Researchers can now convert CO2 from the air directly into methanol fuel - 2 views
-
For the first time, researchers have shown that they can capture CO2 from the air, and convert it directly into methanol, which can then be used as an alternative fuel, as well as for hydrogen storage, in fuel cells, or as a building block for plastic.
-
Solar power to suck out co2 during the day and make it fuel finally solves global warming?
The physics of life - 2 views
-
Research in active-matter systems is a growing field in biology. It consists in using theoretical statistical physics in living systems such as molecule colonies to deduce macroscopic properties. The aim and hope is to understand how cells divide, take shape and move on these systems. Being a crossing field between physics and biology "The pot of gold is at the interface but you have to push both fields to their limits." one can read
-
Maybe we should discuss about this active matter one of these days? "These are the hallmarks of systems that physicists call active matter, which have become a major subject of research in the past few years. Examples abound in the natural world - among them the leaderless but coherent flocking of birds and the flowing, structure-forming cytoskeletons of cells. They are increasingly being made in the laboratory: investigators have synthesized active matter using both biological building blocks such as microtubules, and synthetic components including micrometre-scale, light-sensitive plastic 'swimmers' that form structures when someone turns on a lamp. Production of peer-reviewed papers with 'active matter' in the title or abstract has increased from less than 10 per year a decade ago to almost 70 last year, and several international workshops have been held on the topic in the past year."
On the extraordinary strength of Prince Rupert's drops - 1 views
-
Prince Rupert's drops (PRDs), also known as Batavian tears, have been in existence since the early 17th century. They are made of a silicate glass of a high thermal expansion coefficient and have the shape of a tadpole. Typically, the diameter of the head of a PRD is in the range of 5-15 mm and that of the tail is 0.5 to 3.0 mm. PRDs have exceptional strength properties: the head of a PRD can withstand impact with a small hammer, or compression between tungsten carbide platens to high loads of ∼15 000 N, but the tail can be broken with just finger pressure leading to catastrophic disintegration of the PRD. We show here that the high strength of a PRD comes from large surface compressive stresses in the range of 400-700 MPa, determined using techniques of integrated photoelasticity. The surface compressive stresses can suppress Hertzian cone cracking during impact with a small hammer or compression between platens. Finally, it is argued that when the compressive force on a PRD is very high, plasticity in the PRD occurs, which leads to its eventual destruction with increasing load.
‹ Previous
21 - 24 of 24
Showing 20▼ items per page