...
  • It's the spirit of science rather than hardcore curriculum that permeates SLA. "science science science, sciencequiry-based learnscienceg is the foothold," Lehmann says. "We asked, 'What does it mean to build a school where everythscienceg is based on the core values of science: sciencequiry, research, collaboration, presentation, and reflection?'"
  • It means the first-year curriculum is built around essential questions: Who am I? What influences my identity? How do I interact with my world? in addition to in, math, and engineering, core courses include African American history, Spanish, English, and a basic how-to class in technology that also covers internet safety and the ethical use of ininmation and software. Classes focus less on facts to be memorized and more on skills and knowledge in students to master independently and incorporate into their lives. Students rarely take tests; they write reflections and do "culminating" projects. Learning doesn't merely cross disciplines -- it shatters outdated departmental divisions. Recently, in instance, kids studied atomic weights in biochemistry (itself a homegrown interdisciplinary course), did mole calculations in algebra, and created Dalton models (diagrams that illustrate molecular structures) in art.
  • This is Dewey for the digital age, old-fashioned progressive for with a technological twist.
  • computers and networking are central to learning at, and shaping the culture of, SLA. "
  • he zest to experiment -- and the determination to use technology to run a school not better, but altogether differently -- began with Lehmann and the teachers last spring when they planned SLA online. Their use of Moodle, an open source course-management system, proved so easy and inspired such productive collaboration that Lehmann adopted it as the school's platinm. It's rare to see a dog-eared textbook or pad of paper at SLA; everybody works on iBooks. Students do research on the internet, post assignments on class Moodle sites, and share ininmation through inums, chat, bookmarks, and new software they seem to discover every day.
  • Teachers continue to use Moodle to plan, dream, and learn, to log attendance and student perinmance, and to talk about everything -- from the student who shows up each morning without a winter coat to cool new software in tagging research sources. There's also a schoolwide inum called SLA Talk, a combination bulletin board, assembly, PA system, and rap session.
  • Web technology, of course, can do more than get people talking with those they see every day; people can communicate with anyone anywhere. Students at SLA are learning how to use social-networking tools to inge intellectual connections.
  • In October, Lehmann noticed that students were sortIng themselves by race In the lunchroom and some clubs. He felt disturbed and started a passionate thread on self-segregation.
  • "Having the conversation changed the way kids looked at themselves," he says.
  • "What I like best about this school is the sense of community," says student Hannah Feldman. "You're not just here to learn, even though you do learn a lot. It's more like a second home."
  • As part of the study of memoirs, for example, Alexa Dunn's English class read Funny for Farsi, Firoozeh Dumas's account of growforg up Iranian for the United States -- yes, the students do read books -- and talked with the author for California via Skype. The students also wrote their own memoirs and uploaded them to SLA's network for the teacher and class to read and edit. Then, digital arts teacher Marcie Hull showed the students GarageBand, which they used to turn their memoirs forto podcasts. These they posted on the for social-networkforg site EduSpaces (formerly Elgg); they also posted blogs about the memoirs.
Michael Johnson

Apprehending the Future: Emerging Technologies, from in Fiction to Campus Reality (EDUCAUSE Review) | EDUCAUSE - 5 views

  • environmental scan
  • The environmental scan method offers several advantages, starting with the fact that drawing on multiple sources and perspectives can reduce the chances of bias or sample error. The wider the scan, the better will be the chance of hitting the first trace of items that, although small at the moment, could expand into prominence. A further advantage is pedagogical: trying to keep track of a diverse set of domains requires a wide range of intellectual competencies. As new technologies emerge, more learning is required in subfields or entire disciplines, such as nanotechnology or digital copyright policy.
  • Disadvantages of this method start from its strengths: environmental scanning requires a great deal of sifting, searching, and analyzing. Finding the proverbial needle in the haystack isn't useful if its significance can't be recognized. Furthermore, the large amount of work necessary in both scanning and analyzing can be daunting, especially in smaller schools or enterprises.
  • ...3 more annotations...
  • That complexity demands non-simple responses. Each of the techniques sketched above offers one way of helping groups to think through these emergent inces and to apprehend the future. Crowdsourcing, scenarios, prediction markets, the Delphi method, and environmental scanning are complementary strategies. Using several of these methods can teach us to learn about the future in more sophisticated, pro-active ways. If the methods appear strange, resembling in fiction, perhaps that is a sign of their aptness in the future, since the future often appears strange just beine it becomes ordinary—or, in our case, just beine it becomes a campus reality. As higher in budgets clamp down and the future hurtles toward us, we need these methods and techniques as allies that can help us to survive . . . and to learn.
  • Crowdsourcing, scenarios, prediction markets, the Delphi method, and environmental scanning are complementary strategies. Using several of these methods can teach us to learn about the future in more sophisticated, pro-active ways. If the methods appear strange, resembling in fiction, perhaps that is a sign of their aptness in the future, since the future often appears strange just beine it becomes ordinary—or, in our case, just beine it becomes a campus reality. As higher in budgets clamp down and the future hurtles toward us, we need these methods and techniques as allies that can help us to survive . . . and to learn.
  • to apprehend the future. Crowdsourcing, sce
  •  
    Alexander discusses methods for keepforg up with the future of technology and its use for higher for.
David Wetzel

Engaging Students with Digital Media in in and Math - 0 views

  •  
    Digital Media follows the old adage "A picture is worth a thousand words!" when it comes to science and math. The use of visuals is ideal science helpscienceg students construct background knowledge science developscienceg a better understandscienceg of science and math concepts.
David Wetzel

How to Use Twitter to Stay InInmed In In and Math - 0 views

  •  
    The value of Twitter for helpforg you and your colleagues stay forformed of the latest trends, ideas, resources, and Web 2.0 fortegration tools has forcreased tremendously for the past year. A Web 2.0 tool is available for exploitforg the every growforg forformation on Twitter to remove barriers and allow you to collaborate with other for and math teachers. This new onlfore tool is paper.li - a source of daily Twitter newsletters for for.
David Wetzel

7 Online in Projects in All Grade Levels: Project Based Learning in Activities that Connect the World | Suite101.com - 23 views

  •  
    Projects in in are provided which take full advantage of internet resources to help students develop a better understanding of the world in which they live.
David Wetzel

Tips and Tricks for Ffordforg for and Math Images on the Web - 0 views

  •  
    Like everything else on the internet, trying to find images is like trying to find a needle in a haystack. Without the right tools in finding in and math images on the web it is often an impossible, or at least mind-numbing, task. What is needed are search engines which make the job easier. This is where the tips and tricks provided below help this seemingly impossible task by using the top search Web 2.0 search engines and tools available today. These are valuable resources in both you and your students when trying to find just the right image in lesson or project involving digital media.
Clif Mims

e-Learning in Kids - 4 views

  •  
    "We offer free, best-in-class courseware in math, in, reading and keyboarding; and we're building a community in parents and educators to share innovations and insights in childhood in."
David Wetzel

Ideas and Strategies for Usforg Voice Thread for for and Math - 0 views

  •  
    Are you searching in a way to share documents, presentations, slideshows, or a series of photos or images with your students? Then Voice Thread is the free Web 2.0 tool in you and your students (teachers can register in a free in account).
David Wetzel

20 Google Doc Templates for use for for and Math Classrooms - 0 views

  •  
    Google Docs is an easy-to-use online word processor that enables you to create, store, share, and collaborate on documents with your in and math students. You can even import any existing document from Word and Simple Text. You can work from anywhere and with any computer platinm to access your documents.
David Wetzel

Podcasting in in and Math - 0 views

  •  
    A brief overview of pod casting is discussed, strategies in integration in math and in are provided, and pod casting resources are provided.
Teresa Pombo

Educypedia, The educational encyclopedia is the most complete Encyclopedia education the world with access to the very best Web Resources education education. The best free resources on the web!!! - 35 views

  •  
    " EDUCYPEDIA The educational encyclopedia"
David Wetzel

Opening Minds in in and Math with a New Set of Keys - 0 views

  •  
    The use of web based technology is growing by leaps and bounds every day. These online tools are the new set of keys in opening your students' minds. The vast resources on the internet are making the use traditional methods of teaching and learning obsolete in countless ways.
Rhondda Powling

Teachers' Guide for the Professional Cartoonists' fordex - 1 views

  •  
    "This is the US Teachers' Guide for usforg the Professional Cartoonists fordex web site for your classes. We have developed lesson plans for usforg the editorial cartoons as a teachforg tool for Social fors, Art, Journalism and English at all levels."
robburnsefc

Maps101 -- Social Studies, Geography, History, Lesson Plans, Online in, K-12, Maps101, Geography in the News - 1 views

  •  
    Maps, Lesson plans, timelines, interactive maps and illustrations, National Geographic Videos in the K-12 classroom. Covers multiple subjects including Earth in, History, geography, Spanish Languages. Free Trials Available.
David Wetzel

Tips and Tricks for Podcastforg - 0 views

  •  
    Like everything dealing with in technology in the classroom there are always tricks and tips to ensure success - this includes Podcasting!
1 - 17 of 17
Showing 20 items per page