Skip to main content

Home/ beyondwebct/ Group items tagged technology

Rss Feed Group items tagged

Barbara Lindsey

Convenience, Communications, and Control: How Students Use Technology | Resources | EDU... - 0 views

  • They are characterized as preferring teamwork, experiential activities, and the use of technology
  • Doing is more important than knowing, and learning is accomplished through trial and error as opposed to a logical and rule-based approach.2 Similarly, Paul Hagner found that these students not only possess the skills necessary to use these new communication forms, but there is an ever increasing expectation on their part that these new communication paths be used
  • Much of the work to date, while interesting and compelling, is intuitive and largely based on qualitative data and observation.
  • ...34 more annotations...
  • There is an inexorable trend among college students to universal ownership, mobility, and access to technology.
  • Students were asked about the applications they used on their electronic devices. They reported that they use technology first for educational purposes, followed by communication.
    • Barbara Lindsey
       
      All self-reported. Would have been powerful if could have actually tracked a representative sample and compared actual use with reported use.
  • presentation software was driven primarily by the requirements of the students' major and the curriculum.
  • Communications and entertainment are very much related to gender and age.
  • From student interviews, a picture emerged of student technology use driven by the demands of the major and the classes that students take. Seniors reported spending more time overall on a computer than do freshmen, and they reported greater use of a computer at a place of employment. Seniors spent more hours on the computer each week in support of their educational activities and also more time on more advanced applications—spreadsheets, presentations, and graphics.
  • Confirming what parents suspect, students with the lowest grade point averages (GPAs) spend significantly more time playing computer games; students with the highest GPAs spend more hours weekly using the computer in support of classroom activities. At the University of Minnesota, Crookston, students spent the most hours on the computer in support of classroom activities. This likely reflects the deliberate design of the curriculum to use a laptop extensively. In summary, the curriculum's technology requirements are major motivators for students to learn to use specialized software.
  • The interviews indicated that students are skilled with basic office suite applications but tend to know just enough technology functionality to accomplish their work; they have less in-depth application knowledge or problem solving skills.
  • According to McEuen, student technology skills can be likened to writing skills: Students come to college knowing how to write, but they are not developed writers. The analogy holds true for information technology, and McEuen suggested that colleges and universities approach information technology in the same way they approach writing.6
  • he major requires the development of higher-level skill sets with particular applications.
    • Barbara Lindsey
       
      Not really quantitative--self-reported data back by selected qualitative interviews
  • The comparative literature on student IT skill self-assessment suggests that students overrate their skills; freshmen overrate their skills more than seniors, and men overrate their skills more than women.7 Our data supports these conclusions. Judy Doherty, director of the Student Technologies Resource Group at Colgate University, remarked on student skill assessment, "Students state in their job applications that they are good if not very good, but when tested their skills are average to poor, and they need a lot of training."8
  • Mary Jane Smetanka of the Minneapolis–St. Paul Star Tribune reported that some students are so conditioned by punch-a-button problem solving on computers that they approach problems with a scattershot impulsiveness instead of methodically working them through. In turn, this leads to problem-solving difficulties.
  • We expected to find that the Net Generation student prefers classes that use technology. What we found instead is a bell curve with a preference for a moderate use of technology in the classroom (see Figure 1).
    • Barbara Lindsey
       
      More information needs to be given to find out why--may be tool and method not engaging.
  • It is not surprising that if technology is used well by the instructor, students will come to appreciate its benefits.
  • A student's major was also an important predictor of preferences for technology in the classroom (see Table 3), with engineering students having the highest preference for technology in the classroom (67.8 percent), followed by business students (64.3 percent).
  • Humanities 7.7% 47.9% 40.2
  • he highest scores were given to improved communications, followed by factors related to the management of classroom activities. Lower impact activities had to do with comprehension of classroom materials (complex concepts).
  • I spend more time engaged in course activities in those courses that require me to use technology.
  • The instructors' use of technology in my classes has increased my interest in the subject matter. 3.25 Classes that use information technology are more likely to focus on real-world tasks and examples.
  • Interestingly, students do not feel that use of information technology in classes greatly increases the amount of time engaged with course activities (3.22 mean).12 This is in direct contrast to faculty perceptions reported in an earlier study, where 65 percent of faculty reported they perceived that students spend more time engaged with course materials
  • Only 12.7 percent said the most valuable benefit was improved learning; 3.7 percent perceived no benefit whatsoever. Note that students could only select one response, so more than 12.7 percent may have felt learning was improved, but it was not ranked highest. These findings compare favorably with a study done by Douglas Havelka at the University of Miami in Oxford, Ohio, who identified the top six benefits of the current implementation of IT as improving work efficiency, affecting the way people behave, improving communications, making life more convenient, saving time, and improving learning ability.14
    • Barbara Lindsey
       
      Would have been good to know exactly what kinds of technologies were meant here.
  • Our data suggest that we are at best at the cusp of technologies being employed to improve learning.
  • The interactive features least used by faculty were the features that students indicated contributed the most to their learning.
  • he students in this study called our attention to performance by noting an uneven diffusion of innovation using this technology. This may be due, in part, to faculty or student skill. It may also be due to a lack of institutional recognition of innovation, especially as the successful use of course management systems affects or does not affect faculty tenure, promotion, and merit decisions
  • we found that many of the students most skilled in the use of technology had mixed feelings about technology in the classroom.
  • What we found was that many necessary skills had to be learned at the college or university and that the motivation for doing so was very much tied to the requirements of the curriculum. Similarly, the students in our survey had not gained the necessary skills to use technology in support of academic work outside the classroom. We found a significant need for further training in the use of information technology in support of learning and problem-solving skills.
  • Course management systems were used most by both faculty and students for communication of information and administrative activities and much less in support of learning.
  • In 1997, Michael Hooker proclaimed, "higher education is on the brink of a revolution." Hooker went on to note that two of the greatest challenges our institutions face are those of "harnessing the power of digital technology and responding to the information revolution."18 Hooker and many others, however, did not anticipate the likelihood that higher education's learning revolution would be a journey of a thousand miles rather than a discrete event. Indeed, a study of learning's last great revolution—the invention of moveable type—reveals, too, a revolution conducted over centuries leading to the emergence of a publishing industry, intellectual property rights law, the augmentation of customized lectures with textbooks, and so forth.
  • Both the ECAR study on faculty use of course management systems and this study of student experiences with information technology concluded that, while information technology is indeed making important inroads into classroom and learning activities, to date the effects are largely in the convenience of postsecondary teaching and learning and do not yet constitute a "learning revolution." This should not surprise us. The invention of moveable type enhanced, nearly immediately, access to published information and reduced the time needed to produce new publications. This invention did not itself change literacy levels, teaching styles, learning styles, or other key markers of a learning revolution. These changes, while catalyzed by the new technology, depended on slower social changes to institutions. I believe that is what we are witnessing in higher education today.
  • The institutions chosen represent a nonrepresentative mix of the different types of higher education institution in the United States, in terms of Carnegie class as well as location, source of funding, and levels of technology emphasis. Note, however, that we consider our findings to be instructive rather than conclusive of student experiences at different types of Carnegie institutions.
  • Qualitative data were collected by means of focus groups and individual interviews. We interviewed undergraduate students, administrators, and individuals identified as experts in the field of student technology use in the classroom. Student focus groups and interviews of administrators were conducted at six of the thirteen schools participating in the study.
Barbara Lindsey

We can't let educators off the hook | Dangerously Irrelevant - 0 views

  • Successful technology integration only produces amplified results when in its integration agency is given to the learner, when it becomes a tool to help learners learn, not teachers teach.
  • I would also like to add that that old belief about teaching and learning has been around for a very long time now and part of that belief, the part about the teacher possessing the knowledge and imparting it to kids, is in direct threat when faced with technology. A teacher who has been taught to believe that they are needed for the knowledge they have and that that knowledge gives them authority in the classroom is threatened by technology. That threat needs to be approached lightly. If one speaks the truth too harshly the faithful will simply label them a blasphemer and ignore the truth in their message.
  • et me start by saying that I consider teaching among the most important professions on earth, but just as doctors need to be current on medical technology, teachers MUST be current on information and communication technologies. Those are the tools of the trade.
  • ...14 more annotations...
  • but why don’t teachers understand this? To figure this out we need to understand this philosophically and historically. Doctors, in the mid-19th Century resisted technologies as most teachers do now. Lister and Pasteur were “so far ahead of the curve they weren’t on the same road” when they suggested sterilization. Doctors of the time, seeing themselves as “healers” could not comprehend that they were killing half of their patients by resisting the technologies of the time – the belief system inherent in the identity model of the profession actually prevented them from being what they perceived themselves to be.
  • Part of this is because we teach neither history nor philosophy. We do not share with teachers why Socrates opposed literacy, or what Gutenberg destroyed. We do not allow them to understand the essential humanness of technology, or to understand technology in Heidegger’s terms – the art of manipulating the world for our benefit.
  • Now I don’t know what Glogster is, but I do know that every technology gives and takes. The book disabled hundreds of millions and wiped out hundreds of languages. It also spread learning and allowed both the novel and eventually journalism to appear. And I know that our students must have the philosophical grounding in what technology is, how to learn it, and how to use it, that so many of our current teachers lack. After all, the classroom is filled with technology – chairs and desks (1835 via William Alcott), chalkboards (1840 via William Alcott), Time schedules (1845 via Henry Barnard), Books (1840s, mostly Henry Barnard), testing (1910, the Carnegie Commission), even ballpoint pens – that highly controversial 1950s invention of Marcel Bich. And all of those technologies have benefits and real limits.
  • I’m not really focused on, nor do I think Scott is focused on, “administrative technologies” but on “educational technologies.” A gradebook – I might argue, is no more an “educational technology” than a file cabinet is.
  • What I think we are discussing is transformational technologies. Technologies whereuse alters the learning process.
  • I need to say two things: First, and I think this is a big part of Scott’s target here, every school administrator, every policy maker, and every tech director making “blocking decisions,” needs to wake up and take responsibility for keeping our current century away from education.
  • But – in the end – a big part of this remains “taking responsibility for your own learning.” The first free seminars in these systems which I offered were presented in 1998, and at that point there was already a massive research base for what Scott is saying here. The laws regarding technology access in terms of students with disabilities (and those with “504″ plans) were placed on the books in 1995. IBM was promoting speech recognition and text-to-speech in 1996, and Lynne Anderson-Inman was already proving the value of “digital texts” and “digital notebooks” and digitally linked note-taking in the mid-1990s.
  • Jerrid, Troy, and everyone… The issue is this - In order to be lifelong learners it is essential to understand and know how to function with the information and communications technologies of our world, and to know how to adapt when those technologies change. In order to be human successes we also must understand how to communicate what we know, how to collaborate, and how to distribute information. This is why Socrates drilled his students on memory. In pre-literate Greece, that was the essential tool. This is why we taught “reading” (meaning decoding ink-on-paper alphabetic texts) in school, and why we taught writing with pens and pencils, and why we introduced students to libraries. In the Gutenberg era these were the essential tools.
  • But, when kids are writing, I want them to (among other things) be able to communicate with Grandma even if Grandma lives thousands of miles away, even if Grandma is blind, even if Grandma speaks another language. And if they are reading, I don’t want them limited to the 2,000 “age appropriate” books and 1975 World Book Encyclopedia in the local public library.
  • Newspaper readership, yes a minority, but a rapidly changing environment http://pewresearch.org/pubs/1133/decline-print-newspapers-increased-online-news with (in 2009) only 25% of Americans getting news from print daily.
  • The change is occurring across the “print world” – Amazon, 19 July 2010: “Over the past three months, for every 100 hardcover books Amazon.com has sold, it has sold 143 Kindle books. Over the past month, for every 100 hardcover books Amazon.com has sold, it has sold 180 Kindle books.
  • The lack of real history of education courses is what leaves so many teachers completely unaware of why schools do what they do, and leaves them confused about what the tools of education are.
  • Every day that I present for educators, I have a greater appreciate for how distorted the view is as seen through the eyes of a typical EduBlogger. In fact, the majority of the voices in the EdTech Community are so far ahead of the curve that it doesn’t even seem like their on the same road anymore. Most educators have never listened to a podcast, much less created one. They’ve never edited a wiki, much less started one of their own. So how on earth could they be expected to have a rational conversation about the impact new technologies are having on the skill sets our students need? Simply put, they can’t. The majority of the voices many of us listen to on a regular basis… actually represent just a tiny fraction of the educators out there. We’re the minority, the outsiders, the ones who talk using strange terms involving words with far too many missing vowels.
  • You can’t ‘firmly believe in life-long learning’ and simultaneously not be clued in to the largest transformation in learning that ever has occurred in human history. Those two don’t co-exist. Being a ‘life-long learner’ is not ignoring what’s going on around you; you don’t get to claim the title of ‘effective educator’ if you do this.
  •  
    Successful technology integration only produces amplified results when in its integration agency is given to the learner, when it becomes a tool to help learners learn, not teachers teach.
Barbara Lindsey

Curricula Designed to Meet 21st-Century Expectations | Resources | EDUCAUSE - 0 views

  • W here students had once called a large number of their classes "death by lecture," she noted they were now calling them "death by PowerPoint." >
  • here students had once called a large number of their classes "death by lecture," she noted they were now calling them "death by PowerPoint."
    • Barbara Lindsey
       
      Not representative sample
  • ...13 more annotations...
  • With such specific applications of technology and the limited use of other forms (for example, multimedia), students' low expectations for the use of technology in the curriculum is not surprising. Such constrained use of technology by the faculty in the curriculum and low student expectations may serve to limit innovation and creativity as well as the faculty's capacity to engage students more deeply in their subject matter. Like all organizations, colleges and universities respond to the demands placed upon them. Students' and institutions' low expectations for the use of technology for learning provide insufficient impetus for faculties to change their behavior and make broader, more innovative use of these tools in the service of learning.
  • Consider this scenario:
  • From the beginning, however, a problem arose in that those middle school students went on to high schools and later to colleges that did not (and do not) provide this type of rich learning experience—a learning experience that can best be achieved when technology is used in the service of learning.
  • Data obtained from these sessions with high school and college seniors in Indiana, Oregon, and Virginia
  • Less attention has been given to how to help students achieve the desired learning outcomes through technology.
  • comparatively little support has been devoted to helping faculty use computers and other technologies in creative and innovative ways to deepen student learning.
  • To develop intentional learners, the curriculum must go beyond helping students gain knowledge for knowledge's sake to engaging students in the construction of knowledge for the sake of addressing the challenges faced by a complex, global society.
  • institutional structures and practices to resolve technical problems that faculty invariably encounter are very limited or are not the type of aid needed. Such lack of support limits the amount of time faculty can spend on what they do best—building a compelling curriculum and integrating technology for more powerful learning.
  • integrating study abroad into courses back on the home campus;
  • Faculty concerns perhaps center less on being "replaceable" and more on worrying that the teaching and learning enterprise will be reduced to students gathering information that can be easily downloaded, causing them to rely too heavily on technology instead of intellect.
    • Barbara Lindsey
       
      Mentioned frequently by our group members.
  • First, traditional age students overwhelmingly prefer face-to-face contact with faculty to mediated communication. Second, technology used in the service of learning will require more—not less—sophistication on the part of students as they engage in processes of integration, translation, audience analysis, and critical judgment.
  • Faculty with expertise in one or more subjects, who have been exposed to what we know about how people learn, can determine how to enhance this learning through the use of technology. But simply understanding how to use technology will not provide the integration needed to reach the desired learning outcomes.
    • Barbara Lindsey
       
      Last sentence here most important.
  • There is a need for integrating technology that is in the service of learning throughout the curriculum. More intentional use of technology to capture what students know and are able to integrate in their learning is needed.
Inas Ayyoub

Curricula Designed to Meet 21st-Century Expectations | EDUCAUSE - 1 views

  • Faculty concerns perhaps center less on being "replaceable" and more on worrying that the teaching and learning enterprise will be reduced to students gathering information that can be easily downloaded, causing them to rely too heavily on technology instead of intellect.
  • First, traditional age students overwhelmingly prefer face-to-face contact with faculty to mediated communication. Second, technology used in the service of learning will require more—not less—sophistication on the part of students as they engage in processes of integration, translation, audience analysis, and critical judgment.
  • With such specific applications of technology and the limited use of other forms (for example, multimedia), students' low expectations for the use of technology in the curriculum is not surprising. Such constrained use of technology by the faculty in the curriculum and low student expectations may serve to limit innovation and creativity as well as the faculty's capacity to engage students more deeply in their subject matter.
    • Barbara Lindsey
       
      Your thoughts on this?
    • Chenwen Hong
       
      I completely agree. As a student, I don't think a text-based PowerPoint slide presentation would interest me too much, partcularly when there are too many words squeezed into just one slide. If a PowerPoint slide presentation is just a copy of texts, the use of technology makes nothing different from teaching with a blackboard and chalks. The use of technology must have, and then can serve, a pedagogical purpose.
    • Inas Ayyoub
       
      This remindes me of the first time stuents at my school started using powerpoints to make presentations and how exciting it was for them to see thier classmates ideas presented in front of them this way. Over using this and without really integraing sth new than their words written, showed boredom and disinterest later! So teachers should think here of using technology in a different way like turning the lesson into a digital story or using technology differently ! Being unexpected in the way you use technology in the classrooom, would make them always eager to learn and excited about it!!!
  • ...4 more annotations...
  • Today, these tools still provide middle school teachers with vehicles to enlarge their students' learning. Math and science problem sets are embedded in authentic stories that students understand because the stories reflect their everyday experiences. These authentic problem-solving exercises not only engage students in their learning but also stimulate them to want to learn more.
  • From the beginning, however, a problem arose in that those middle school students went on to high schools and later to colleges that did not (and do not) provide this type of rich learning experience—a learning experience that can best be achieved when technology is used in the service of learning.
  • Students need mastery in areas that include knowledge of human imagination and expression, global and cross-cultural communities, and modeling the natural world.
  • The assignment could take on a deeper dimension by using videoconferencing and e-mail to link teams to students living in the countries of origin of the groups being studied. Integrating real-time global experiences into the classroom can provide a new, first-person information source and engender debate about the validity of various sources of information used in conducting research.
    • Chenwen Hong
       
      I guess the project, with the Peace Corp., we saw during last Friday's session is the best example of technology engaging students with course materials by iintegrating real-time experiences with classroom studies.
Barbara Lindsey

Deliberate Engagement of Laptops in Large Lecture Classes to Improve Attentiveness and ... - 0 views

  •  
    The value of in-class Internet technologies to student attentiveness, engagement, and learning remains both controversial and filled with promising potential. In this study, students were given the option to use LectureTools, an interactive suite of tools designed specifically for larger classes. The availability of these tools dramatically changed the mechanics of the course as over 90% of students attending lecture voluntarily brought their laptops to class. On one hand, surveys over multiple semesters show that students believe the availability of a laptop is more likely to increase their time on tasks unrelated to the conduct of the course. On the other hand, the surveys also ascertained that students felt more attentive with the technology, significantly more engaged, and able to learn more with the technology than in similar classes without it. LectureTools also led to a dramatic increase in the number of students posing questions during class time, with more than half posing at least one question during class over the course of a semester, a percentage far higher than achieved in semesters prior to the use of this technology. These results suggest that while having laptops in the classroom can be a distraction to students, students of today show confidence that they are capable of productive multitasking, showing that they not only can handle this technology when applied through "deliberate engagement" using tools like LectureTools, but thrive with it, as seen through improved attentiveness, learning, and overall engagement even in larger classes.
Barbara Lindsey

2010 Horizon Report » The Horizon Project - 0 views

  • ongoing series of conversations and dialogs with hundreds of technology professionals, campus technologists, faculty leaders from colleges and universities, and representatives of leading corporations from more than two dozen countries. In each of the past six years, these conversations have resulted in the publication each January of a report focused on emerging technologies relevant to higher education.
  • When the cycle starts, little is known, or even can be known, about the appropriateness or efficacy of many of the emerging technologies for these purposes, as the Horizon Project expressly focuses on technologies not currently in widespread use in academe. In a typical year, 75 or more of these technologies may be identified for further investigation; for the 2010 report, more than 110 were considered
  • By engaging a wide community of interested parties, and diligently searching the Internet and other sources, enough information is gathered early in the process to allow the members of the Advisory Board to form an understanding of how each of the discovered technologies might be in use in settings outside of academe, to develop a sense of the potential the technology may have for higher education settings, and to envision applications of the technology for teaching, learning, and creative inquiry. The findings are discussed in a variety of settings — with faculty, industry experts, campus technologists, and of course, the Horizon Advisory Board. Of particular interest to the Advisory Board every year is finding educational applications for these technologies that may not be intuitive or obvious.
  • ...2 more annotations...
  • ncreasingly the Horizon Project is a global effort. Each year at least a third of the members of the advisory board represent countries outside of North America.
  • Each Horizon Report is produced over a period of just a few months so that the information is timely and relevant.
Barbara Lindsey

Technology: The Wrong Questions and the Right Questions | Education | Change.org - 0 views

  • we have to create engagement which works educationally for more than 25% of students, precisely because we have to work against the dominant culture - "math is hard," "history is stupid," "languages are un-necessary." And we need to do that using the efficiencies of contemporary technologies.
  • So tech, in my view, increases factual knowledge. It also allows a constant check of that knowledge. Math facts may stay fairly stable, but not the nations of Europe. Biological knowledge, chemical knowledge, changes constantly. We obviously need both, but a memorizer is not a person with a trustable education. A "finder" may be.
  • the best thing we will have done for our children (and future generations) is to have fully engaged them in empowered learning, building relationships and thinking creatively - and right now technology is one of the tools that facilitates that kind of education, so we need to use it! http://www.iwasthinking.ca/2008/10/09/its-not-about-the-technology/
  • ...7 more annotations...
  • i.e. I remember it only until I've finished the test) transforms to internalized (and useful) memorization only when the information is RELEVANT to my life! That's why kids can remember Pokemon points and Blues Clues songs yet struggle with their times tables or history dates! Yes, we need to agree on what content is foundational - AND we need to learn to teach it to (or learn it with) our children in ways that are meaningful to THEM, not just to us!
  • I used to teach in an urban alternative school where many of my students were gang members.  These students were not successful in school though they did get an education.  I am sorry to say that the majority of their education did not come from school teachers nor was it an education sanctioned by the school district.  I also through the years have been involved in many online communities of interest.  Learning occurs there all the time.  Not all members of these communities were successful in school but within these communities were successful in becoming educated about certain things.  There is high quality education occurring in many places that we don't consider school:  boy and girl scouts, workplaces, church youth groups, 4H, Little League, gangs, internet chat rooms, YouTube, blogs, libraries, family interaction, etc.  In fact, the most relevant learnin for most people happens in one of hese other places of education and not in schools. 
  • If the goal for schools is to become the most relevant and useful place for education we need to harness the rhetorical draw of the gang, the personal significance of the family, the intrinsic nature of clubs and organizations like the Scouts and 4H, the relevance and applicability of the work place, and the openness of social media.  The only way to do this is to personalize the learning experience for each student.  This means that content will be as different from person to person as is the approach to teaching that content.
  • Students who behave, and learn, most like their teachers do the best in classrooms. Teachers see this reflection as proof of their own competence - "The best students are just like me." And thus all who are "different" in any way - race, class, ability, temperament, preferences - are left out of the success story.
  • Mobile phones, computers everywhere, hypertext, social networking, collaborative cognition (from Wikipedia on up), Google, text-messaging, Twitter, audiobooks, digital texts, text-to-speech, speech recognition, flexible formatting - these are not "add ons" to the world of education, they are the world of education. This is how humans in this century talk, read, communicate, learn. And learning to use these technologies effectively, efficiently, and intelligently must be at the heart of our educational strategies. These technologies do something else - by creating a flexibility and set of choices unprecedented in human communication - they "enable" a vast part of the population which earlier media forms disabled.
  • Back in Socrates' time it was all about the information you could remember. With this system very, very few could become "educated." In the ‘Gutenberg era' it was all about how many books you could read and how fast you could decode alphabetical text; this let a few more reach that ‘educated' status - about 35% if you trust all those standardized tests to measure "proficiency." But now it is all about how you learn to find information, how you build your professional and personal networks, how you learn, how to learn - because learning must be continuous. None of this eliminates the need for a base of knowledge - the ability to search, to ask questions, requires a knowledge base, but it dramatically alters both how that knowledge base is developed, and what you need to do with it. This paradigm opens up the ranks of the "educated" in ways inconceivable previously.
  • We must abandon the one-way classroom communication system, be it the lecture or use of the "clicker," and teach with conversation and through modeling learning itself. We must lose the idea that "attention" means students staring at a teacher, or that "attendance" means being in the room, and understand all the differing ways humans learn best. We must stop separating subjects rigidly and adopt the contemporary notion of following knowledge where it leads us.
Barbara Lindsey

ASCD Express 5.18 - Cell Phones Allow Anytime Learning - 0 views

  • She is currently writing a book tentatively titled Cases for Using Students' Cell Phones in Education: A Practical Guide to Using Cell Phones in K–12 Schools, which looks at 11 U.S. and 5 international case studies of teachers integrating students' own cell phones into instruction.
  • One of Larry Cuban's (Teachers and Machines, Oversold and Underused) theories about why ed technology often fails in schools is that we use this top-down approach where administrators or tech coordinators introduce the technologies to the teachers, and they in turn try to introduce and teach it to the students. It's a very foreign concept for the students, as well as the teachers. And often what happens is maybe a handful of teachers end up using this very expensive technology, and students don't have any access to it outside of school. Cuban recommends a much more bottom-up approach to ed technology. Rather than making specialized software and hardware just for school learning, students and society introduce the technologies that schools should be integrating into learning.
  • People who know the history of ed technology know that it hasn't been that successful, long-term, with sustaining learning because it's often attached to a tool that students don't have access to outside of school.
  • ...3 more annotations...
  • For many schools, the hardest part is making it acceptable to turn to technologies that aren't traditionally used in schools. It's a culture that has to be cultivated at the school itself. In the book I'm working on now, many of the teachers in the case studies I discuss approached their administrators with something they'd been using with success outside of school, and their administrators were open to trying it out within school. Kipp Rogers at Passages Middle School in Newport News, Va., has done a phenomenal job modeling that approach and valuing not only his teachers, but also his students, who are involved in planning, as well.
  • Q: From what you've seen in the field, what's the most interesting instructional use of mobile devices happening now? Keren-Kolb: Definitely what's going on in Australia. Teachers are using QR (two-dimensional bar codes) for activities and learning. In the United States, about 60 percent of the phones can do this, but in most other countries, it's almost universal. So, in some Australian schools, this means [that] students come in on the first day of class and their entire syllabus is on a bar code they scan directly into their phone—same thing with some books and homework assignments. They'll scan a code for their homework, and it'll link to video tutorials and activities. So, moving away from textbooks and moving toward paperless learning that's much more interactive. I think that's exciting—how much information you can attach to that little bar code, and use it to extend learning.
  • When students can use whatever tools are around them, obviously, testing changes. It's not just about a right or wrong answer—it's about inquiry, collaboration, and the higher-order thinking skills we want students to do.
Barbara Lindsey

Planning for Neomillennial Learning Styles: Implications for Investments in Technology ... - 0 views

  • Research indicates that each of these media, when designed for education, fosters particular types of interactions that enable—and undercut—various learning styles.
    • Barbara Lindsey
       
      How much do we know about our students' learning styles? How do we know this?
  • Over the next decade, three complementary interfaces will shape how people learn
  • The familiar "world to the desktop." Provides access to distant experts and archives and enables collaborations, mentoring relationships, and virtual communities of practice. This interface is evolving through initiatives such as Internet2. "Alice in Wonderland" multiuser virtual environments (MUVEs). Participants' avatars (self-created digital characters) interact with computer-based agents and digital artifacts in virtual contexts. The initial stages of studies on shared virtual environments are characterized by advances in Internet games and work in virtual reality. Ubiquitous computing. Mobile wireless devices infuse virtual resources as we move through the real world. The early stages of "augmented reality" interfaces are characterized by research on the role of "smart objects" and "intelligent contexts" in learning and doing.
  • ...48 more annotations...
  • This immersion in virtual environments and augmented realities shapes participants' learning styles beyond what using sophisticated computers and telecommunications has fostered thus far, with multiple implications for higher education.
  • Beyond actional and symbolic immersion, advances in interface technology are now creating virtual environments and augmented realities that induce a psychological sense of sensory and physical immersion.
  • The research on virtual reality Salzman and I conducted on frames of reference found that the exocentric and the egocentric FORs have different strengths for learning. Our studies established that learning ideally involves a "bicentric" perspective alternating between egocentric and exocentric FORs.
    • Barbara Lindsey
       
      Could we make the argument that this is one of the main goals of language programs?
  • But what is so special about the egocentric perspectives and situated learning now enabled by emerging media? After all, each of us lives with an egocentric perspective in the real world and has many opportunities for situated learning without using technology. One attribute that makes mediated immersion different and powerful is the ability to access information resources and psychosocial community distributed across distance and time, broadening and deepening experience. A second important attribute is the ability to create interactions and activities in mediated experience not possible in the real world, such as teleporting within a virtual environment, enabling a distant person to see a real-time image of your local environment, or interacting with a (simulated) chemical spill in a busy public setting. Both of these attributes are actualized in the Alice-in-Wonderland interface.
  • Notion of place is layered/blended/multiple; mobility and nomadicity prevalent among dispersed, fragmented, fluctuating habitats (for example, coffeehouses near campus)
  • Guided social constructivism and situated learning as major forms of pedagogy
  • he defining quality of a learning community is that there is a culture of learning, in which everyone is involved in a collective effort of understanding. There are four characteristics that such a culture must have: (1) diversity of expertise among its members, who are valued for their contributions and given support to develop, (2) a shared objective of continually advancing the collective knowledge and skills, (3) an emphasis on learning how to learn, and (4) mechanisms for sharing what is learned. If a learning community is presented with a problem, then the learning community can bring its collective knowledge to bear on the problem. It is not necessary that each member assimilate everything that the community knows, but each should know who within the community has relevant expertise to address any problem. This is a radical departure from the traditional view of schooling, with its emphasis on individual knowledge and performance, and the expectation that students will acquire the same body of knowledge at the same time.26
  • Peer-developed and peer-rated forms of assessment complement faculty grading, which is often based on individual accomplishment in a team performance context  Assessments provide formative feedback on instructional effectiveness
  • Multipurpose habitats—creating layered/blended/personalizable places rather than specialized locations (such as computer labs)
  • o the extent that some of these ideas about neomillennial learning styles are accurate, campuses that make strategic investments in physical plant, technical infrastructure, and professional development along the dimensions suggested will gain a considerable competitive advantage in both recruiting top students and teaching them effectively.
  • Net Generation learning styles stem primarily from the world-to-the-desktop interface; however, the growing prevalence of interfaces to virtual environments and augmented realities is beginning to foster so-called neomillennial learning styles in users of all ages.
    • Barbara Lindsey
       
      What is the timeline?
  • Immersion is the subjective impression that one is participating in a comprehensive, realistic experience.
  • Inducing a participant's symbolic immersion involves triggering powerful semantic associations via the content of an experience.
    • Barbara Lindsey
       
      Felice's Utopian City
  • The capability of computer interfaces to foster psychological immersion enables technology-intensive educational experiences that draw on a powerful pedagogy: situated learning.
  • The major schools of thought cited are behaviorist theories of learning (presentational instruction), cognitivist theories of learning (tutoring and guided learning by doing), and situated theories of learning (mentoring and apprenticeships in communities of practice).
    • Barbara Lindsey
       
      What kinds of learning environments do you prefer and what kinds do you create for your students?
  • Situated learning requires authentic contexts, activities, and assessment coupled with guidance from expert modeling, mentoring, and "legitimate peripheral participation."8 As an example of legitimate peripheral participation, graduate students work within the laboratories of expert researchers, who model the practice of scholarship. These students interact with experts in research as well as with other members of the research team who understand the complex processes of scholarship to varying degrees. While in these laboratories, students gradually move from novice researchers to more advanced roles, with the skills and expectations for them evolving.
  • Potentially quite powerful, situated learning is much less used for instruction than behaviorist or cognitivist approaches. This is largely because creating tacit, relatively unstructured learning in complex real-world settings is difficult.
    • Barbara Lindsey
       
      Not too far in the future!
  • However, virtual environments and ubiquitous computing can draw on the power of situated learning by creating immersive, extended experiences with problems and contexts similar to the real world.9 In particular, MUVEs and real-world settings augmented with virtual information provide the capability to create problem-solving communities in which participants can gain knowledge and skills through interacting with other participants who have varied levels of skills, enabling legitimate peripheral participation driven by intrinsic sociocultural forces.
  • Situated learning is important in part because of the crucial issue of transfer. Transfer is defined as the application of knowledge learned in one situation to another situation and is demonstrated if instruction on a learning task leads to improved performance on a transfer task, typically a skilled performance in a real-world setting
    • Barbara Lindsey
       
      One of the most difficult skills to master.
  • Moreover, the evolution of an individual's or group's identity is an important type of learning for which simulated experiences situated in virtual environments or augmented realities are well suited. Reflecting on and refining an individual identity is often a significant issue for higher education students of all ages, and learning to evolve group and organizational identity is a crucial skill in enabling innovation and in adapting to shifting contexts.
  • Immersion is important in this process of identity exploration because virtual identity is unfettered by physical attributes such as gender, race, and disabilities.
    • Barbara Lindsey
       
      Don't agree with this. We come to any environment with our own baggage and we do not interact in a neutral social context.
  • Thanks to out-of-game trading of in-game items, Norrath, the virtual setting of the MMOG EverQuest, is the seventy-seventh largest economy in the real world, with a GNP per capita between that of Russia and Bulgaria. One platinum piece, the unit of currency in Norrath, trades on real world exchange markets higher than both the Yen and the Lira (Castronova, 2001).14
  • Multiple teams of students can access the MUVE simultaneously, each individual manipulating an avatar which is "sent back in time" to this virtual environment. Students must collaborate to share the data each team collects. Beyond textual conversation, students can project to each other "snapshots" of their current individual point of view (when someone has discovered an item of general interest) and also can "teleport" to join anyone on their team for joint investigation. Each time a team reenters the world, several months of time have passed in River City, so learners can track the dynamic evolution of local problems.
  • In our research on this educational MUVE based on situated learning, we are studying usability, student motivation, student learning, and classroom implementation issues. The results thus far are promising: All learners are highly motivated, including students typically unengaged in classroom settings. All students build fluency in distributed modes of communication and expression and value using multiple media because each empowers different types of communication, activities, experiences, and expressions. Even typically low-performing students can master complex inquiry skills and sophisticated content. Shifts in the pedagogy within the MUVE alter the pattern of student performance.
    • Barbara Lindsey
       
      Would like to see research on this.
  • Research shows that many participants value this functionality and choose to access the Web page after leaving the museum.
    • Barbara Lindsey
       
      More could be done with this.
  • Participants in these distributed simulations use location-aware handheld computers (with GPS technology), allowing users to physically move throughout a real-world location while collecting place-dependent simulated field data, interviewing virtual characters, and collaboratively investigating simulated scenarios.
    • Barbara Lindsey
       
      Much better
  • Initial research on Environmental Detectives and other AR-based educational simulations demonstrates that this type of immersive, situated learning can effectively engage students in critical thinking about authentic scenarios.
  • Students were most effective in learning and problem-solving when they collectively sought, sieved, and synthesized experiences rather than individually locating and absorbing information from some single best source.
    • Barbara Lindsey
       
      How does this 'fit' learning goals and teaching styles in our program?
  • Rheingold's forecasts draw on lifestyles seen at present among young people who are high-end users of new media
  • Rather than having core identities defined through a primarily local set of roles and relationships, people would express varied aspects of their multifaceted identities through alternate extended experiences in distributed virtual environments and augmented realities.
    • Barbara Lindsey
       
      How is this different from current experiences for individuals working within/across different social groups and boundaries?
  • one-third of U.S. households now have broadband access to the Internet. In the past three years, 14 million U.S. families have linked their computers with wireless home networks. Some 55 percent of Americans now carry cell phones
  • Mitchell's forecasts25 are similar to Rheingold's in many respects. He too envisions largely tribal lifestyles distributed across dispersed, fragmented, fluctuating habitats: electronic nomads wandering among virtual campfires. People's senses and physical agency are extended outward and into the intangible, at considerable cost to individual privacy. Individual identity is continuously reformed via an ever-shifting series of networking with others and with tools. People express themselves through nonlinear, associational webs of representations rather than linear "stories" and co-design services rather than selecting a precustomized variant from a menu of possibilities.
  • More and more, though, people of all ages will have lifestyles involving frequent immersion in both virtual and augmented reality. How might distributed, immersive media be designed specifically for education, and what neomillennial learning styles might they induce?
  • Mediated immersion creates distributed learning communities, which have different strengths and limits than location-bound learning communities confined to classroom settings and centered on the teacher and archival materials.27
  • Neomillenial Versus Millennial Learning Styles
  • Emphasis is placed on implications for strategic investments in physical plant, technology infrastructure, and professional development.
  • such as textbooks linked to course ratings by students)
  • Mirroring": Immersive virtual environments provide replicas of distant physical settings
  • Middleware, interoperability, open content, and open source
  • Finding information Sequential assimilation of linear information stream
  • Student products generally tests or papers Grading centers on individual performance
  • These ideas are admittedly speculative rather than based on detailed evidence and are presented to stimulate reaction and dialogue about these trends.
  • f we accept much of the analysis above
    • Barbara Lindsey
       
      But have they made the case for its educational value?
  • students of all ages with increasingly neomillennial learning styles will be drawn to colleges and universities that have these capabilities. Four implications for investments in professional development also are apparent. Faculty will increasingly need capabilities in:
  • Some of these shifts are controversial for many faculty; all involve "unlearning" almost unconscious beliefs, assumptions, and values about the nature of teaching, learning, and the academy. Professional development that requires unlearning necessitates high levels of emotional/social support in addition to mastering the intellectual/technical dimensions involved. The ideal form for this type of professional development is distributed learning communities so that the learning process is consistent with the knowledge and culture to be acquired. In other words, faculty must themselves experience mediated immersion and develop neomillennial learning styles to continue teaching effectively as the nature of students alters.
  • Differences among individuals are greater than dissimilarities between groups, so students in any age cohort will present a mixture of neomillennial, millennial, and traditional learning styles
  • The technologies discussed are emerging rather than mature, so their final form and influences on users are not fully understood. A substantial number of faculty and administrators will likely dismiss and resist some of the ideas and recommendations presented here.
Barbara Lindsey

2010 Horizon Report » Executive Summary - 0 views

  • The annual Horizon Report describes the continuing work of the New Media Consortium’s Horizon Project, a qualitative research project established in 2002 that identifies and describes emerging technologies likely to have a large impact on teaching, learning, or creative inquiry on college and university campuses within the next five years.
  • six emerging technologies or practices are described that are likely to enter mainstream use on campuses within three adoption horizons spread over the next one to five years.
  • In the seven years that the Horizon Project has been underway, more than 400 leaders in the fields of business, industry, technology, and education have contributed to this long-running primary research effort. They have drawn on a comprehensive body of published resources, current research and practice, their own considerable expertise, and the expertise of the NMC and ELI communities to identify technologies and practices that are beginning to appear on campuses or are likely to be adopted in the next few years.
  • ...1 more annotation...
  • Each topic is introduced with an overview that describes what it is, followed by a discussion of the particular relevance of the topic to education, creativity, or research. Examples of how the technology is being, or could be applied to those activities are given. Finally, each section closes with an annotated list of suggested readings and additional examples that expand on the discussion in the report and a link to the tagged resources collected during the research process
  •  
    The annual Horizon Report describes the continuing work of the New Media Consortium's Horizon Project, a qualitative research project established in 2002 that identifies and describes emerging technologies likely to have a large impact on teaching, learning, or creative inquiry on college and university campuses within the next five years.
Barbara Lindsey

Modeling Social Media in Groups, Communities, and Networks - 0 views

  • the evolution of what was initially a group into a community of practice is illustrated, as well as how social media enables one CoP to interact with others to become part of a distributed learning network. Participants in the networked communities continually leverage each other’s professional development, and what is modeled and practiced in transactions there is applied later in their teaching practices
  • Teachers can be shown how to use social media, but unless they use it themselves they are unlikely to change their practices. There is evidence that teachers trained in programs where their instructors used social media (modeled it) are more comfortable with technology than if their instructors did not themselves use these tools. This article suggests how teachers can interact with numerous communities of practice and distributed learning networks where other participants are modeling to and learning from one another optimal ways of using social media in teaching. This strongly suggests that teachers must be trained not only in the use of social media, but through its use.
    • Barbara Lindsey
       
      "Through its use" is key here!
  • “To teach is to model and demonstrate. To learn is to practice and reflect.”
  • ...24 more annotations...
  • Networks are ideal as enhancements for all four of these essential activities of lifelong learners, and they enable us to model, demonstrate, practice, and reflect constantly and effectively.
  • “teachers who practice autonomy in their own professional development formulate heuristics for harvesting knowledge within their personal learning spaces, and thus stand a better chance of inculcating the desired behaviors in their students, thus increasing the likelihood of producing potentially autonomous and lifelong learners. But it is a percolative process.
  • The wiki allowed anyone (anyone could write on it, not just Webheads) to leave an email address if they needed an invitation, and those who had spare invitations would give one to someone in need. The system worked to organize a quick and robust Webheads Wave, a sandbox for teachers to try out the tool and to model and demonstrate and practice with one another.
  • Networks provide the framework for this to happen.
  • Pedagogy
  • Networking
  • Literacy
  • Paradigm shift results when many people in a community or network follow the same process of seeing things modeled and demonstrated for one another in such a way that after considered reflection and weighing of the old and new ways of addressing a problem, they gradually alter their practice.
    • Barbara Lindsey
       
      ACOT showed this in the late 80's with their ten year study.  http://imet.csus.edu/imet1/baeza/PDF%20Files/Upload/10yr.pdf
  • Heuristics
  • hose with knowledge and those seeking it treat each other equally, often reversing roles frequently as seekers and providers of knowledge and content.
  • multiliteracies approaches
  • When the Writing for Webheads group of students and teachers formed in 1998, participants were distrustful of sending their pictures to strangers on the Internet, and even to reveal their real names.
  • Photographs and voice/webcam communications enable group members to see the human behind the text message and enhance bonds leading to a sense of community
  • Scaffolding one another’s practice by modeling to one another and answering each other’s questions
  • the evolution of social media has enabled the Webheads CoP to interact with others to become part of a much wider distributed learning network.
  • Siemens has long espoused the notion of connectivism, famously summarized as “The pipe is more important than the content within the pipe.” (Siemens, 2004, n.p.). Here, Siemens means that it is more important to nurture a system of connections between knowledgeable people (the pipe) than to be concerned with what these knowledgeable people know (the content within the pipe) since this content can be directed as needed to anyone with appropriate connections within the pipe.
  • Communities and networks help us to aggregate, filter, and assimilate this information into some kind of knowledge structure and then disseminate it throughout the community or network.
  • distributed learning networks (DLN’s), or personal or professional learning networks (PLNs), or personal learning environments (PLE’s)–all provide direct (and indirect) contact with many people in one’s network, each possessing a reservoir of knowledge which contributes to the entire pool of knowledge residing in the network. This can be accessed through listservs or sometimes almost instantaneously through Twitter or RSS feeds, or Skype, or instant messaging. Therefore the knowledge possessed by any individual, or node in the network, is the sum total of all aggregated knowledge within that network. It is to this that we ascribe the incredible power inherent in distributed learning networks which often comprise to some extent communities of practice.
  • Wenger, McDermott, and Snyder (2002, p. 6) promote the CoP model as an anecdote to the fact, as he puts it, that “increasing complexity of knowledge requires greater … collaboration; whereas … the half life of knowledge is getting shorter.”
  • the skill of leveraging networks is increasingly important in the 21st century in plumbing and aggregating knowledge when that knowledge base is forever changing at an increasingly accelerated pace.
  • or appropriate use of online social networks to be taught in schools, teachers themselves must be familiar with their impact on learning. One problem is that teacher-trainers without sufficient experience with technology and who are rooted in old-school methodologies are simply not modeling new age learning behaviors for their trainees by showing them how to reach out to networks.
  • research indicates that teachers don’t necessarily activate the knowledge they are exposed to in training curricula. The example he gave was on reverting to traditional methods rather than utilizing knowledge about communicative language teaching (Richards, 2009: 4), but the same applies to knowledge of technology.
  • In order for training in pedagogical affordances of networking to take hold it is crucial that teachers be trained not only in social media, but through its use. Those who use social media in their professional networking find this self-evident, but there is at least annecdotal evidence for the need for modeling by mentors.
  • teachers need to be shown the connections between their use of social media in their personal and professional lives. Glogowski and Sessums pointed out in their presentation at the WiAOC 2007 conference their surprise that student teachers who were already using technology with online acquaintances in their after-hours social networking were not carrying this over into their professional teaching practices.
    • Barbara Lindsey
       
      The same holds true for our students.
Barbara Lindsey

Fishing / Fish Nuggets » CogDogBlog - 0 views

  • Course Management Systems are huge fish nugget factories. And we spend a lot of time, effort, money keeping the assembly lines moving. Fishing? Most things web 2.0.
    • Barbara Lindsey
       
      How can we swim against the stream when university administration pays millions in initial and on-going costs (renewal fees, support staff, 'training sessions') for these lock-step CMSs and actively promote their use and discourage or prevent the use of flexible, interactive and user-defined social networking environments?
  • Most of the faculty that reach out to me are really just asking for tech support. They want to know how to perform certain tasks in Blackboard. They want to know how to edit a web site. They don’t tend to ask the bigger questions: what is appropriate technology for me to use to achieve my goals, how should I use x to help my students learn.
  • I had tremendous latitude to explore and try new technologies
  • ...6 more annotations...
  • Do we foster an environment of “learned helplessness” among the faculty we support by most of our work being workshops on the tools rather than the craft?
    • Barbara Lindsey
       
      Why is it that so many educators don't get this?
  • And along these lines, I was part of some technology conversations with UBC faculty and I just relished watching my colleague Brian’s face contort when someone says, “how do I use twitter in my class?” He’d say in his sweet flip matter, “I am not going to answer that” — not because he doesn’t want to help, but because he wants to teach fishing, not toss them nuggets. You don’t find a freaking “job aid” that gives you a 8 step recipe to use twitter in your economics class– you spend some time in the environment, and let the affordances linger with your content area, and then maybe, you develop an idea that makes sense.
  • My thought is you do a lot of small things.
  • Toss ‘em something that might help on a personal level- be it flickr or doodle or diigo or heck, Blabberize.
  • it means less formal training, less workshops, and more learning by doing. It means using these tools a much as possible in our processes, so they become part of a fabric, not something strange and exotic.
    • Barbara Lindsey
       
      Yes--again, why is this such a difficult concept for educators?
  • They get so hung up on the basic that they can’t get into the cool stuff like expanding and applying their knowledge to more challenging problems. The same situation occurs with faculty. There are lots of folks out there…really…who don’t understand the Internet or servers or how web pages or email works or what the difference. For many folks, uploading links and icons and documents to Blackboard is a major accomplishment given their complete and total lack of understanding of the technological world. I am not even talking about understanding at the level of a techie but more an intuitive sense of how and why things work the way they do with technology.
  •  
    Save Bookmark
Barbara Lindsey

2008 Horizon Report » Key Emerging Technologies - 0 views

  • Taken as a set, our research indicates that all six of these technologies will significantly impact the choices of learning-focused organizations within the next five years.
  • The essential ingredient of next generation social networking, social operating systems, is that they will base the organization of the network around people, rather than around content. This simple conceptual shift promises profound implications for the academy, and for the ways in which we think about knowledge and learning.
  • New displays and interfaces make it possible to use mobiles to access almost any Internet content—content that can be delivered over either a broadband cellular network or a local wireless network.
  • ...3 more annotations...
  • Virtually anyone can capture, edit, and share short video clips, using inexpensive equipment (such as a cell phone) and free or nearly free software.
  • In the coming years, we will see educational applications for both explicit collective intelligence—evidenced in projects like the Wikipedia and in community tagging—and implicit collective intelligence, or data gathered from the repeated activities of numbers of people, including search patterns, cell phone locations over time, geocoded digital photographs, and other data that are passively obtained.
  • Nonetheless, while there are abundant examples of personal and professional uses for mobiles, educational content delivery via mobile devices is still in the early stages. The expectation is that advances in technology over the next twelve to eighteen months will remove the last barriers to access and bring mobiles truly into the mainstream for education.
  •  
    Taken as a set, our research indicates that all six of these technologies will significantly impact the choices of learning-focused organizations within the next five years.
Barbara Lindsey

Dr. Mashup; or, Why Educators Should Learn to Stop Worrying and Love the Remix | EDUCAU... - 0 views

  • A classroom portal that presents automatically updated syndicated resources from the campus library, news sources, student events, weblogs, and podcasts and that was built quickly using free tools.
  • Increasingly, it's not just works of art that are appropriated and remixed but the functionalities of online applications as well.
  • mashups involve the reuse, or remixing, of works of art, of content, and/or of data for purposes that usually were not intended or even imagined by the original creators.
  • ...31 more annotations...
  • hat, exactly, constitutes a valid, original work? What are the implications for how we assess and reward creativity? Can a college or university tap the same sources of innovative talent and energy as Google or Flickr? What are the risks of permitting or opening up to this activity?
    • Barbara Lindsey
       
      Good discussion point
  • Remix is the reworking or adaptation of an existing work. The remix may be subtle, or it may completely redefine how the work comes across. It may add elements from other works, but generally efforts are focused on creating an alternate version of the original. A mashup, on the other hand, involves the combination of two or more works that may be very different from one another. In this article, I will apply these terms both to content remixes and mashups, which originated as a music form but now could describe the mixing of any number of digital media sources, and to data mashups, which combine the data and functionalities of two or more Web applications.
  • Harper's article "The Ecstasy of Influence," the novelist Jonathan Lethem imaginatively reviews the history of appropriation and recasts it as essential to the act of creation.3
  • Lethem's article is a must-read for anyone with an interest in the history of ideas, creativity, and intellectual property. It brilliantly synthesizes multiple disciplines and perspectives into a wonderfully readable and compelling argument. It is also, as the subtitle of his article acknowledges, "a plagiarism." Virtually every passage is a direct lift from another source, as the author explains in his "Key," which gives the source for every line he "stole, warped, and cobbled together." (He also revised "nearly every sentence" at least slightly.) Lethem's ideas noted in the paragraph above were appropriated from Siva Vaidhyanathan, Craig Baldwin, Richard Posner, and George L. Dillon.
  • Reading Walter Benjamin's highly influential 1936 essay "The Work of Art in the Age of Mechanical Reproduction,"4 it's clear that the profound effects of reproductive technology were obvious at that time. As Gould argued in 1964 (influenced by theorists such as Marshall McLuhan5), changes in how art is produced, distributed, and consumed in the electronic age have deep effects on the character of the art itself.
  • Yet the technology developments of the past century have clearly corresponded with a new attitude toward the "aura" associated with a work of invention and with more aggressive attitudes toward appropriation. It's no mere coincidence that the rise of modernist genres using collage techniques and more fragmented structures accompanied the emergence of photography and audio recording.
  • Educational technologists may wonder if "remix" or "content mashup" are just hipper-sounding versions of the learning objects vision that has absorbed so much energy from so many talented people—with mostly disappointing results.
  • The question is, why should a culture of remix take hold when the learning object economy never did?
  • when most learning object repositories were floundering, resource-sharing services such as del.icio.us and Flickr were enjoying phenomenal growth, with their user communities eagerly contributing heaps of useful metadata via simple folksonomy-oriented tagging systems.
  • the standards/practices relationship implicit in the learning objects model has been reversed. With only the noblest of intentions, proponents of learning objects (and I was one of them) went at the problem of promoting reuse by establishing an arduous and complex set of interoperability standards and then working to persuade others to adopt those standards. Educators were asked to take on complex and ill-defined tasks in exchange for an uncertain payoff. Not surprisingly, almost all of them passed.
  • Discoverable Resources
  • Educators might justifiably argue that their materials are more authoritative, reliable, and instructionally sound than those found on the wider Web, but those materials are effectively rendered invisible and inaccessible if they are locked inside course management systems.
  • It's a dirty but open secret that many courses in private environments use copyrighted third-party materials in a way that pushes the limits of fair use—third-party IP is a big reason why many courses cannot easily be made open.
  • The potential payoff for using open and discoverable resources, open and transparent licensing, and open and remixable formats is huge: more reuse means that more dynamic content is being produced more economically, even if the reuse happens only within an organization. And when remixing happens in a social context on the open web, people learn from each other's process.
  • Part of making a resource reusable involves making the right choices for file formats.
  • To facilitate the remixing of materials, educators may want to consider making the source files that were used to create a piece of multimedia available along with the finished result.
  • In addition to choosing the right file format and perhaps offering the original sources, another issue to consider when publishing content online is the critical question: "Is there an RSS feed available?" If so, conversion tools such as Feed2JS (http://www.feed2JS.org) allow for the republication of RSS-ified content in any HTML Web environment, including a course management system, simply by copying and pasting a few lines of JavaScript code. When an original source syndicated with RSS is updated, that update is automatically rendered anywhere it has been republished.
  • Jack Schofield
  • Guardian Unlimited
  • "An API provides an interface and a set of rules that make it much easier to extract data from a website. It's a bit like a record company releasing the vocals, guitars and drums as separate tracks, so you would not have to use digital processing to extract the parts you wanted."1
  • What's new about mashed-up application development? In a sense, the factors that have promoted this approach are the same ones that have changed so much else about Web culture in recent years. Essential hardware and software has gotten more powerful and for the most part cheaper, while access to high-speed connectivity and the enhanced quality of online applications like Google Docs have improved to the point that Tim O'Reilly and others can talk of "the emergent Internet operating system."15 The growth of user-centered technologies such as blogs have fostered a DIY ("do it yourself") culture that increasingly sees online interaction as something that can be personalized and adapted on the individual level. As described earlier, light syndication and service models such as RSS have made it easier and faster than ever to create simple integrations of diverse media types. David Berlind, executive editor of ZDNet, explains: "With mashups, fewer technical skills are needed to become a developer than ever. Not only that, the simplest ones can be done in 10 or 15 minutes. Before, you had to be a pretty decent code jockey with languages like C++ or Visual Basic to turn your creativity into innovation. With mashups, much the same way blogging systems put Web publishing into the hands of millions of ordinary non-technical people, the barrier to developing applications and turning creativity into innovation is so low that there's a vacuum into which an entire new class of developers will be sucked."16
  • The ability to "clone" other users' mashups is especially exciting: a newcomer does not need to spend time learning how to structure the data flows but can simply copy an existing framework that looks useful and then make minor modifications to customize the result.19
    • Barbara Lindsey
       
      This is the idea behind the MIT repository--remixing content to suit local needs.
  • As with content remixing, open access to materials is not just a matter of some charitable impulse to share knowledge with the world; it is a core requirement for participating in some of the most exciting and innovative activity on the Web.
  • "My Maps" functionality
  • For those still wondering what the value proposition is for offering an open API, Google's development process offers a compelling example of the potential rewards.
    • Barbara Lindsey
       
      Wikinomics
  • Elsewhere, it is difficult to point to significant activity suggesting that the mashup ethos is taking hold in academia the way it is on the wider Web.
  • Yet for the most part, the notion of the data mashup and the required openness is not even a consideration in discussions of technology strategy in higher educational institutions. "Data integration" across campus systems is something that is handled by highly skilled professionals at highly skilled prices.
  • Revealing how a more adventurous and inclusive online development strategy might look on campus, Raymond Yee recently posted a comprehensive proposal for his university (UC Berkeley), in which he outlined a "technology platform" not unlike the one employed by Amazon.com (http://aws.amazon.com/)—resources and access that would be invaluable for the institution's programmers as well as for outside interests to build complementary services.
  • All too often, college and university administrators react to this type of innovation with suspicion and outright hostility rather than cooperation.
  • those of us in higher education who observe the successful practices in the wider Web world have an obligation to consider and discuss how we might apply these lessons in our own contexts. We might ask if the content we presently lock down could be made public with a license specifying reasonable terms for reuse. When choosing a content management system, we might consider how well it supports RSS syndication. In an excellent article in the March/April 2007 issue of EDUCAUSE Review, Joanne Berg, Lori Berquam, and Kathy Christoph listed a number of campus activities that could benefit from engaging social networking technologies.26
  • What might happen if we allow our campus innovators to integrate their practices in these areas in the same way that social networking application developers are already integrating theirs? What is the mission-critical data we cannot expose, and what can we expose with minimal risk? And if the notion of making data public seems too radical a step, can APIs be exposed to selected audiences, such as on-campus developers or consortia partners?
Barbara Lindsey

11 predictions concerning technology in education - Articles - Educational Te... - 0 views

  • Much of the technology for the classroom of the "future" actually exists now. The difference in the future will be that it will be much more common and used as a matter of course.
  • Connectivity and "embeddedness" will be the guiding principles: connectivity, in the sense that whatever device pupils do their work on will not lead to a cul-de-sac: it will be straightforward to start work on a handheld computer in one place and continue on a laptop somewhere else; embeddedness, in the sense that you won't have to think about what you're using, because it will all be part of the fabric of living. These two ideas are, of course, closely related.
    • Barbara Lindsey
       
      We'll see the start of that with Apple's introduction of iCloud in October 2011
  • Teachers will continue to be the single most important element in the learning process.
    • Barbara Lindsey
       
      Why do you think this is so given the technology uses described above?
Barbara Lindsey

SpeEdChange: What a good IEP looks like... - 0 views

  • Does your IEP include the student's assessment of their own strengths, needs, issues, desires? If it does not, it can not possibly be a "good IEP." The IEP is not a tool for the school's convenience. It is a plan designed to help the student become the best, most successful, most independent human that student can possibly be. And if does not begin with the student speaking for him or herself, it will fail to do that.
  • The "Individualized Education Program [Plan]," is the central "paperwork" component of American "Special Education" - and, in other forms, not uncommon in other nations. Unfortunately, it is typically (almost always) a deficit-model statement, listing all that is "wrong" with the student
  • The very idea of 'behind'-ness is what's under attack here, A. When you standardize what it means to be an educated child, you create a line in the sand that defines some kids as 'ahead' and some kids as 'behind.' As anyone with a learning disability knows, these sorts of lines are increasingly arbitrary the more you examine them. They shut you out for all manner of reason. They create a situation where those who are 'ahead' get a free bonus happy career, and those who are 'behind' get either the short stick or the sanctimony. Or both.
  • ...6 more annotations...
  • So let me make this the number one idea behind a "good IEP": Start by describing all the things the student is good at.
  • The WATI Student Information Guides (all free downloads) ask you about student abilities in each "area" - the essential first step. But a good IEP goes beyond that. What are the student's interests? What is the best time of the day for the student? What drives this student to succeed? At what? Without this kind of listing, your IEP will fail because you will not be able to leverage student strengths to overcome the things which cause them trouble. The IEP Guidelines start with, "The child's present levels of academic and functional performance." That should be a major bit of writing, not a list of test scores.
  • What opportunities are available to non-disabled students - clubs, sports, arts, music, physical education, socializing? You cannot claim "least restrictive environment" if you deny students the right to participate in these things because they are spending mandatory "extra time" on tasks or in resource rooms, or even, doing homework.
  • If your IEP does not give the student a computer or mobile device to type with or dictate to, and thus the student can not write alongside their peers, they are "not participating" and I want you to write an explanation of that. If that student's IEP does not give them a computer or mobile device which reads to them and thus they must read a different book, or have fewer choices, or go to a separate room, they are "not participating" and I want you to write an explanation of that. If that student's IEP does not give them an appropriately sophisticated AAC device which allows them to communicate in "real time," they are "not participating" and I want you to write an explanation of that. If that student's IEP does not include technologies and strategies to be in the band or on a team or a member of a club or the ability to sit with friends during lunch, they are "not participating" and I want you to write an explanation of that.
  • And remember, "technology" is everything. The chair, the desk, the lighting, and the school itself. And technological solutions can not be restricted by other "educational" policies - such as a "cellphone ban" or a prohibition against iPods or mp3 players.
  • Students need to learn to use their solutions every day, and they need to use those solutions to demonstrate their capabilities.
Barbara Lindsey

Mobile Learning Environments (EDUCAUSE Quarterly) | EDUCAUSE - 0 views

  • There are now more than 4.6 billion mobile phones in the world, according to the International Telecommunication Union (ITU)'s February 2010 press release. This means that mobile has taken the place of FM radio as the most ubiquitous communications technology on the planet.1
  • Mobile Phone Network model Centralized Peer-to-peer Content customization Uniform Personalized to context Information distribution Just-in-case Just-in-time Role of audience Consumer Equal p
  • articipant Reliability qualifier Authority Social capital Governance Institutional Relational
  • ...10 more annotations...
  • I've seen that the introduction of new technology can provide a reason to rethink a course from the ground up and reassess its core educational goals. Often the greatest educational benefits seem to come from this process, not just the technology that encouraged it.
  • It might be safe to say that each time a new medium appears, no matter how different it is from the last, the normal reaction of first adopters is to use it as a new package for existing content.
  • I've seen that the introduction of new technology can provide a reason to rethink a course from the ground up and reassess its core educational goals.
  • It can be easy to forget that we human beings are more than brains connected to an apparatus that moves us around in space. Instead, we belong to communities, we live in neighborhoods, we have local culture and events. Inquiry into these real things led to many of the fields we now call science, literature, mathematics, and history. Why then do we isolate instruction in those fields to a classroom, instead of deriving instruction from the environment from which these subjects originated?
  • place-based learning.2 One such example, Dow Day, is a mobile documentary that relives the student protests of 1967 in Madison, Wisconsin, against the Dow Chemical Company. In this activity, location-aware handheld devices add an augmented layer of history to a walk through the campus, placing the student in the role of a news reporter. By monitoring the device's GPS, Dow Day creates the illusion of additional characters standing in physical space and facilitates simulated conversations with these historical entities. In addition, when players walk to predefined media locations, they trigger video footage showing the physical scene from 40 years ago, effectively superimposing the marchers and police onto the current landscape (see Figure 2).
  • Situated theories of cognition claim that knowing and doing are inherently linked.4
  • One such example is a mobile game called Mentira, produced at the University of New Mexico. The game is designed to teach an introductory college Spanish course in ways that are contextually sound for language learning. In the first unit, students play a mystery game on handheld devices in class, taking on a role and a goal within a story told completely in Spanish. In the second part, the class moves outside to a local Spanish-speaking neighborhood where they continue the story while interacting with physical and virtual Spanish speakers in real places (see Figure 3).
  • With Mentira, students learn Spanish outside the classroom through narrative and interaction with members of a Spanish-speaking neighborhood, re-situating language in practice.
  • Identifying the disconnect, a small team from the Animal Science and the Academic Technology departments at UW–Madison are working on a prototype for hobbyist birdwatchers. WeBIRD aims to crowdsource ornithology research by providing a tool for hobbyist practitioners. A birder will record the audio of a bird heard out in the field and have the system identify the species while logging the sighting's location, current weather, time of day, and date to a central database. This data can then be used for anything from formal research of migration patterns over time to individual questions such as, "Where am I most likely to see a cardinal this time of year?" The potential for location-aware, casual gaming structures such as birder achievement badges and leader boards are also being investigated in order to provide additional social play motives for participation.
  • Learning happens anywhere someone has questions and the means to explore answers. As ubiquitous access to information continues to shift toward personal mobile devices, more and more of the learning that takes place may be happening outside of the classroom and in the context of a backyard conversation, a walk through campus, or a Taquería in New Mexico.
Barbara Lindsey

TSA: Privacy - 0 views

  • The officer who views the image is remotely located in a secure resolution room and never sees the passenger.
  • To further protect passenger privacy, millimeter wave technology blurs all facial features and backscatter technology has an algorithm applied to the entire image.
  • Advanced imaging technology cannot store, print, transmit or save the image, and the image is automatically deleted from the system after it is cleared by the remotely located security officer. Officers evaluating images are not permitted to take cameras, cell phones or photo-enabled devices into the resolution room.
  • ...2 more annotations...
  • TSA recently new software on all millimeter wave imaging technology machines – upgrades designed to enhance privacy by eliminating passenger-specific images and instead auto-detecting potential threats and indicating their location on a generic outline of a person.
  • For units that do not yet have the new software, TSA has taken all efforts to ensure passenger privacy. To that end, the officer who assists the passenger never sees the image the technology produces and the officer who views the image is remotely located in a secure resolution room and never sees the passenger. The two officers communicate via wireless headset.
Barbara Lindsey

My School, Meet MySpace: Social Networking at School | Edutopia - 0 views

  • Months before the newly hired teachers at Philadelphia's Science Leadership Academy (SLA) started their jobs, they began the consuming work of creating the high school of their dreams -- without meeting face to face. They articulated a vision, planned curriculum, designed assessment rubrics, debated discipline policies, and even hammered out daily schedules using the sort of networking tools -- messaging, file swapping, idea sharing, and blogging -- kids love on sites such as MySpace.
  • hen, weeks before the first day of school, the incoming students jumped onboard -- or, more precisely, onto the Science Leadership Academy Web site -- to meet, talk with their teachers, and share their hopes for their education. So began a conversation that still perks along 24/7 in SLA classrooms and cyberspace. It's a bold experiment to redefine learning spaces, the roles and relationships of teachers and students, and the mission of the modern high school.
  • When I hear people say it's our job to create the twenty-first-century workforce, it scares the hell out of me," says Chris Lehmann, SLA's founding principal. "Our job is to create twenty-first-century citizens. We need workers, yes, but we also need scholars, activists, parents -- compassionate, engaged people. We're not reinventing schools to create a new version of a trade school. We're reinventing schools to help kids be adaptable in a world that is changing at a blinding rate."
  • ...11 more annotations...
  • It's the spirit of science rather than hardcore curriculum that permeates SLA. "In science education, inquiry-based learning is the foothold," Lehmann says. "We asked, 'What does it mean to build a school where everything is based on the core values of science: inquiry, research, collaboration, presentation, and reflection?'"
  • It means the first-year curriculum is built around essential questions: Who am I? What influences my identity? How do I interact with my world? In addition to science, math, and engineering, core courses include African American history, Spanish, English, and a basic how-to class in technology that also covers Internet safety and the ethical use of information and software. Classes focus less on facts to be memorized and more on skills and knowledge for students to master independently and incorporate into their lives. Students rarely take tests; they write reflections and do "culminating" projects. Learning doesn't merely cross disciplines -- it shatters outdated departmental divisions. Recently, for instance, kids studied atomic weights in biochemistry (itself a homegrown interdisciplinary course), did mole calculations in algebra, and created Dalton models (diagrams that illustrate molecular structures) in art.
  • This is Dewey for the digital age, old-fashioned progressive education with a technological twist.
  • computers and networking are central to learning at, and shaping the culture of, SLA. "
  • he zest to experiment -- and the determination to use technology to run a school not better, but altogether differently -- began with Lehmann and the teachers last spring when they planned SLA online. Their use of Moodle, an open source course-management system, proved so easy and inspired such productive collaboration that Lehmann adopted it as the school's platform. It's rare to see a dog-eared textbook or pad of paper at SLA; everybody works on iBooks. Students do research on the Internet, post assignments on class Moodle sites, and share information through forums, chat, bookmarks, and new software they seem to discover every day.
  • Teachers continue to use Moodle to plan, dream, and learn, to log attendance and student performance, and to talk about everything -- from the student who shows up each morning without a winter coat to cool new software for tagging research sources. There's also a schoolwide forum called SLA Talk, a combination bulletin board, assembly, PA system, and rap session.
  • Web technology, of course, can do more than get people talking with those they see every day; people can communicate with anyone anywhere. Students at SLA are learning how to use social-networking tools to forge intellectual connections.
  • In October, Lehmann noticed that students were sorting themselves by race in the lunchroom and some clubs. He felt disturbed and started a passionate thread on self-segregation.
  • "Having the conversation changed the way kids looked at themselves," he says.
  • "What I like best about this school is the sense of community," says student Hannah Feldman. "You're not just here to learn, even though you do learn a lot. It's more like a second home."
  • As part of the study of memoirs, for example, Alexa Dunn's English class read Funny in Farsi, Firoozeh Dumas's account of growing up Iranian in the United States -- yes, the students do read books -- and talked with the author in California via Skype. The students also wrote their own memoirs and uploaded them to SLA's network for the teacher and class to read and edit. Then, digital arts teacher Marcie Hull showed the students GarageBand, which they used to turn their memoirs into podcasts. These they posted on the education social-networking site EduSpaces (formerly Elgg); they also posted blogs about the memoirs.
Barbara Lindsey

Web 2.0: A New Wave of Innovation for Teaching and Learning? (EDUCAUSE Review) | EDUCAU... - 0 views

  • Web 2.0. It is about no single new development. Moreover, the term is often applied to a heterogeneous mix of relatively familiar and also very emergent technologies
  • Ultimately, the label “Web 2.0” is far less important than the concepts, projects, and practices included in its scope.
  • Social software has emerged as a major component of the Web 2.0 movement. The idea dates as far back as the 1960s and JCR Licklider’s thoughts on using networked computing to connect people in order to boost their knowledge and their ability to learn. The Internet technologies of the subsequent generation have been profoundly social, as listservs, Usenet groups, discussion software, groupware, and Web-based communities have linked people around the world.
  • ...26 more annotations...
  • It is true that blogs are Web pages, but their reverse-chronological structure implies a different rhetorical purpose than a Web page, which has no inherent timeliness. That altered rhetoric helped shape a different audience, the blogging public, with its emergent social practices of blogrolling, extensive hyperlinking, and discussion threads attached not to pages but to content chunks within them. Reading and searching this world is significantly different from searching the entire Web world. Still, social software does not indicate a sharp break with the old but, rather, the gradual emergence of a new type of practice.
  • Rather than following the notion of the Web as book, they are predicated on microcontent. Blogs are about posts, not pages. Wikis are streams of conversation, revision, amendment, and truncation. Podcasts are shuttled between Web sites, RSS feeds, and diverse players. These content blocks can be saved, summarized, addressed, copied, quoted, and built into new projects. Browsers respond to this boom in microcontent with bookmarklets in toolbars, letting users fling something from one page into a Web service that yields up another page. AJAX-style pages feed content bits into pages without reloading them, like the frames of old but without such blatant seams. They combine the widely used, open XML standard with Java functions.3 Google Maps is a popular example of this, smoothly drawing directional information and satellite imagery down into a browser.
  • Web 2.0 builds on this original microcontent drive, with users developing Web content, often collaboratively and often open to the world.
  • openness remains a hallmark of this emergent movement, both ideologically and technologically.
  • Drawing on the “wisdom of crowds” argument, Web 2.0 services respond more deeply to users than Web 1.0 services. A leading form of this is a controversial new form of metadata, the folksonomy.
  • Third, people tend to tag socially. That is, they learn from other taggers and respond to other, published groups of tags, or “tagsets.”
  • First, users actually use tags.
  • Social bookmarking is one of the signature Web 2.0 categories, one that did not exist a few years ago and that is now represented by dozens of projects.
  • This is classic social software—and a rare case of people connecting through shared metadata.
  • RawSugar (http://www.rawsugar.com/) and several others expand user personalization. They can present a user’s picture, some background about the person, a feed of their interests, and so on, creating a broader base for bookmark publishing and sharing. This may extend the appeal of the practice to those who find the focus of del.icio.us too narrow. In this way too, a Web 2.0 project learns from others—here, blogs and social networking tools.
  • How can social bookmarking play a role in higher education? Pedagogical applications stem from their affordance of collaborative information discovery.
  • First, they act as an “outboard memory,” a location to store links that might be lost to time, scattered across different browser bookmark settings, or distributed in e-mails, printouts, and Web links. Second, finding people with related interests can magnify one’s work by learning from others or by leading to new collaborations. Third, the practice of user-created tagging can offer new perspectives on one’s research, as clusters of tags reveal patterns (or absences) not immediately visible by examining one of several URLs. Fourth, the ability to create multi-authored bookmark pages can be useful for team projects, as each member can upload resources discovered, no matter their location or timing. Tagging can then surface individual perspectives within the collective. Fifth, following a bookmark site gives insights into the owner’s (or owners’) research, which could play well in a classroom setting as an instructor tracks students’ progress. Students, in turn, can learn from their professor’s discoveries.
  • After e-mail lists, discussion forums, groupware, documents edited and exchanged between individuals, and blogs, perhaps the writing application most thoroughly grounded in social interaction is the wiki. Wiki pages allow users to quickly edit their content from within the browser window.11 They originally hit the Web in the late 1990s (another sign that Web 2.0 is emergent and historical, not a brand-new thing)
  • How do social writing platforms intersect with the world of higher education? They appear to be logistically useful tools for a variety of campus needs, from student group learning to faculty department work to staff collaborations. Pedagogically, one can imagine writing exercises based on these tools, building on the established body of collaborative composition practice. These services offer an alternative platform for peer editing, supporting the now-traditional elements of computer-mediated writing—asynchronous writing, groupwork for distributed members
  • Blogging has become, in many ways, the signature item of social software, being a form of digital writing that has grown rapidly into an influential force in many venues, both on- and off-line. One reason for the popularity of blogs is the way they embody the read/write Web notion. Readers can push back on a blog post by commenting on it. These comments are then addressable, forming new microcontent. Web services have grown up around blog comments, most recently in the form of aggregation tools, such as coComment (http://www.cocomment.com/). CoComment lets users keep track of their comments across myriad sites, via a tiny bookmarklet and a single Web page.
  • Technorati (http://technorati.com/) and IceRocket (http://icerocket.com/) head in the opposite direction of these sites, searching for who (usually a blogger) has recently linked to a specific item or site. Technorati is perhaps the most famous blog-search tool. Among other functions, it has emphasized tagging as part of search and discovery, recommending (and rewarding) users who add tags to their blog posts. Bloggers can register their site for free with Technorati; their posts will then be searchable by content and supplemental tags.
  • Many of these services allow users to save their searches as RSS feeds to be returned to and examined in an RSS reader, such as Bloglines (http://www.bloglines.com/) or NetNewsWire (http://ranchero.com/netnewswire/). This subtle ability is neatly recursive in Web 2.0 terms, since it lets users create microcontent (RSS search terms) about microcontent (blog posts). Being merely text strings, such search feeds are shareable in all sorts of ways, so one can imagine collaborative research projects based on growing swarms of these feeds—social bookmarking plus social search.
  • Students can search the blogosphere for political commentary, current cultural items, public developments in science, business news, and so on.
  • The ability to save and share a search, and in the case of PubSub, to literally search the future, lets students and faculty follow a search over time, perhaps across a span of weeks in a semester. As the live content changes, tools like Waypath’s topic stream, BlogPulse’s trend visualizations, or DayPop’s word generator let a student analyze how a story, topic, idea, or discussion changes over time. Furthermore, the social nature of these tools means that collaboration between classes, departments, campuses, or regions is easily supported. One could imagine faculty and students across the United States following, for example, the career of an Islamic feminist or the outcome of a genomic patent and discussing the issue through these and other Web 2.0 tools. Such a collaboration could, in turn, be discovered, followed, and perhaps joined by students and faculty around the world. Extending the image, one can imagine such a social research object becoming a learning object or an alternative to courseware.
  • A glance at Blogdex offers a rough snapshot of what the blogosphere is tending to pay attention to.
  • A closer look at an individual Blogdex result reveals the blogs that link to a story. As we saw with del.icio.us, this publication of interest allows the user to follow up on commentary, to see why those links are there, and to learn about those doing the linking. Once again, this is a service that connects people through shared interest in information.
  • The rich search possibilities opened up by these tools can further enhance the pedagogy of current events. A political science class could explore different views of a news story through traditional media using Google News, then from the world of blogs via Memeorandum. A history class could use Blogdex in an exercise in thinking about worldviews. There are also possibilities for a campus information environment. What would a student newspaper look like, for example, with a section based on the Digg approach or the OhmyNews structure? Thematizing these tools as objects for academic scrutiny, the operation and success of such projects is worthy of study in numerous disciplines, from communication to media studies, sociology to computer science.
  • At the same time, many services are hosted externally to academia. They are the creations of enthusiasts or business enterprises and do not necessarily embrace the culture of higher education.
  • Lawrence Lessig, J. D. Lasica, and others remind us that as tools get easier to use and practices become more widespread, it also becomes easier for average citizens to commit copyright violations.19
    • Barbara Lindsey
       
      Which is why he led the Creative Commons Movement and why he exhorts us to re-imagine copyright.
  • Web 2.0’s lowered barrier to entry may influence a variety of cultural forms with powerful implications for education, from storytelling to classroom teaching to individual learning. It is much simpler to set up a del.icio.us tag for a topic one wants to pursue or to spin off a blog or blog departmental topic than it is to physically meet co-learners and experts in a classroom or even to track down a professor. Starting a wiki-level text entry is far easier than beginning an article or book.
  • How can higher education respond, when it offers a complex, contradictory mix of openness and restriction, public engagement and cloistering?
  •  
    Web 2.0. It is about no single new development. Moreover, the term is often applied to a heterogeneous mix of relatively familiar and also very emergent technologies
1 - 20 of 449 Next › Last »
Showing 20 items per page