Skip to main content

Home/ Cancer/ Group items tagged nutrition herbs study apoptosis

Rss Feed Group items tagged

Matti Narkia

Berberine, a natural product, induces G1-phase cell cycle arrest and caspase-3-dependen... - 0 views

  •  
    Berberine, a natural product, induces G1-phase cell cycle arrest and caspase-3-dependent apoptosis in human prostate carcinoma cells. Mantena SK, Sharma SD, Katiyar SK. Mol Cancer Ther. 2006 Feb;5(2):296-308. PMID: 16505103 doi: 10.1158/1535-7163.MCT-05-0448 The effectiveness of berberine in checking the growth of androgen-insensitive, as well as androgen-sensitive, prostate cancer cells without affecting the growth of normal prostate epithelial cells indicates that it may be a promising candidate for prostate cancer therapy. The evaluation of ancient herbal medicines may indicate novel strategies for the treatment of prostate cancer, which remains the leading cause of cancer-related deaths in American men (1). In our present investigation, we show that a naturally occurring isoquinoline alkaloid, berberine, significantly inhibits the proliferation and reduces the viability of DU145 and PC-3 as well as LNCaP cells (Fig. 1), which suggests that berberine may be an effective chemotherapeutic agent against both androgen-sensitive and androgen-insensitive prostate cancer cells. Importantly, we found that berberine did not exhibit toxicity to nonneoplastic human prostate epithelial cells under the conditions used, except for a moderate reduction in cell viability at higher concentrations when cells were treated in vitro for an extended period of time. In conclusion, the results of the present study indicate that berberine inhibits proliferation and induces G1-phase arrest and apoptosis in human prostate cancer cells but not in normal human prostate epithelial cells. In addition, we provide mechanistic evidence that berberine-induced apoptosis in prostate carcinoma cells, particularly hormone-refractory prostate carcinoma cells, is mediated through enhanced expression of Bax, disruption of the mitochondrial membrane potential, and activation of caspase-3.
Matti Narkia

Berberine inhibits growth, induces G1 arrest and apoptosis in human epidermoid carcinom... - 0 views

  •  
    Berberine inhibits growth, induces G1 arrest and apoptosis in human epidermoid carcinoma A431 cells by regulating Cdki-Cdk-cyclin cascade, disruption of mitochondrial membrane potential and cleavage of caspase 3 and PARP. Mantena SK, Sharma SD, Katiyar SK. Carcinogenesis. 2006 Oct;27(10):2018-27. Epub 2006 Apr 18. PMID: 16621886 doi:10.1093/carcin/bgl043 In the present investigation, we show that berberine, which is present abundantly in Berberis plant species, significantly inhibits the viability, proliferation and induces cell death in human epidermoid carcinoma A431 cells (Figure 1), but this effect was not found in normal human epidermal keratinocytes under the identical conditions, except for a non-significant reduction in cell viability at higher concentrations of berberine (50 and 75 µM) and treatment of cells for a longer period of time (72 h). These data suggested that berberine may be examined as an effective chemotherapeutic agent against non-melanoma skin cancers. In conclusion, our study indicates that berberine inhibits growth, induces G1 arrest and apoptotic cell death of human epidermoid carcinoma A431 cells. We also provide mechanistic evidences that berberine-induced apoptosis in human epidermoid carcinoma cells is mediated through disruption of mitochondrial membrane potential and activation of caspase 3 pathway, although other pathways may have a role and that require further investigation. Moreover, further in vivo studies are required to determine whether berberine could be an effective chemotherapeutic agent for the prevention of non-melanoma skin cancers.
Matti Narkia

Lingzhi mushroom - Wikipedia, the free encyclopedia - 0 views

  •  
    "Língzhī (traditional Chinese: 靈芝; simplified Chinese: 灵芝; Japanese: reishi; Korean: yeongji, hangul: 영지) is the name for one form of the mushroom Ganoderma lucidum, and its close relative Ganoderma tsugae. Ganoderma lucidum enjoys special veneration in Asia, where it has been used as a medicinal mushroom in traditional Chinese medicine for more than 4,000 years, making it one of the oldest mushrooms known to have been used in medicine. Lingzhi may possess anti-tumor, immunomodulatory and immunotherapeutic activities, supported by studies on polysaccharides, terpenes, and other bioactive compounds isolated from fruiting bodies and mycelia of this fungus (reviewed by R. R. Paterson[4] and Lindequist et al.[7]). It has also been found to inhibit platelet aggregation, and to lower blood pressure (via inhibition of angiotensin-converting enzyme[8]), cholesterol and blood sugar.[9] Laboratory studies have shown anti-neoplastic effects of fungal extracts or isolated compounds against some types of cancer. In an animal model, Ganoderma has been reported to prevent cancer metastasis,[10] with potency comparable to Lentinan from Shiitake mushrooms.[11] The mechanisms by which G. lucidum may affect cancer are unknown and they may target different stages of cancer development: inhibition of angiogenesis (formation of new, tumor-induced blood vessels, created to supply nutrients to the tumor) mediated by cytokines, cytoxicity, inhibiting migration of the cancer cells and metastasis, and inducing and enhancing apoptosis of tumor cells
Matti Narkia

Berberine inhibits human tongue squamous carcinoma cancer tumor growth in a murine xeno... - 0 views

  •  
    Berberine inhibits human tongue squamous carcinoma cancer tumor growth in a murine xenograft model. Ho YT, Yang JS, Lu CC, Chiang JH, Li TC, Lin JJ, Lai KC, Liao CL, Lin JG, Chung JG. Phytomedicine. 2009 Sep;16(9):887-90. Epub 2009 Mar 20. PMID: 19303753 Our primary studies showed that berberine induced apoptosis in human tongue cancer SCC-4 cells in vitro. But there is no report to show berberine inhibited SCC-4 cancer cells in vivo on a murine xenograft animal model. SCC-4 tumor cells were implanted into mice and groups of mice were treated with vehicle, berberine (10mg/kg of body weight) and doxorubicin (4mg/kg of body weight). The tested agents were injected once per four days intraperitoneally (i.p.), with treatment starting 4 weeks prior to cells inoculation. Treatment with 4mg/kg of doxorubicin or with 10mg/kg of berberine resulted in a reduction in tumor incidence. Tumor size in xenograft mice treated with 10mg/kg berberine was significantly smaller than that in the control group. Our findings indicated that berbeirne inhibits tumor growth in a xenograft animal model. Therefore, berberine may represent a tongue cancer preventive agent and can be used in clinic.
Matti Narkia

White Button Mushroom (Agaricus Bisporus) Exhibits Antiproliferative and Proapoptotic P... - 0 views

  •  
    White button mushroom (Agaricus bisporus) exhibits antiproliferative and proapoptotic properties and inhibits prostate tumor growth in athymic mice. Adams LS, Phung S, Wu X, Ki L, Chen S. Nutr Cancer. 2008;60(6):744-56. PMID: 19005974 DOI: 10.1080/01635580802192866
Matti Narkia

Anticancer Properties of Ganoderma Lucidum Methanol Extracts In Vitro and In Vivo - Nut... - 0 views

  •  
    Anticancer properties of Ganoderma lucidum methanol extracts in vitro and in vivo. Harhaji Trajković LM, Mijatović SA, Maksimović-Ivanić DD, Stojanović ID, Momcilović MB, Tufegdzić SJ, Maksimović VM, Marjanović ZS, Stosić-Grujicić SD. Nutr Cancer. 2009;61(5):696-707. PMID: 19838944 DOI: 10.1080/01635580902898743 Anticancer activities of various extracts of the medicinal mushroom, Ganoderma lucidum, have been widely demonstrated and are mainly associated with the presence of different bioactive polysaccharides and triterpenoids. We have evaluated and compared in vitro and in vivo the antitumor effects of two preparations from Ganoderma lucidum: a methanol extract containing total terpenoids (GLme) and a purified methanol extract containing mainly acidic terpenoids (GLpme). Both extracts inhibited tumor growth of B16 mouse melanoma cells inoculated subcutaneously into syngeneic C57BL/6 mice and reduced viability of B16 cells in vitro, whereby GLme exhibited stronger effect. Furthermore, anticancer activity of GLme was demonstrated for the first time against two other rodent tumor cell lines, L929-mouse fibrosarcoma and C6-rat astrocytoma. The mechanism of antitumor activity of GLme comprised inhibition of cell proliferation and induction of caspase-dependent apoptotic cell death mediated by upregulated p53 and inhibited Bcl-2 expression. Moreover, the antitumor effect of the GLme was associated with intensified production of reactive oxygen species, whereas their neutralization by the antioxidant, N-acetyl cysteine, resulted in partial recovery of cell viability. Thus, our results suggest that GLme might be a good candidate for treatment of diverse forms of cancers.
1 - 6 of 6
Showing 20 items per page