Skip to main content

Home/ Classroom 2.0/ Group items tagged natural critical learning environment

Rss Feed Group items tagged

Ruth Howard

Students as 'Free Agent Learners' : April 2009 : THE Journal - 0 views

  • 51 percent of teachers are interested in learning how to integrate gaming into daily learning activities;
  • Sixty-five percent said it appeals to different learning styles; another 65 percent said it increases student engagement. Others said it allows for student-centered learning (47 percent), helps develop problem-solving and critical thinking skills (40 percent), helps develop creativity (39 percent), allows students to gain experience through trial and error (37 percent), and helps students visualize difficult concepts (35 percent).
  • Of those who have some interest in gaming, responses were varied as to its value in education. Sixty-five percent said it appeals to different learning styles; another 65 percent said it increases student engagement. Others said it allows for student-centered learning (47 percent), helps develop problem-solving and critical thinking skills (40 percent), helps develop creativity (39 percent), allows students to gain experience through trial and error (37 percent), and helps students visualize difficult concepts (35 percent).
  • ...1 more annotation...
  • Of those who have some interest in gaming, responses were varied as to its value in education. Sixty-five percent said it appeals to different learning styles; another 65 percent said it increases student engagement. Others said it allows for student-centered learning (47 percent), helps develop problem-solving and critical thinking skills (40 percent), helps develop creativity (39 percent), allows students to gain experience through trial and error (37 percent), and helps students visualize difficult concepts (35 percent).
  •  
    Students want more control over their own learning experiences through technology and want to define their own educational destinies and determine the direction of their learning. "This free agent learner is one that is technology-enabled, technology-empowered, and technology-engaged to be ... an important part of driving their own educational destiny. To some extent they feel ... it's a responsibility. They also feel it's a right to be able to do that. So technology has enabled this free agent learner. We have the opportunity in education to make sure they're on the right track and to be supportive of their learning experiences." Ive been waiting for this! This is exciting it points to the idea that students will co-create their curriculum. In my mind it will become imperitive that individuals choose their highest bliss-subjects and projects that reflect their passions. In the new collaborative work environments students will be more highly valued for their contributions to areas that they are most naturally motivated to explore. Their resulting contributions will result in inventiveness and cutting edge investigations via passion, self motivation and peer inspiration and direct access to thought leaders/mentors in the field. Teachers might become guides to ensuring students intentions are achieved- teachers as arbiters of human potential. Students will no longer be compared to each other. They will score according to their own self affirmed destinations-allowing of course for reviews and changes of destiny.Teachers might also need roles in law and ethics to ensure students are safe in their online world activities, monitoring students and their online peers, intercepting or prompting inside the conversations?
  •  
    Of those who have some interest in gaming, responses were varied as to its value in education. Sixty-five percent said it appeals to different learning styles; another 65 percent said it increases student engagement. Others said it allows for student-centered learning (47 percent), helps develop problem-solving and critical thinking skills (40 percent), helps develop creativity (39 percent), allows students to gain experience through trial and error (37 percent), and helps students visualize difficult concepts (35 percent). But perhaps the most significant trend in education technology, Evans said, is the emergence of the student as a "free agent learner": Students want more control over their own learning experiences through technology and want to define their own educational destinies and determine the direction of their learning. "This free agent learner is one that is technology-enabled, technology-empowered, and technology-engaged to be ... an important part of driving their own educational destiny. To some extent they feel ... it's a responsibility. They also feel it's a right to be able to do that. So technology has enabled this free agent learner. We have the opportunity in education to make sure they're on the right track and to be supportive of their learning experiences."
James OReilly

Versatile, Immersive, Creative and Dynamic Virtual 3-D Healthcare Learning Environments... - 0 views

shared by James OReilly on 13 Dec 08 - Cached
  • Virtual 3-D Healthcare Learning Environments
  • The author provides a critical overview of three-dimensional (3-D) virtual worlds and “serious gaming” that are currently being developed and used in healthcare professional education and medicine.
  • Roger’s Diffusion of Innovations Theory
  • ...32 more annotations...
  • Siemens’ Connectivism Theory
  • accelerating momentum
  • there are some fundamental questions which remain unanswered.
  • it is beneficial to address while the race to adopt and implement highly engaging Web 3-D virtual worlds is watched in healthcare professional education
  • Therefore, Roger’s Diffusion of Innovations Theory [5] and Siemens’ Connectivism Theory [6] for today’s learners will serve as theoretical frameworks for this paper.
  • A 3-D virtual world, also known as a Massively Multiplayer Virtual World (MMVW), is an example of a Web 2.0/Web 3-D dynamic computer-based application.
  • applications that enable social publishing, such as blogs and wikis
  • the most popular virtual world used by the general public is Linden Lab’s Second Life (SL)
  • Who would imagine attending medical school in a virtual world?
  • US agencies, such as the Centers for Disease Control and the National Institutes of Health conduct meetings in SL to discuss the educational potential of SL
  • virtual medical universities exist all over the world
  • The term “avatar” is an old Sanskrit word portraying a deity which takes on a human shape
  • Trauma Center
  • Virtual worlds are currently being used as educational spaces [1] and continue to grow in popularity on campuses and businesses worldwide. Furthermore, access to versions of virtual worlds on the Web, such as “Croquet,” “Uni-Verse,” and “Multiverse” are predicted within two to three years to be mainstream in education
  • there are reported advantages to having students engage in these emerging technologies
  • By allowing students time to interact with other avatars (eg, patients, staff members, and other healthcare professionals) in a safe, simulated environment, a decrease in student anxiety, an increase in competency in learning a new skill, and encouragement to cooperate and collaborate, as well as resolve conflicts, is possible.
  • High quality 3-D entertainment that is freely accessible via Web browsing facilitates engagement opportunities with individuals or groups of people in an authentic manner that illustrates collective intelligence
  • Advanced Learning and Immersive Virtual Environment (ALIVE) at the University of Southern Queensland
  • health information island
  • Problem-based learning groups enrolled in a clinical management course at Coventry University meet in SL and are employed to build learning facilities for the next semester of SL students. This management course teaches students to manage healthcare facilities and is reported to be the first healthcare-related class to use SL as a learning environment.
  • Another example of a medical school using SL is St. George’s Medical School in London.
  • Stanford University medical school
  • Another virtual world project developed by staff at the Imperial College in London, in collaboration with the National Physical Lab in the United Kingdom, is the Second Health Project
  • Mesko [35] presents the top 10 virtual medical sites in SL.
  • The development and use of 3-D virtual worlds in nursing education is increasing.
  • Some educators may balk at adopting this technology because there is a learning curve associated with the use of 3-D virtual worlds.
  • Let’s have fun, explore these fascinating worlds and games, and network with others while respecting diverse ways of life-long learning and current researchers’ findings.
  • there is an underlying push in higher education to adopt these collaborative tools and shift the paradigm from a traditional Socratic method of education to one possessing a more active and interactive nature
  • One may view online virtual worlds and serious gaming as a threat to the adoption and purchase of high-fidelity computerized patient-simulation mannequins that are currently purchased for healthcare-profession training. For example, nurses may login into SL and learn Advanced Cardiac Life Support at their convenience, and it costs virtually nothing for the nurse and perhaps a nominal fee for the developer.
  • The educational opportunity in SL may not be a replacement for the doctor- or nurse-patient interaction or relationship, but SL may serve as an adjunct or pre- or post-learning tool.
  • one recalls when critics questioned the validity and reliability of the stethoscope invented by Laennec in 1816 and how today it is second nature to use this assessment tool.
  • 2006 health fair
anonymous

Critical Issue: Using Technology to Improve Student Achievement - 0 views

shared by anonymous on 23 Feb 10 - Cached
  • Technologies available in classrooms today range from simple tool-based applications (such as word processors) to online repositories of scientific data and primary historical documents, to handheld computers, closed-circuit television channels, and two-way distance learning classrooms. Even the cell phones that many students now carry with them can be used to learn (Prensky, 2005).
  • Bruce and Levin (1997), for example, look at ways in which the tools, techniques, and applications of technology can support integrated, inquiry-based learning to "engage children in exploring, thinking, reading, writing, researching, inventing, problem-solving, and experiencing the world." They developed the idea of technology as media with four different focuses: media for inquiry (such as data modeling, spreadsheets, access to online databases, access to online observatories and microscopes, and hypertext), media for communication (such as word processing, e-mail, synchronous conferencing, graphics software, simulations, and tutorials), media for construction (such as robotics, computer-aided design, and control systems), and media for expression (such as interactive video, animation software, and music composition). In a review of existing evidence of technology's impact on learning, Marshall (2002) found strong evidence that educational technology "complements what a great teacher does naturally," extending their reach and broadening their students' experience beyond the classroom. "With ever-expanding content and technology choices, from video to multimedia to the Internet," Marshall suggests "there's an unprecedented need to understand the recipe for success, which involves the learner, the teacher, the content, and the environment in which technology is used."
  • In examining large-scale state and national studies, as well as some innovative smaller studies on newer educational technologies, Schacter (1999) found that students with access to any of a number of technologies (such as computer assisted instruction, integrated learning systems, simulations and software that teaches higher order thinking, collaborative networked technologies, or design and programming technologies) show positive gains in achievement on researcher constructed tests, standardized tests, and national tests.
  • ...4 more annotations...
  • Boster, Meyer, Roberto, & Inge (2002) examined the integration of standards-based video clips into lessons developed by classroom teachers and found increases student achievement. The study of more than 1,400 elementary and middle school students in three Virginia school districts showed an average increase in learning for students exposed to the video clip application compared to students who received traditional instruction alone.
  • Wenglinsky (1998) noted that for fourth- and eighth-graders technology has "positive benefits" on achievement as measured in NAEP's mathematics test. Interestingly, Wenglinsky found that using computers to teach low order thinking skills, such as drill and practice, had a negative impact on academic achievement, while using computers to solve simulations saw their students' math scores increase significantly. Hiebert (1999) raised a similar point. When students over-practice procedures before they understand them, they have more difficulty making sense of them later; however, they can learn new concepts and skills while they are solving problems. In a study that examined relationship between computer use and students' science achievement based on data from a standardized assessment, Papanastasiou, Zemblyas, & Vrasidas (2003) found it is not the computer use itself that has a positive or negative effect on achievement of students, but the way in which computers are used.
  • Another factor influencing the impact of technology on student achievement is that changes in classroom technologies correlate to changes in other educational factors as well. Originally the determination of student achievement was based on traditional methods of social scientific investigation: it asked whether there was a specific, causal relationship between one thing—technology—and another—student achievement. Because schools are complex social environments, however, it is impossible to change just one thing at a time (Glennan & Melmed, 1996; Hawkins, Panush, & Spielvogel, 1996; Newman, 1990). If a new technology is introduced into a classroom, other things also change. For example, teachers' perceptions of their students' capabilities can shift dramatically when technology is integrated into the classroom (Honey, Chang, Light, Moeller, in press). Also, teachers frequently find themselves acting more as coaches and less as lecturers (Henriquez & Riconscente, 1998). Another example is that use of technology tends to foster collaboration among students, which in turn may have a positive effect on student achievement (Tinzmann, 1998). Because the technology becomes part of a complex network of changes, its impact cannot be reduced to a simple cause-and-effect model that would provide a definitive answer to how it has improved student achievement.
  • When new technologies are adopted, learning how to use the technology may take precedence over learning through the technology. "The technology learning curve tends to eclipse content learning temporarily; both kids and teachers seem to orient to technology until they become comfortable," note Goldman, Cole, and Syer (1999). Effective content integration takes time, and new technologies may have glitches. As a result, "teachers' first technology projects generate excitement but often little content learning. Often it takes a few years until teachers can use technology effectively in core subject areas" (Goldman, Cole, & Syer, 1999). Educators may find impediments to evaluating the impact of technology. Such impediments include lack of measures to assess higher-order thinking skills, difficulty in separating technology from the entire instructional process, and the outdating of technologies used by the school. To address these impediments, educators may need to develop new strategies for student assessment, ensure that all aspects of the instructional process—including technology, instructional design, content, teaching strategies, and classroom environment—are conducive to student learning, and conduct ongoing evaluation studies to determine the effectiveness of learning with technology (Kosakowski, 1998).
Paul Beaufait

Natural Critical Learning Environment Too - 29 views

  •  
    "People Learn Best and Most Deeply When: They try to answer questions or solve problems they find interesting, intriguing, important, or beautiful; They can try to answer the question or solve the problems then receive feedback and try again before anyone "grades" them on their efforts; They can work collaboratively with other learners struggling with the same problems; ..." (Best Teachers Summer Institute, June 20-22, 2012; retrieved January 27, 2012).
Fabian Aguilar

Educational Leadership:Literacy 2.0:Orchestrating the Media Collage - 0 views

  • Public narrative embraces a number of specialty literacies, including math literacy, research literacy, and even citizenship literacy, to name a few. Understanding the evolving nature of literacy is important because it enables us to understand the emerging nature of illiteracy as well. After all, regardless of the literacy under consideration, the illiterate get left out.
  • Modern literacy has always meant being able to both read and write narrative in the media forms of the day, whatever they may be. Just being able to read is not sufficient.
  • The act of creating original media forces students to lift the hood, so to speak, and see media's intricate workings that conspire to do one thing above all others: make the final media product appear smooth, effortless, and natural. "Writing media" compels reflection about reading media, which is crucial in an era in which professional media makers view young people largely in terms of market share.
  • ...8 more annotations...
  • As part of their own intellectual retooling in the era of the media collage, teachers can begin by experimenting with a wide range of new media to determine how they best serve their own and their students' educational interests. A simple video can demonstrate a science process; a blog can generate an organic, integrated discussion about a piece of literature; new media in the form of games, documentaries, and digital stories can inform the study of complex social issues; and so on. Thus, a corollary to this guideline is simply, "Experiment fearlessly." Although experts may claim to understand the pedagogical implications of media, the reality is that media are evolving so quickly that teachers should trust their instincts as they explore what works. We are all learning together.
  • Both essay writing and blog writing are important, and for that reason, they should support rather than conflict with each other. Essays, such as the one you are reading right now, are suited for detailed argument development, whereas blog writing helps with prioritization, brevity, and clarity. The underlying shift here is one of audience: Only a small portion of readers read essays, whereas a large portion of the public reads Web material. Thus, the pressure is on for students to think and write clearly and precisely if they are to be effective contributors to the collective narrative of the Web.
  • The demands of digital literacy make clear that both research reports and stories represent important approaches to thinking and communicating; students need to be able to understand and use both forms. One of the more exciting pedagogical frontiers that awaits us is learning how to combine the two, blending the critical thinking of the former with the engagement of the latter. The report–story continuum is rich with opportunity to blend research and storytelling in interesting, effective ways within the domain of new media.
  • The new media collage depends on a combination of individual and collective thinking and creative endeavor. It requires all of us to express ourselves clearly as individuals, while merging our expression into the domain of public narrative. This can include everything from expecting students to craft a collaborative media collage project in language arts classes to requiring them to contribute to international wikis and collective research projects about global warming with colleagues they have never seen. What is key here is that these are now "normal" kinds of expression that carry over into the world of work and creative personal expression beyond school.
  • Students need to be media literate to understand how media technique influences perception and thinking. They also need to understand larger social issues that are inextricably linked to digital citizenship, such as security, environmental degradation, digital equity, and living in a multicultural, networked world. We want our students to use technology not only effectively and creatively, but also wisely, to be concerned with not just how to use digital tools, but also when to use them and why.
  • Fluency is the ability to practice literacy at the advanced levels required for sophisticated communication within social and workplace environments. Digital fluency facilitates the language of leadership and innovation that enables us to translate our ideas into compelling professional practice. The fluent will lead, the literate will follow, and the rest will get left behind.
  • Digital fluency is much more of a perspective than a technical skill set. Teachers who are truly digitally fluent will blend creativity and innovation into lesson plans, assignments, and projects and understand the role that digital tools can play in creating academic expectations that are authentically connected, both locally and globally, to their students' lives.
  • Focus on expression first and technology second—and everything will fall into place.
1 - 5 of 5
Showing 20 items per page